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Musical Actions of Dihedral Groups

Alissa S. Crans, Thomas M. Fiore, and Ramon Satyendra

June 13, 2008

1 Introduction

Can you hear an action of a group? Or a centralizer? If knowledge of group
structures can influence how we see a crystal, perhaps it can influence how we
hear music as well. In this article we explore how music may be interpreted
in terms of the group structure of the dihedral group of order 24 and its
centralizer by explaining two musical actions.1 The dihedral group of order
24 is the group of symmetries of a regular 12-gon, that is, of a 12-gon with all
sides of the same length and all angles of the same measure. Algebraically,
the dihedral group of order 24 is the group generated by two elements, s and
t, subject to the three relations

s12 = 1, t2 = 1, tst = s−1.

The first musical action of the dihedral group of order 24 we consider
arises via the familiar compositional techniques of transposition and inver-
sion. A transposition moves a sequence of pitches up or down. When singers
decide to sing a song in a higher register, for example, they do this by trans-
posing the melody. An inversion, on the other hand, reflects a melody about
a fixed axis, just as the face of a clock can be reflected about the 0-6 axis. Of-
ten, musical inversion turns upward melodic motions into downward melodic
motions.2 One can hear both transpositions and inversions in many fugues,
such as Bernstein’s “Cool” fugue from West Side Story or in Bach’s Art of

1The composer Milton Babbitt was one of the first to use group theory to analyze
music. See [1].

2A precise, general definition of inversion will be given later.
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Fugue. We will mathematically see that these musical transpositions and
inversions are the symmetries of the regular 12-gon.

The second action of the dihedral group of order 24 that we explore has
only come to the attention of music theorists in the past two decades. Its
origins lie in the P, L, and R operations of the 19th-century music theorist
Hugo Riemann. We quickly define these operations for musical readers now,
and we will give a more detailed mathematical definition in Section 5. The
parallel operation P maps a major triad3 to its parallel minor and vice versa.
The leading tone exchange operation L takes a major triad to the minor
triad obtained by lowering only the root note by a semitone. The operation
L raises the fifth note of a minor triad by a semitone. The relative operation
R maps a major triad to its relative minor, and vice versa. For example,

P (C-major) = c-minor,

L(C-major) = e-minor,

R(C-major) = a-minor.

It is through these three operations P, L, and R that the dihedral group of
order 24 acts on the set of major and minor triads.

The P, L, and R operations have two beautiful geometric presentations in
terms of graphs that we will explain in Section 5. Musical readers will quickly
see that the C-major triad shares two common tones with each of the three
consonant triads P (C-major), L(C-major), and R(C-major) displayed above.
These common tone relations are geometrically presented by a toroidal graph
with vertices the consonant triads and with an edge between any two vertices
having two tones in common. This graph is pictured in two different ways in
Figures 6 and 7. As we shall see, Beethoven’s Ninth Symphony traces out a
path on this torus.4

Another geometric presentation of the P, L, and R operations is the Ton-
netz graph pictured in Figure 5. It has pitch classes as vertices and de-
composes the torus into triangles. The three vertices of any triangle form
a consonant triad, and in this way we can represent a consonant triad by
a triangle. Whenever two consonant triads share two common tones, the

3A triad is a three-note chord, i.e., a set of three distinct pitch classes. Major and
minor triads, also called consonant triads, are characterized by their interval content and
will be described in Section 4.

4The interpretation of the Ninth Symphony excerpt as a path on the torus was proposed
by Cohn in [6].
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corresponding triangles share the edge connecting those two tones. Since the
P, L, and R operations take a consonant triad to another one with two notes
in common, the P, L, and R operations correspond to reflecting a triangle
about one of its edges. The graph in Figures 6 and 7 is related to the Tonnetz
in Figure 5: they are dual graphs.

In summary, we have two ways in which the dihedral group acts on the
set of major and minor triads: (i) through applications of transposition and
inversion to the constituent pitch classes of any triad, and (ii) through the
operations P, L, and R. Most interestingly, these two group actions are dual
in the precise sense of David Lewin [17]. In this article we illustrate these
group actions and their duality in musical examples by Pachelbel, Wagner,
and Ives.

We will mathematically explain this duality in more detail later, but
we give a short description now. First, we recall that the centralizer of a
subgroup H in a group G is the set of elements of G which commute with
all elements of H , namely

CG(H) = {g ∈ G | gh = hg for all h ∈ H}.

