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Polynomial knot and link invariants from the virtual
biquandle

Alissa S. Crans∗ Allison Henrich † Sam Nelson‡

Abstract

The Alexander biquandle of a virtual knot or link is a module over a 2-variable Laurent
polynomial ring which is an invariant of virtual knots and links. The elementary ideals of this
module are then invariants of virtual isotopy which determine both the generalized Alexander
polynomial (also known as the Sawollek polynomial) for virtual knots and the classical Alexander
polynomial for classical knots. For a fixed monomial ordering <, the Gröbner bases for these
ideals are computable, comparable invariants which fully determine the elementary ideals and
which generalize and unify the classical and generalized Alexander polynomials. We provide
examples to illustrate the usefulness of these invariants and propose questions for future work.

Keywords: virtual knot, generalized Alexander polynomial, virtual Alexander polynomial,
Sawollek polynomial, biquandle, Alexander biquandle.

2010 MSC: 57M27, 57M25

1 Introduction

The Alexander biquandle of an oriented classical or virtual knot or link is a module over a ring of
2-variable Laurent polynomials which is invariant under virtual Reidemeister moves. In this paper
we describe methods of obtaining computable invariants of classical and virtual knots and links from
the Alexander biquandle. These families of invariants generalize and unify the classical Alexander
polynomials for classical knots and the generalized Alexander polynomial for virtual knots and
links (also known as the virtual Alexander polynomial [7, 9, 10] and the Sawollek polynomial [13]),
ZD(x, y).

This work was inspired by the Remark following Theorem 3 in Sawollek’s paper [13] which states,
“For a connected sum D1#D2 of virtual link diagrams D1 and D2, a formula of the form

ZD1#D2
(x, y) = cZD1

(x, y)ZD2
(x, y)

with a constant c does not hold in general...” This is not surprising since the connected sum of virtual
knots and links is not well-defined, yet in certain cases the result nevertheless holds. Computing the
virtual Alexander polynomial of various connected sums of virtual knots reveals that, as anticipated,
these polynomials differed depending on where the connect sum is performed. Moreover, these
polynomials gave no indication of where the connect sum was taken. It is natural, then, to ask
under what circumstances does ZD(x, y) satisfy the above equation.

Since the classical Alexander polynomial generates the k = 1 elementary ideal of the Alexander
matrix, we expect the factor relationship of the polynomials of connected summands to result in an
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inclusion relationship at the level of ideals. To begin our study of such relationships, therefore, we
turned our attention to describing these ideal-valued invariants in more detail as a first step. The
result is the present paper; we anticipate future work taking these ideas further.

The paper is organized as follows. In Section 2 we recall the Alexander biquandle. In Section
3 we define invariants of oriented virtual and classical knots and links derived from the Alexander
biquandle using principal ideals. In Section 4 we use reduced Gröbner bases to define further
invariants from the Alexander biquandle. In Section 5 we collect some computations and examples.
We conclude with some questions for future work in Section 6.

2 The Alexander biquandle

Recall from [7] that an oriented virtual link is an equivalence class of oriented virtual link diagrams
under the equivalence relation defined by the virtual Reidemeister moves, obtained by considering
all possible oriented versions of the moves pictured below:

We now review the definitions of the virtual biquandle and the fundamental virtual biquandle.
This second definition will allow us to see the relationship between biquandles and virtual knots.

Definition 1 Let X be a set and define the diagonal map ∆ : X → X × X by ∆(x) = (x, x). A
virtual biquandle structure on X consists of two invertible maps B, V : X ×X → X ×X satisfying
the axioms:

(0) V 2 = Id : X ×X → X ×X,

(1) There exist unique invertible maps S, vS : X × X → X × X (called the sideways maps)
satisfying

S(B1(x, y), x) = (B2(x, y), y) and vS(V1(x, y), x) = (V2(x, y), y)

for all x, y ∈ X,

(2) (S±1 ◦∆)j and (vS±1 ◦∆)j are bijections for j = 1, 2 satisfying

(S ◦∆)1 = (S ◦∆)2 and (vS ◦∆)1 = (vS ◦∆)2, and
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(3) B and V satisfy the set-theoretic Yang-Baxter equations