The centralizer of H is itself a subgroup of G. We also recall that an action
of a group K on a set S can be equivalently described as a homomorphism
from K into the symmetric group5 Sym(S) on the set S. Thus, each of our
two group actions of the dihedral group above gives rise to a homomorphism
into the symmetric group on the set S of major and minor triads. It turns
out that each of these homomorphisms is an embedding, so that we have two
distinguished copies, H1 and H2, of the dihedral group of order 24 in Sym(S).
One of these copies is generated by P, L, and R. With these notions in place,
we can now express David Lewin’s idea of duality in [17]: the two group
actions are dual in the sense that each of these subgroups H1 and H2 of
Sym(S) is the centralizer of the other!

Practically no musical background is required to enjoy this discussion
since we provide mathematical descriptions of the required musical notions,
beginning with the traditional translation of pitch classes into elements of
Z12 via Figure 1. From there we develop a musical model using group actions
and topology. We hope that this article will resonate with mathematical and
musical readers alike.

5The symmetric group on a set S consists of all bijections from S to S. The group
operation is function composition.
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2 Pitch Classes and Integers Modulo 12

As the ancient Greeks noticed, any two pitches that differ by a whole number
of octaves6 sound alike. Thus we identify any two such pitches, and speak of
pitch classes arising from this equivalence relation. Like most modern music
theorists, we use equal tempered tuning, so that the octave is divided into
twelve pitch classes as follows.

A A♯ B C C♯ D D♯ E F F♯ G G♯ A
B♭ D♭ E♭ G♭ A♭

The interval between two consecutive pitch classes is called a half-step or
semitone. The notation ♯ means to move up a semitone, while the notation
♭ means to move down a semitone. Note that some pitches have two letter
names. This is an instance of enharmonic equivalence.

Music theorists have found it useful to translate pitch classes to integers
modulo 12 taking 0 to be C as in Figure 1. Mod 12 addition and subtraction

0
1

2

3

48

5
6

7

11

10

9

C
C#/DB

DA#/B

D#/EA

EG#/A

F#/G

FG

Figure 1: The musical clock.

can be read off of this clock; for example 2 + 3 = 5 mod 12, 11 + 4 = 3
mod 12, and 1 − 4 = 9 mod 12. We can also determine the musical interval
from one pitch class to another; for example, the interval from D to G♯ is

6A pitch y is an octave above a pitch x if the frequency of y is twice that of x.
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six semitones. This description of pitch classes in terms of Z12 can be found
in many articles, such as [18] and [20]. This translation from pitch classes
to integers modulo 12 permits us to easily use abstract algebra for modeling
musical events, as we shall see in the next two sections.

3 Transposition and Inversion

Throughout the ages, composers have drawn on the musical tools of trans-
position and inversion. For example, we may consider a type of musical
composition popular in the 18th century that is especially associated with
J. S. Bach: the fugue. Such a composition contains a principal melody
known as the subject; as the fugue progresses, the subject typically will recur
in transposed and inverted forms. Mathematically speaking, transposition
by an integer n mod 12 is the function

Tn : Z12
// Z12

Tn(x) := x + n mod 12

and inversion7 about n is the function

In : Z12
// Z12

In(x) := −x + n mod 12.

Bach often used diatonic transposition and inversion, which we can view as
mod 7 transposition and inversion after identifying the diatonic scale with
Z7. However, many contemporary composers intensively use mod 12 trans-
position and inversion; see for example [11], [19], and [20].

As is well known, these transpositions and inversions have a particularly
nice representation in terms of the musical clock in Figure 1. The transposi-
tion T1 corresponds to clockwise rotation of the clock by 1

12
of a turn, while

I0 corresponds to a reflection of the clock about the 0-6 axis. Hence T1 and
I0 generate the dihedral group of symmetries of the 12-gon. Since (T1)

n = Tn

7At this point in our discussion, musically experienced readers may notice that the
word inversion has several meanings in music theory. The kind of inversion we define here
is different from chord inversion in which pitches other than the root are placed in the
bass. This latter kind of inversion accounts for terms such as first-inversion triad. Our
discussion is not concerned with chord inversion.

5



and Tn ◦ I0 = In, we see that the 12 transpositions and 12 inversions form
the dihedral group of order 24. The compositions

Tm ◦ Tn = Tm+n mod 12

Tm ◦ In = Im+n mod 12

Im ◦ Tn = Im−n mod 12

Im ◦ In = Tm−n mod 12

are easy to verify. This group is often called the T/I-group. The first action
of the dihedral group of order 24 on the set of major and minor triads that
we study is defined via the T/I-group.

4 Major and Minor Triads

Triadic harmony has been in use for hundreds of years and is still used every
day in popular music. In this section we use the integers modulo 12 to define
major and minor triads; in this way we can consider them as objects upon
which the dihedral group of order 24 may act.

A triad consists of three simultaneously played notes. A major triad
consists of a root note, a second note 4 semitones above the root, and a third
note 7 semitones above the root. For example, the C-major triad consists
of {0, 4, 7} = {C, E, G} and is represented as a chord polygon in Figure 2.
See [18] for beautiful illustrations of the utility of chord polygons. Since any
major triad is a subset of the pitch-class space Z12, and transpositions and
inversions act on Z12, we can also apply transpositions and inversions to any
major triad. Figure 2 shows what happens when we apply I0 to the C-major
triad. The resulting triad is not a major triad, but instead a minor triad.

A minor triad consists of a root note, a second note 3 semitones above
the root, and a third note 7 semitones above the root. For example, the f -
minor triad consists of {5, 8, 0} = {F, A♭, C} and its chord polygon appears
in Figure 2.

Altogether, the major and minor triads form the set S of consonant triads,
which are called consonant because of their smooth sound. A consonant
triad is named after its root. For example, the C-major triad consists of
{0, 4, 7} = {C, E, G} and the f -minor triad consists of {5, 8, 0} = {F, A♭, C}.
Musicians commonly denote major triads by upper-case letters and minor

6
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DA#/B
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Figure 2: I0 applied to a C-major triad yields an f -minor triad.

Major Triads Minor Triads
C = 〈0, 4, 7〉 〈0, 8, 5〉 = f

C♯ = D♭ = 〈1, 5, 8〉 〈1, 9, 6〉 = f♯ = g♭
D = 〈2, 6, 9〉 〈2, 10, 7〉 = g

D♯ = E♭ = 〈3, 7, 10〉 〈3, 11, 8〉 = g♯ = a♭
E = 〈4, 8, 11〉 〈4, 0, 9〉 = a
F = 〈5, 9, 0〉 〈5, 1, 10〉 = a♯ = b♭

F ♯ = G♭ = 〈6, 10, 1〉 〈6, 2, 11〉 = b
G = 〈7, 11, 2〉 〈7, 3, 0〉 = c

G♯ = A♭ = 〈8, 0, 3〉 〈8, 4, 1〉 = c♯ = d♭
A = 〈9, 1, 4〉 〈9, 5, 2〉 = d

A♯ = B♭ = 〈10, 2, 5〉 〈10, 6, 3〉 = d♯ = e♭
B = 〈11, 3, 6〉 〈11, 7, 4〉 = e

Figure 3: The set S of consonant triads.
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triads by lower-case letters as indicated in the table of all consonant triads
in Figure 3.

This table has several features. Angular brackets denote ordered sets,
which are called pitch-class segments in the music literature. Since we are
speaking of simultaneously sounding notes, it is not necessary to insist on
a particular ordering of the elements within the brackets.8 However the
mathematical artifice of an ordering will simplify the discussion of the PLR-
group and duality that we are approaching. Such subtleties are discussed in
[10].

The table also reflects the componentwise action of the T/I-group because
of this ordering. In the table, an application of T1 to an entry gives the entry
immediately below it, for example

T1〈0, 4, 7〉 = 〈T1(0), T1(4), T1(7)〉

= 〈1, 5, 8〉.

More generally, if we count the first entry as entry 0, the nth entry in the
first column is

Tn〈0, 4, 7〉 = 〈Tn(0), Tn(4), Tn(7)〉 (1)

and the nth entry in the second column is

In〈0, 4, 7〉 = 〈In(0), In(4), In(7)〉. (2)

From the table we conclude that the action of the T/I-group is simply
transitive, that is, for any consonant triads Y and Z there is a unique element
g of the T/I-group such that gY = Z. As we have just seen in equations
(1) and (2), for any Y and Z there exist g1 and g2 such that g1C = Z and
g2C = Y , and thus gY = Z for g = g1g

−1
2 . A quick verification also shows

that g is unique.
We can see the uniqueness of g in a more elegant way using the orbit-

stabilizer theorem. The orbit of an element Y of a set S under a group action
of G on S consists of all those elements of S to which Y is moved, in other
words

orbit of Y = {hY | h ∈ G}.