(B × I)(I ×B)(B × I) = (B × I)(B × I)(I ×B)
(V × I)(I × V )(V × I) = (V × I)(V × I)(I × V )
(V × I)(I ×B)(V × I) = (V × I)(B × I)(I × V )

We note that these axioms result from by applying the labeling condition pictured below to the
virtual Reidemeister moves. For instance, the invertibility of B and V along with Axiom (1) represent
Reidemeister 2 moves. Reidemeister 1 moves are represented by Axiom (2), and Reidemeister 3
moves are related to Axiom (3).

Suppose we are given a virtual knot or link L with fixed diagram. Let X = {x1, . . . , xn} be a set
of generators that are in one-to-one correspondence with the set of semiarcs in L, i.e. the portions
of the virtual knot or link between crossing points (whether virtual, classical over or classical under).
The set of virtual biquandle words in X, denoted W (X), is defined recursively by the rules:

• x ∈ X implies x ∈W (X) and

• x, y ∈W (X) implies B±1
j (x, y), V ±1

j (x, y), S±1
j (x, y), and vS±1

j (x, y) ∈W (X) for j = 1, 2.

The free virtual biquandle on X, denoted FV (X), is the set of equivalence classes of virtual
biquandle words in X under the equivalence relation on W (X) generated by the virtual biquandle
axioms.

We remark that FV (X) gives provides almost no information about our original knot or link
L. In order to capture information contained in our fixed diagram of L, we mod out by relations
suggested by the crossings to obtain the fundamental virtual biquandle.

The fundamental virtual biquandle of L, denoted FB(L), is the set of equivalence classes of
FV (X) under the equivalence relation generated by the crossing relations in L:

B(x, y) = (z, w) V (x, y) = (z, w)

Alternatively, we can describe FB(L) more directly as the set of equivalence classes in W (X) under
the equivalence relation generated by both the crossing relations and the virtual biquandle axioms.

Theorem 1 Let L be a virtual link written as a closed virtual braid β, that is L = β̂. The funda-
mental virtual biquandle of a virtual link L is isomorphic to the fundamental virtual biquandle of the
link L′ obtained from L by reversing the direction of all strands in the closure of the inverse braid

β̂−1.

The proof is effectively the same as the analogous result for classical biquandles of virtual links in
[11]; we provide an illustration. Consider the virtual link L1 = β̂ given by the closure of the braid

FB(L1) =

〈
x, y, z, w, u, V (a, b) = (x, y), B(z, w) = (c, d),
n, a, b, c, d B(u, n) = (b, c), B(x, y) = (a, u),

V (z, w) = (n, d)

〉
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The reversed inverse braid closure L2 = rβ̂−1 has isomorphic virtual biquandle (indeed, with iden-
tical presentation) to that of L1

FB(L2) =

〈 x, y, z, w, u, V (a, b) = (x, y), B(z, w) = (c, d),
n, a, b, c, d B(u, n) = (b, c), B(x, y) = (a, u),

V (z, w) = (n, d)

〉

while the unreversed inverse braid closure L3 = β̂−1 has a generally distinct virtual biquandle:

FB(L3) =

〈
x, y, z, w, u, B(u, a) = (y, x), V (w, z) = (d, n),
n, a, b, c, d B(n, u) = (c, b), V (b, a) = (y, x),

B(w, z) = (d, c)

〉

Remark 1 The reversed inverse braid closure rβ̂−1 is called the vertical mirror image in [11] and
is one of the 2c possible orientations for a c-component link of what the Knot Atlas [4] calls the
horizontal mirror image. Another “mirror image” of a virtual link can be obtained by switching every
overcrossing to an undercrossing while fixing the diagram outside a neighborhood of the crossing.
This operation is called the mirror image in [11] and is one orientation of the Knot Atlas’ vertical
mirror image. To avoid confusion we will refer to this operation as the sign switch of L, denoted
sL; it is in general a distinct oriented virtual link from L :

FB(sL) =

〈 x, y, z, w, u, B(a, u) = (x, y), V (z, w) = (n, d),
n, a, b, c, d B(b, c) = (u, n), V (a, b) = (x, y),

B(c, d) = (z, w)

〉

An important example of a virtual biquandle, and one to which we will devote considerable
attention, is the Alexander biquandle. We begin with some notation. Let Λ = Z[t±1, s±1] be the
ring of Laurent polynomials in two variables t, s. We can think of Λ as a quotient ring of the
four-variable polynomial ring Λ̃ = Z[t, s, t−1, s−1] by the ideal I = 〈tt−1 − 1, ss−1 − 1〉

Definition 2 Let L be an oriented virtual knot or link diagram and let X = {x1, . . . , xn} be a
set of generators corresponding to the semiarcs of L. Then the Alexander biquandle of L, denoted
AB(L), is the Λ-module generated by X with the relations pictured below at positively (+) and
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negatively (−) oriented classical crossings and at virtual crossings:

z = ty + (1− st)x
w = sx

z = y
w = x

In particular, AB(L) is obtained from the fundamental virtual biquandle of L by setting

B(x, y) = (ty + (1− st)x, sx) and V (x, y) = (y, x).

A straightforward check verifies that the Alexander biquandle of a virtual knot is invariant under
virtual Reidemeister moves; see [10] for details.

Remark 2 It is natural to consider, as we initially did, including a coefficient at the virtual
crossings, e.g. set V (x, y) = (vy, v−1x). However, Theorem 7.1 in [1] implies that the resulting
Z[t±1, s±1, v±1]-module contains the same information as the simpler Z[t±1, s±1]-module. The au-
thors would like to thank Lou Kauffman for bringing this result to their attention.

We can represent the Alexander biquandle of a virtual knot or link with the coefficient matrix of
the homogeneous system of equations determined by the crossings, known as a presentation matrix.

Example 3 The virtual knot below has Alexander biquandle with presentation and presentation
matrix as listed.

AB(L) =

〈
a, b, c, d, e, f, g, h

b = ta+ (1− st)f,
g = sf,
f = te+ (1− st)b,
c = sb,
e = d,
g = h,
c = td+ (1− st)a,
h = sa

〉

M =



t −1 0 0 0 1− st 0 0
0 0 0 0 0 s −1 0
0 1− st 0 0 t −1 0 0
0 s −1 0 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 0 −1 1

1− st 0 −1 t 0 0 0 0
s 0 0 0 0 0 0 −1


For comparison, the Sawollek [13] matrix M − P is:

M − P =


1− x −y 0 0 −1 0
−x/y 0 0 −1 0 0

0 0 1− x −y 0 −1
0 −1 −x/y 0 0 0
0 0 −1 0 0 −y/x
−1 0 0 0 −1/y 1− 1/x

 .

We describe the relationship between these matrices in Example 5.
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Definition 3 Let L be a virtual link, AB(L) the Alexander biquandle of L, and M an m × n
presentation matrix for AB(L). The ideal Ik of Λ generated by the (m− k)-minors of M is the kth
elementary ideal of M .

It is well-known that:

Theorem 2 The elementary ideals of a module over a commutative ring with identity do not depend
on the choice of presentation matrix for the module.

In particular, any two presentation matrices of the same module differ by a sequence of moves of
the forms:

• reordering of rows or columns,

• adding or deleting a row of all zeroes,

• adding or deleting a row and column with a 1 in the intersection and all other entries 0,

• adding a scalar multiple of one row (or column, respectively) to another row (or column,
respectively), or

• replacing a row or column by an invertible scalar multiple of itself.

One then checks that these moves do not change the ideal. For instance, switching the order of two
rows will multiply the minors by −1, but this does not change the ideal since −1 is a unit. Similarly,
multilinearity of the determinant ensures that adding a scalar multiple of one row to another does
not change the minors, etc. See [2, 12] for more details.