The stabilizer group of Y consists of all those elements of G which fix Y ,
namely

GY = {h ∈ G | hY = Y }.

8Another reason not to insist on the ordering is the fact that the pitch-class set {0, 4, 7}
is neither transpositionally nor inversionally symmetrical.
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Theorem 4.1 (Orbit-Stabilizer Theorem). If a group G acts on a set S and
GY denotes the stabilizer group of Y ∈ S, then

|G|/|GY | = |orbit of Y |.

In our situation, G is the dihedral group of order 24, S is the set of
consonant triads as in Figure 3, and |orbit of Y | = 24, so that |GY |=1.
Thus, if g′Y = gY then g−1g′Y = Y , so that g−1g′ is the identity element of
the group, and finally g′ = g.

Generally, a group action of G on a set S is the same as a homomorphism
from G into the symmetric group on the set S. Indeed, from a group action
we obtain such a homomorphism by

g 7→ (Y 7→ gY ).

In the case of the T/I-group, this homomorphism is given by the componen-
twise action of the T/I-group and it is injective. For simplicity we identify
the T/I-group with its image in the symmetric group on the set S.

5 The PLR-Group

Up to this point, we have studied the action of the dihedral group of order
24 on the set S of major and minor triads via transposition and inversion.
Next we discuss a second musical action of the dihedral group, but this time
defined in terms of the PLR-group.

Late 19th-century chromatic music, such as the music of Wagner, has tri-
adic elements to it but is not entirely tonal. For this reason, it has been called
“triadic post-tonal” in texts such as [5]. Recognizing that this repertoire has
features which are beyond the reach of traditional tonal theory, some music
theorists have worked on developing an alternative theory.

Neo-Riemannian theory, initiated by David Lewin in [16] and [17], has
taken up the study of PLR-transformations to address analytical problems
raised by this repertoire. We next define the PLR-group as the subgroup of
the symmetric group on the set S generated by the bijections P, L, and R.
As it turns out, this subgroup is isomorphic to the dihedral group of order
24, as we prove in Theorem 5.1. The PLR-group has a beautiful geometric
depiction in terms of a tiling on the torus called the Tonnetz (Figure 5), which
we also describe. A famous example from Beethoven’s Ninth Symphony is a
path in the dual graph (Figures 6 and 7).
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Consider the three functions P, L, R : S → S defined by

P 〈y1, y2, y3〉 = Iy1+y3
〈y1, y2, y3〉 (3)

L〈y1, y2, y3〉 = Iy2+y3
〈y1, y2, y3〉 (4)

R〈y1, y2, y3〉 = Iy1+y2
〈y1, y2, y3〉. (5)

These are called parallel, leading tone exchange, and relative. These are con-
textual inversions because the axis of inversion depends on the aggregate
input triad. Notably, the functions P, L, and R are not defined component-
wise, and this distinguishes them from inversions of the form In, where the
axis of inversion is independent of the input triad. For P, L, and R the axis
of inversion on the musical clock when applied to 〈y1, y2, y3〉 is indicated in
the table below.

Function Axis of Inversion Spanned by
P y1+y3

2
, y1+y3

2
+ 6

L y2+y3

2
, y2+y3

2
+ 6

R y1+y2

2
, y1+y2

2
+ 6

See Figure 4 for the axes of inversion in the application of P, L, and R to the
C-major triad.

If we consider major and minor as a parity, then there is a particularly
nice verbal description of P, L, and R. The function P takes a consonant
triad to that unique consonant triad of opposite parity which has the first
component and third component switched. Thus, as unordered sets, the
input and output triads overlap in two notes. For example, P 〈0, 4, 7〉 =
〈7, 3, 0〉 and P 〈7, 3, 0〉 = 〈0, 4, 7〉. A musician will notice that P applied to
C is c, while P applied to c is C. In general, P takes a major triad to its
parallel minor and a minor triad to its parallel major. A major triad and a
minor triad are said to be parallel if they have the same letter name but are
of opposite parity. The function P is manifestly an involution.

The other two functions, L and R, similarly have maximally overlap-
ping inputs and outputs and are involutions. The function L takes a conso-
nant triad to that unique consonant triad of opposite parity which has the
second component and third component switched; for example L〈0, 4, 7〉 =
〈11, 7, 4〉 and L〈11, 7, 4〉 = 〈0, 4, 7〉. The function R takes a consonant triad
to that unique consonant triad of opposite parity which has the first compo-
nent and second component switched; for example R〈0, 4, 7〉 = 〈4, 0, 9〉 and

10



R〈4, 0, 9〉 = 〈0, 4, 7〉. A musician will notice that R applied to C is a and R
applied to a is C. In general, R takes a major triad to its relative minor and
a minor triad to its relative major. A major triad and a minor triad are said
to be relative if the root of the minor triad is three semitones below the root
of major triad. The functions R and L are also involutions.

Each of the three functions corresponds to ubiquitous musical motions
that are easy to learn to recognize by ear. That the input and output overlap
in two common tones is one reason the motions are easily recognized. These
three triadic transformations were employed by European composers with
great success in the years 1500-1900. Another distinguishing feature is the
minimal motion of the moving voice. For example, in the application of these
three functions to the C-major triad above, we see in the case of P that 4
moves to 3, in the case of L that 0 moves to 11, and in the case of R that 7
moves to 9. This is illustrated in Figure 4.

This parsimonious voice leading is unique to the major and minor triads
as shown in [6]: if one starts with any other three note chord, such as 〈0, 1, 3〉
for example, and generates 24 chords by transposition and inversion, then the
analogues of P, L, and R will always have large jumps in their moving voices.9

As Cohn points out in [6], the potential for parsimonious voice leading is
totally independent of the acoustic properties of consonant triads; instead it
is “a function of their group-theoretic properties as equally tempered entities
modulo 12.”

The group generated by P, L, and R is called the PLR-group or the neo-
Riemannian group after the late 19th-century music theorist Hugo Riemann.
Its structure is well known, as we illustrate in the following theorem. An im-
portant ingredient for our proof is a famous chord progression in Beethoven’s
Ninth Symphony. Cohn observed this chord progression in [6].

Theorem 5.1. The PLR-group is generated by L and R and is dihedral of
order 24.

Proof: First we remark that one can use formulas (3), (4), and (5) to
show that PT1 = T1P , LT1 = T1L, and RT1 = T1R.

If we begin with the C-major triad and alternately apply R and L, then
we obtain the following sequence of triads.10

C, a, F, d, B♭, g, E♭, c, A♭, f, D♭, b♭, G♭, e♭, B, g♯,E, c♯, A, f♯, D, b, G, e, C

9If one starts with 〈0, 4, 8〉, then P, L, and R will be trivial, so we exclude this case.
10We recall that upper-case letters refer to major triads and lower-case letters refer to

minor triads.
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Figure 4: Minimal motion of the moving voice under P, L, and R.

12



This tells us that the 24 bijections R, LR, RLR, . . . , R(LR)11, and (LR)12 = 1
are distinct, that the PLR-group has at least 24 elements, and that LR
has order 12. Further R(LR)3(C) = c, and since R(LR)3 has order 2 and
commutes with T1, we see that R(LR)3 = P , and the PLR-group is generated
by L and R alone.

If we set s = LR and t = L, then s12 = 1, t2 = 1, and

tst = L(LR)L

= RL

= s−1.

It only remains to show that the PLR-group has order 24, and then it will
be dihedral as on page 68 of [23]. We postpone the proof of this last fact
until Theorem 6.1.

Corollary 5.2. The PLR-group acts simply transitively on the set of con-
sonant triads.

Proof: From the chord progression in Theorem 5.1 we see that the orbit
of C-major is all of S, and has 24 elements. As the PLR-group also has 24
elements, simple transitivity follows from the orbit-stabilizer theorem.

The Oettingen/Riemann Tonnetz in Figure 5 is a beautiful geometric de-
piction of the PLR-group. The word Tonnetz is German for “tone network”
and is sometimes translated as the “table of tonal relations.” The vertices
of this graph are pitch classes, while each of the triangles is a major or mi-
nor triad. The graph extends infinitely in all directions, though we have only
drawn a finite portion. On the horizontal axis we have the circle of fifths, and
on the diagonal axes we have the circles of major and minor thirds.11 Since
these circles repeat, we see that the Tonnetz is doubly periodic. Therefore
we obtain a torus by gluing the top and bottom edges as well as the left and
right edges of the rectangular region indicated in Figure 5. The functions
P, L, and R allow us to navigate the Tonnetz by flipping a triangle about an
edge whose vertices are the preserved pitch classes. This is investigated in
[6] for scales of arbitrary chromatic number.