It then follows that:

Corollary 3 Let L be a virtual link and let M be a presentation matrix for AB(L). Then the
elementary ideals Ik of M are invariants of virtual isotopy.

In order to compare ideals, we need some machinery. In the next sections we describe two
methods for comparing the ideals Ik.

3 Principal Alexander Polynomials

In this section we employ the tried and true method of obtaining invariants from Ik using principal
ideals, i.e. ideals generated by a single element of Λ = Z[t±1, s±1].

Definition 4 Let L be a virtual link. For any k = 0, 1, 2, . . . , the kth principal Alexander polynomial
of L, denoted ∆p

k(L), is the generator of the smallest principal ideal Pk ⊂ Λ containing the kth
elementary ideal Ik of AB(L).

Remark 4 Note that ∆p
k(L) is only defined up to multiplication by units in Λ, so two values f

and g of ∆p
k(L) are equivalent if f = ±tnsmg for some n,m ∈ Z.

The classical Alexander polynomials can be obtained by the analogous construction starting
with a presentation matrix for the the Alexander quandle, which is the special case of the Alexander
biquandle with

B(x, y) = (ty + (1− t)x, y) and V (x, y) = (y, x)

or equivalently the result of specializing s = 1 in ∆p
k(L). In the literature, ∆p

0 is known as the
generalized Alexander polynomial or virtual Alexander polynomial, and, after a change of variables,
the Sawollek polynomial [7, 9, 10]. In particular, specializing s = 1 in ∆p

1(L) for classical links yields
the classical Alexander polynomial ∆(L).
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Example 5 The virtual knot in Example 3 has 0th principal polynomial

∆p
0(K) = (1− st)(1− s)(1− t)

Taking the determinant of the Sawollek matrix in Example 3, performing the change of variables
x = st and y = −s and canceling units gives the generalized Alexander polynomial in the notation
of [7]:

GK(s, t) = (s− 1)(t− 1)(st− 1) = ∆p
0(K).

The classical Alexander polynomial of this virtual knot is ∆(K) = 1.

Since a virtual knot always has AB(L) presented by a square matrix, the top level k = 0 ideal is
always principal, generated by the determinant of the presentation matrix. To compute ∆p

k(L) for
k > 0, we can find the (m − k)-minors of the presentation matrix, and after multiplying by units
if necessary to get elements of the UFD (Unique Factorization Domain) Z[t, s], find the greatest
common divisor.

4 Alexander-Gröbner Invariants

The principal polynomials ∆p
k have the advantages of being fairly quick to compute and easy to

compare; however, for any principal ideal P ⊂ Λ, there are potentially many distinct non-principal
ideals contained in P , and thus passing from Ik to Pk represents a loss of information. To avoid this
loss of information, we can employ the idea of a Gröbner basis.

Briefly, in a multivariable polynomial ring R[x1, . . . , xn] over a PID (Principal Ideal Domain)
R, a term ordering is a well-ordering on the set of monomials; such an ordering then gives each
polynomial a well-defined leading term. Standard examples of term orderings include:

• lexicographical ordering. Starting with an ordering on the variables, e.g. x1 < x2 < · · · < xn,
one compares terms by comparing powers on the variables in order, with ties in one variable
resolved by comparing the next. For example, if x < y < z then we have

xy2z < xy2z2 < xy3 < x2.

• graded lexicographical ordering. Here we start by comparing total degree, with ties broken
lexicographically. Thus for the previous example in graded lexicographical ordering we have

x2 < xy2 < xy3 < xy2z2.

A generating set G for an ideal I in a polynomial ring is a Gröbner basis for I with respect to a
choice of term ordering < if the leading term of every element of I is divisible by the leading term
of some element of G. Gröbner basis have many useful properties, such as:

• reducing a polynomial f ∈ I by G using the multivariable division algorithm (i.e. repeatedly
subtracting from f multiples of elements of G to cancel leading terms) always results in 0 (this
is not true for arbitrary generating sets), and

• the remainder of a polynomial after multivariable division by G is unique, enabling computa-
tions in the quotient ring Λ/I.