11The intervallic torus for minor thirds described in Table 2 of [18] is contained in a
diagonal of the Tonnetz.
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Figure 5: The Oettingen/Riemann Tonnetz.

The Oettingen/Riemann Tonnetz in Figure 5 is similar to the one in
Figure 2 on page 172 of [5].12 Figure 5 is an interpretation of Riemann’s
Tonnetz, which resulted from the work of many neo-Riemannian theorists,
especially [4], [15], and [16].13 Enharmonic equivalence and equal-tempered
tuning are crucial for this modern interpretation. Since Riemann did not use
enharmonic equivalence nor equal tempered tuning, his original Tonnetz was
not periodic and did not lie on a torus. The original Tonnetz can be found
on page 20 of [21], or on page 102 of the translation [22] (annotated in [25]).

Douthett and Steinbach have associated the graph in Figure 6 to the
neo-Riemannian PLR-group in [8].14 This time the vertices are the conso-

12Our Figure 5 does not exactly reproduce Figure 2 of [5], but introduces the following
changes: pitch-class numbers are shown rather than letter note names, the D arrow is
deleted, and a different region of the Tonnetz is displayed. Special thanks go to Richard
Cohn for giving us permission to use this modified version of the figure.

13The article [15] contains the first appearance of the group generated by P, L, R, and
D, where D = T5 is the dominant transformation. This group appears again in [13] as
the group H on page 98. Interestingly, D = LR on major triads, but D = RL on minor
triads.

14Figure 6 has been reproduced by kind permission of the authors.
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Figure 6: Douthett and Steinbach’s graph from [8].

nant triads, and there is an edge between two vertices labelled by P, L, or R
whenever P, L, or R sends one vertex to the other. This graph is also peri-
odic vertically and horizontally, so the top and bottom edges can be glued
together, and the left and right edges can also be glued after twisting a third
of the way. The result is a graph on the torus. Earlier, Waller studied this
graph on the torus in [24], and observed that its automorphism group is the
dihedral group of order 24. Waller’s torus is pictured in Figure 7.15 Douthett
and Steinbach also make this observation in [8], and present Waller’s torus
in the context of neo-Riemannian theory.

Movement in music can be likened to movement along the surface of
the torus. The sequence of consonant triads in the proof of Theorem 5.1
traces out a regular path on the torus in Figure 7, and the first 19 triads of
that sequence occur in order in measures 143-176 of the second movement
of Beethoven’s Ninth Symphony! Cohn observed this remarkable sequence in
[4], [6], and [7].

There is a relationship between the two graphs and their tori: they are
dual graphs. That means if you draw a vertex in the center of every hexagonal
face of Figure 6 or 7, and connect two vertices by an edge whenever the
corresponding faces have a common edge, then you get the Tonnetz. In fact,
a vertex of the Tonnetz is the unique note in the intersection of the triads on
the corresponding face; e.g., 0 is the intersection of a, C, c, A♭, f, and F .

15Waller’s torus from [24] has been reproduced in Figure 7 by kind permission of the
U.K. Mathematical Association and the Mathematical Gazette.
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But in the musical model we are considering, these graphs are not the
only things which are dual. Using the notion of centralizer, we will show that
the T/I-group and the PLR-group are dual groups!

6 T/I and PLR are Dual

As we have seen, the dihedral group of order 24 acts on the set S of major
and minor triads simply transitively in two interesting ways: (i) through
the T/I-group using transposition and inversion, and (ii) through the neo-
Riemannian PLR-group using the P, L, and R functions. If we consider
the T/I-group and the PLR-group as subgroups of the symmetric group
Sym(S) on the set S, then an interesting relation occurs: the centralizer of
the T/I-group is the PLR-group and the centralizer of the PLR-group is the
T/I-group! This means the T/I-group and the PLR-group are dual groups
in the terminology of Lewin [17]. We prove this momentarily. This duality
in the sense of Lewin has also been studied on pages 110-111 of [13], and also
in [14].16

16In [13] and [14], Hook embedded the neo-Riemannian PLR-group into the group
U of uniform triadic transformations. In the following explanation of this embedding
into Hook’s group, we use S to denote the set of consonant triads, as in most of the
present article. A uniform triadic transformation U is a function U : S → S of the
form 〈σ, t+, t−〉 where σ ∈ {+,−}, and t+, t− ∈ Z12. The sign σ indicates whether U
preserves or reverses parity (major vs. minor), the component t+ indicates by how many
semitones U transposes the root of a major triad, and the component t− indicates by how
many semitones U transposes the root of a minor triad. For example, the neo-Riemannian
operation R is written as 〈−, 9, 3〉, meaning that R maps any major triad to a minor triad
whose root is 9 semitones higher, and R maps any minor triad to a major triad whose
root is 3 semitones higher, as one sees with R(C) = a and R(a) = C. Other familiar
elements in U are P = 〈−, 0, 0〉, L = 〈−, 4, 8〉, R = 〈−, 9, 3〉, and Tn = 〈+, n, n〉. Uniform
triadic transformations are automatically invertible, like all these examples. The non-
Riemannian operations D = T5 and M = 〈−, 9, 8〉, called dominant and diatonic mediant

respectively, are also contained in U . Thus, the group U of uniform triadic transformations
is a good place to study how Riemannian operations and non-Riemannian operations
interact. However, the inversions In are not in U . The uniform triadic transformations
and inversions are contained in the group Q of quasi uniform triadic transformations. This
group is much larger: |Q| = 1152 while |U| = 288.

Hook defined on page 110 of [13] a duality operator on Q which restricts to an anti-
isomorphism between the T/I-group and the PLR-group; transpositions and inversions
are mapped to Schritte and Wechsel respectively. Morever, the Lewinnian duality we study
in this paper between T/I and PLR in Sym(S) restricts to the subgroup Q of Sym(S):
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The term “dualism” in the neo-Riemannian literature, such as [13] and
[14], is used mostly to refer to a different idea associated with the music theo-
rist Hugo Riemann. Specifically, Riemannian “dualism” refers to a property
of individual elements of the PLR-group. A precise definition can be found
on page 59 of [13]: “This property—whatever a transformation does to a
major triad, its effect on a minor triad is precisely the opposite—may be
regarded as an explicit representation of Riemann’s harmonic dualism.”

As an illustration of the duality between the T/I-group and the PLR-
group in the sense of Lewin, we can compute with the C-major triad. If we
apply T1 to the C-major triad, and then L, that is the same as first applying
L and then applying T1 (see Figure 8). A category theorist would say that
the diagram

S
T1

//

L

��

S

L

��

S
T1

// S

commutes, i.e., the result is the same no matter which path one takes. Sim-
ilarly, one can use formulas (3), (4), and (5) to show that P, L, and R com-
mute with T1 and I0. Since these are the generators of the respective groups,
we conclude that any diagram with vertical arrows in the PLR-group and
horizontal arrows in the T/I-group, as in Figure 8, will commute.

Theorem 6.1. The PLR-group and the T/I-group are dual. That is, each
acts simply transitively on the set S of major and minor triads, and each is
the centralizer of the other in the symmetric group Sym(S).

Proof: In Section 4 we already concluded that the T/I-group acts sim-
ply transitively on the set of major and minor triads from Figure 3 and
equations (1) and (2). We also determined in the discussion just before the
statement of the current theorem that any element of the PLR-group com-
mutes with any element of the T/I-group. In other words, the PLR-group
is contained in the centralizer C(T/I) of the T/I-group in Sym(S).

the centralizer of the T/I-group in Q is precisely the PLR-group and the centralizer
of the PLR-group in Q is precisely the T/I-group. Interestingly, the centralizer of the
transposition group in Q is U . Even better, the centralizer of the transposition group in
Sym(S) is exactly U by Theorem 1.7 of [13]. The group U is isomorphic to the wreath
product Z12 ≀ Z2.
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Figure 8: Illustration of commutativity of T1 and L.
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For any element Y of S we claim that the stabilizer of Y under the action
of C(T/I) contains only the identity element. Suppose that h is in C(T/I)
and fixes Y , and that g is in the T/I-group. Then we have

hY = Y

ghY = gY

hgY = gY.

Since the T/I-group acts simply transitively, every Y ′ in S is of the form gY
for some g in the T/I-group, and therefore h is the identity function on S by
the last equation above. Thus the stabilizer C(T/I)Y of Y in C(T/I) is the
trivial group.