Moreover, a Gröbner basis is reduced if redundant elements have been removed, i.e. if every leading
term has coefficient 1 and no monomial in any element g ∈ G is in the ideal generated by the leading
terms of G−{g}. Importantly for us, for a given choice of term ordering, reduced Gröbner bases of
ideals are unique.

Thus, we would like to compare the ideals Ik by finding and comparing Gröbner bases. One
slight problem is that Λ = Z[t±1, s±1] is a ring of Laurent polynomials, not polynomials. To address
this, we will pull back from the ring Λ to the four-variable polynomial ring Λ̃ = Z[t, s, t−1, s−1] in
which t−1 and s−1 are considered new variables as opposed to powers of t and s.
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Definition 5 Let L be a virtual link and M a presentation matrix for AB(L). For each elementary
ideal Ik, let Ĩk be the preimage of Ik in Λ̃. For a choice of term ordering <, the kth Alexander-
Gröbner Invariant ∆<

k (L) is the Gröbner basis of Λ̃ with respect to the term ordering <.

To compute ∆<
k (L), one uses Buchberger’s algorithm [3] starting by setting G equal to the set

of (m − k)-minors together with the generators 1 − tt−1 and 1 − ss−1. For each pair of elements
g, g′ ∈ G, we find a difference S = pg − qg′ using the least common multiple of the leading terms
of g and g′ such that that the leading terms of pg and qg′ cancel. After reducing S mod G, if the
remainder is nonzero, add it to G and start over. When no more polynomials are added, we have a
Gröbner basis. We then remove elements whose monomials lie in the ideal generated by the leading
terms of the other elements of G to obtain the reduced Gröbner basis, unique up to choice of term
ordering <. See [3] for more.

Since the resulting sets of polynomials can be quite large, we may employ various strategies
to obtain more conveniently comparable invariants at the cost of losing some information. These
include but are certainly not limited to:

• Alexander-Gröbner cardinality. The number of elements in the Gröbner basis of Ĩk, ∆<,Z
k (L) =

|∆<
k (L)|;

• Alexander-Gröbner sum. The sum of the elements of ∆<
k (L),

∆<,Σ
k (L) =

∑
g∈∆<

k

g;

and

• Alexander-Gröbner maximum polynomial. The maximal element of ∆<
k (L) with respect to the

term ordering <, ∆<,M
k (L).

We note that the last two invariants coincide with the principal polynomials when the ideals Ik
are principal; while the first invariant is 1 iff the ideal Ik is prinicpal.

5 Computations and Examples

We provide several examples that justify our proposed generalizations of the Sawollek and other
Alexander-type polynomials. In each of the examples below we use the graded lexicographical
ordering on Λ̃. Our custom python code is available at www.esotericka.org.

Example 6 In [9], the authors give two examples of knots that are not detected by the generalized
Alexander polynomial. One knot is the Kishino knot. The other is the following Kishino-like knot
K:

The (standard) Kishino knot has trivial values for ∆p
0, ∆<

0 and ∆<
1 , but this modified Kishino-like

knot, K, has the following non-trivial value of ∆<
1 :

∆<
1 (K) = {1− t−1 + t−2, −1 + t−1 + t, −1 + s, −1 + s−1}

8



Example 7 Two more knots that are of interest to us are Slavik’s knot and Miyazawa’s knot.
Slavik’s knot is not detected by the arrow polynomial and Miyazawa’s knot is not detected by the
Miyazawa polynomial [8]. While Slavik’s knot isn’t detected by ∆p

0, it is detected by ∆<
1 . On the

other hand, ∆<
1 is trivial for Miyazawa’s knot, but ∆p

0 and ∆<
0 are both non-trivial.

Slavik Miyazawa

∆<
1 (Slavik) = {3t−1s− s2 − 2t−2 + s−1t−3, 3− st− 2s−1t−1 + s−2t−2,

3s−1t− t2 − 2s−2 + t−1s−3, −3s−1t2 + 2ts−2 + t3 − s−3,

− 3t+ 2s−1 + st−2 − t−1s−2, −3s+ 2t−1 + ts−2 − s−1t−2,

− 3t−1s2 + 2st−2 + s3 − t−3, −1 + tt−1, −1 + ss−1}

∆p
0(Miyazawa) = (st− 1)(s− 1)(t− 1)

∆<
0 (Miyazawa) = {−(1− s−1)(1− t)(s−1 − t), (1− t−1)(1− s)(s− t−1),

(1− t−1)(1 + t−1 − s− s−1t−1), (1− s−1)(1 + s−1 − t− s−1t−1)

s−1 + t−1 − s− t+ st− s−1t−1, −1 + tt−1, −1 + ss−1}.

Example 8 Our next example considers connected sums of virtual knot diagrams. For classical
knots, the connected sum operation is well-defined. For virtual knots, however, the knot type of the
diagram obtained by taking a connected sum depends on where the connected sum is taken. We
give two connected sums, K#

1 and K#
2 , of the virtual trefoil knot, 2.1, with itself:

We see from the sets below that the invariants ∆p
0 and ∆<

1 distinguish these two connected sums.

Note that ∆<
1 is trivial on both the virtual trefoil itself and on K#

1 .

∆p
0(2.1) = (1− s)(1− t)(1− st)

∆p
0(K#

1 ) = (1− s)(1− t)(1− st)(1− t+ st2 + s2t2)

∆p
0(K#

2 ) = (1− s)(1− t)(1− st)(1 + s− t+ st2 + s2t2 − ts2)

∆<
1 (2.1) = {1}

∆<
1 (K#

1 ) = {1}

∆<
1 (K#

2 ) = {1− t−1 + t−2, −1 + t−1 + t, −1 + s, −1 + s−1}

9



For our final example, we consider the case of based virtual knots or equivalently long virtual
knots; these are oriented virtual knots with a base point which cannot move through a classical
crossing. In terms of diagrams, this means that strands may not move classically over or under or
virtually detour past the base point. Interpreting the base point as the point at infinity yields the
long knot interpretation.

Our motivation for considering based virtual knots is the observation that while the connected
sum operation is not well-defined for virtual knots, it is well-defined for based virtual knots provided
we only permit the summing operation at the base point. Indeed, based virtual knots form a
noncommutative monoid under based connected sum, since switching the order of summands requires
forbidden moves.

The virtual biquandle of a based virtual knot with n crossings has 2n + 1 generators since two
distinct generators are assigned to the semiarc containing the base point while each remaining semiarc
(of which there are 2n) is assigned a single generator. Meanwhile, the based virtual biquandle has
2n relations: two coming from each of the n crossings, as usual. Because the presentation matrix
is no longer square, its 0-level ideal I0 need not be prinicipal. Therefore, it not surprising that the
Gröbner invariants are stronger than the principal invariants in the based case, as our final example
shows.

Example 9 The two pictured oriented based virtual trefoils both have the trivial value ∆p
0 = 1,

but are distinguished by ∆<
0 :

∆p
0(vt1) = 1

∆p
0(vt2) = 1

∆<
0 (vt1) = {1}

∆<
0 (vt2) = {1− t−1 + t−2, −1 + t−1 + t, −1 + s, −1 + s−1}

Taking based connected sums, we have

∆p
0(vt2#vt1) = ∆<

0 (vt2)
∆p

0(vt2#vt2) = {−2 + t+ 3t−1 − 2t−2 + t−3, −(1− s−1)(1− t−1 + t−2),
3− 2t−1 − 2t+ t−2 + t2, −1 + t−1t,
(1− s−1)(1− t−1 − t), (1− s−1)2, s−1 − 2 + s}

6 Questions

Many interesting questions and promising avenues of exploration involving the ∆p
k and ∆<

k invariants
await further work. These include but are not limited to:
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• Twisted ∆k invariants. In the classical case, a matrix representation of Dp coupled with a p-
coloring of a knot diagram K lets us replace t in the Alexander matrix with a matrix depending
on the p-colors at each crossing; the principal ideal invariants of the resulting matrix are known
as the twisted Alexander polynomials. Matrix representations of labeling biquandles should be
usable in an analogous way with AB(K) to define twisted ∆p

k invariants.