An application of the orbit-stabilizer theorem to G = C(T/I) gives us

|C(T/I)|/|C(T/I)Y | = |orbit of Y | ≤ |S| = 24.

As the PLR-group is a subgroup of C(T/I) and |C(T/I)Y | = 1, we conclude

|PLR-group| ≤ |C(T/I)| ≤ 24.

From the famous chord progression of Beethoven’s Ninth Symphony in
the first part of Theorem 5.1, we know that the PLR-group has at least
24 elements. Thus, the PLR-group has exactly 24 elements and is equal to
C(T/I). This completes the proof of Theorem 5.1, so we may now conclude
as in Corollary 5.2 that the PLR-group acts simply transitively on S.

It only remains to show that the T/I-group is the centralizer of the PLR-
group. However, this follows by reversing the roles of the T/I-group and the
PLR-group in the orbit-stabilizer argument we just made.

Now that we have met an important example of dual groups, one may
ask if there are other examples as well and how they arise. Dual groups have
indeed been known for over 100 years, and can arise in only one way, as the
following theorem specifies.

Theorem 6.2 (Cayley). If G is a group, then we obtain dual groups via the
two embeddings of G into Sym(G) as left and right actions of G on itself.
All dual groups arise in this way.17

We now present three musical examples of the duality between the T/I-
group and the PLR-group. Our first example is Johann Pachelbel’s famous
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D A b f#

<2,6,9> <9,1,4> <6,2,11> <1,9,6>

Figure 9: Chord progression from Pachelbel, Canon in D.

Canon in D, composed circa 1680 and reproduced in Figure 9. The chord
progression in the associated commutative diagram occurs in 28 variations
in the piece.

D
�

T7
//

_

R

��

A
_

R

��

b
�

T7

// f♯

Another example can be found in the “Grail” theme of the Prelude to
Parsifal, Act 1, an opera completed by Richard Wagner in 1882. See Figure
10 and the following commutative diagram.

A♭
_

R

��

�

T5
// D♭

_

R

��

f �

T5

// b♭

A particularly interesting example is in the opening measure of “Reli-
gion,” a song for voice and piano written by Charles Ives in the 1920s. This
time the horizontal transformation is an inversion, namely I6. Since the in-
version I6 transforms major triads to minor triads, we have LR acting upon
triads of different parity. This allows us to observe that LR transforms D-
major up by 5 semitones, but at the same time transforms a-minor down by

17We thank László Babai for reminding us of this classical theorem.

21



<8,0,3> <0,8,5> <1,5,8> <5,1,10> <8,0,3>

  

Figure 10: Wagner, Parsifal, “Grail” Theme.

5 semitones. This makes the behavior of the left column dual (in the sense
of Riemann) to the behavior of the right column.

D G a e

<2,6,9> <7,11,2> <4,0,9> <11,7,4>

Figure 11: Ives, “Religion”.

D
_

LR

��

�

I6
// a
_

LR

��

G
�

I6

// e

7 Recapitulation and Variation

In summary, the dihedral group of order 24 acts on the set of major and minor
triads in two ways: through the T/I-group and through the PLR-group.
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Further, these two actions are dual. The PLR-group has two interesting
geometric depictions: the Tonnetz and Waller’s torus. But why stop at
major and minor triads? One could just as well study the analogues of P, L,
and R in the context of dominant seventh chords and half-diminished seventh
chords. Indeed, that has been pursued in [3] and [12]. Moreover, the theory
can be generalized further; the authors of [10] studied a neo-Riemannian
group for arbitrary pitch-class segments in terms of contextual inversion,
and applied their findings to an analysis of Hindemith, Ludus Tonalis, Fugue
in E. Neo-Riemannian groups for asymmetrical pitch-class segments were
studied in [13] and [14] from a root-interval point of view.

There are many avenues of exploration for undergraduates. Students can
listen to group actions in action and apply the orbit-stabilizer theorem to
works of music.

By experimenting with the PLR-group, students can also learn about
generators and relations for groups. The torus for Beethoven’s Ninth Sym-
phony is an inviting way to introduce students to topology. More tips for
undergraduate study can be found on the website [9], which contains lecture
notes, problems for students, slides, and more examples. For both advanced
readers and students, the website [2] includes entertaining discussion and
interesting posts by musicians and mathematicians alike.
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