• Multivariable ∆k invariants. Another variant of the Alexander polynomial for links involves
multiple t variables; what is the analogous construction for ∆k invariants?

• Categorification of ∆p
k. We can apply a Khovanov-style construction to the state-sum expan-

sion of ∆p
0 considered as a determinant. How does the result compare to Knot Floer homology?

• Skein relations. The classical Alexander polynomial satisfies the well-known Conway skein
relation, and the Sawollek polynomial satisfies a similar skein relation. What skein relations,
if any, are satisfied by ∆p

k?

• Connected sum behavior. We return to our original question: what conditions are necessary
and sufficient for a connected sum of virtual knot or link diagrams to behave like classical
knots under connected sum with respect to the ∆p

k invariants? A related question: what is the
center of the monoid of based virtual knots?

• Virtual links with boundary. Based virtual knots are a special case of virtual knots with
boundary, where the supporting surface of the virtual knot has a fixed boundary and knots
or links on the surface may have endpoints in the boundary. Gluing such surfaces along
boundary components such that endpoints of knots match up generalizes our based connected
sum operation. What is the algebraic structure of such knots? The authors are grateful to
Charlie Frohman for this observation.

References

[1] A. Bartholomew and R Fenn. Quaternionic Invariants of Virtual Knots and Links. J. Knot
Theory Ramifications. 17 (2008), 231–251.

[2] C. Curtis. Linear Algebra: An Introductory Approach. Fourth edition. Undergraduate Texts in
Mathematics. Springer-Verlag, New York, 1984.

[3] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry. Graduate Texts
in Mathematics, 150. Springer-Verlag, New York, 1995.

[4] J. Green. http://www.math.toronto.edu/drorbn/Students/GreenJ/

[5] A. Kaestner and L.H. Kauffman. Parity Biquandles. arXiv:1103.2825. (2011) 1–25.

[6] N. Kamada. The polynomial invariants of twisted links. Topology Appl. 157 (2010) 220-227.

[7] L. Kauffman. Virtual Knot Theory. European J. Combin. 20 (1999) 663–690.

[8] H.A. Dye and L.H. Kauffman. Virtual crossing number and the arrow polynomial. J. Knot
Theory Ramifications. 18 (2009) 1335-1357.

[9] L. H. Kauffman and D. Radford. Bi-oriented quantum algebras, and a generalized Alexander
polynomial for virtual links. Contemp. Math. 318 (2003) 113–140.

[10] L. H. Kauffman and V. O. Manturov. Virtual biquandles. Fundam. Math. 188 (2005) 103–146.

11

http://www.math.toronto.edu/drorbn/Students/GreenJ/
http://arxiv.org/abs/1103.2825


[11] L. H. Kauffman and D. Hrencecin. Biquandles for Virtual Knots. J. Knot Theory Ramifications
16 (2007) 1361-1382.

[12] W. B. R. Lickorish. An introduction to knot theory. Graduate Texts in Mathematics, 175.
Springer-Verlag, New York, 1997.

[13] J. Sawollek. On Alexander-Conway Polynomials for Virtual Knots and Links. arXiv.org:
math/9912173. (2001) 1–17.

12

http://arxiv.org/abs/math/9912173

	Polynomial knot and link invariants from the virtual biquandle
	Digital Commons @ LMU & LLS Citation

	1 Introduction
	2 The Alexander biquandle
	3 Principal Alexander Polynomials
	4 Alexander-Gröbner Invariants
	5 Computations and Examples
	6 Questions

