
Mathematics, Statistics and Data Science 
Faculty Works Mathematics, Statistics and Data Science 

2012 

Enhancements of rack counting invariants via dynamical cocycles Enhancements of rack counting invariants via dynamical cocycles 

Alissa S. Crans 
Loyola Marymount University, acrans@lmu.edu 

Sam Nelson 
Claremont McKenna College 

Aparna Sarkar 
Pomona College 

Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac 

 Part of the Algebra Commons 

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation 
Crans, Alissa S.; Nelson, Sam; and Sarkar, Aparna, "Enhancements of rack counting invariants via 
dynamical cocycles" (2012). Mathematics, Statistics and Data Science Faculty Works. 58. 
https://digitalcommons.lmu.edu/math_fac/58 

This Article is brought to you for free and open access by the Mathematics, Statistics and Data Science at Digital 
Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in 
Mathematics, Statistics and Data Science Faculty Works by an authorized administrator of Digital 
Commons@Loyola Marymount University and Loyola Law School. For more information, please contact 
digitalcommons@lmu.edu. 

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math
https://digitalcommons.lmu.edu/math_fac?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/math_fac/58?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


New York Journal of Mathematics
New York J. Math. 18 (2012) 337–351.

Enhancements of rack counting invariants
via dynamical cocycles

Alissa S. Crans, Sam Nelson and Aparna Sarkar

Abstract. We introduce the notion of N-reduced dynamical cocycles
and use these objects to define enhancements of the rack counting in-
variant for classical and virtual knots and links. We provide examples to
show that the new invariants are not determined by the rack counting
invariant, the Jones polynomial or the generalized Alexander polyno-
mial.
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1. Introduction

Racks were introduced in 1992 in [6] as an algebraic structure for defining
representational and functorial invariants of framed oriented knots and links.
A rack generalizes the notion of a quandle, an algebraic structure defined
in 1982 in [8] and independently in [9] which defines invariants of unframed
knots and links. More precisely, the number of quandle homomorphisms
from the fundamental quandle of a knot or link to a finite quandle X defines
a computable integer-valued invariant of unframed oriented knots and links
known as the quandle counting invariant.

In [10], a property of finite racks known as rack rank or rack character-
istic was used to define an integer-valued invariant of unframed oriented
knots and links using nonquandle racks, known as the integral rack counting
invariant ; for quandles, this invariant coincides with the quandle counting
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invariant. An enhancement of a counting invariant uses a Reidemeister-
invariant signature for each homomorphism rather than merely counting
homomorphisms. In [3], the first enhancement of the quandle counting in-
variant was defined using Boltzmann weights determined by elements of the
second cohomology of a finite quandle. The resulting quandle 2-cocycle in-
variants of knots and links have been the subject of much study ever since.

In [7] an enhancement of the integral rack counting invariant was defined
using a modification of the rack module structure from [1], associating a
vector space or module to each homomorphism. In this paper we further
generalize the enhancement from [7] using a modified version of an algebraic
structure first defined in [1] known as a dynamical cocycle. In particular,
dynamical cocycles satisfying a condition we call N -reduced yield an en-
hancement of the rack counting invariant.

The paper is organized as follows. In Section 2 we review the basics
of racks, the rack counting invariant, and the rack module enhancement.
In Section 3 we define N -reduced dynamical cocycles and the N -reduced
dynamical cocycle invariant. In Section 4 we provide some computations
and examples, and we conclude in Section 5 with some questions for future
study.

2. Racks, the counting invariant and the rack module
enhancement

We start by reviewing some basic definitions from [6, 8].

Definition 1. A rack is a set X equipped with a binary operation

. : X ×X → X

satisfying the following two conditions:

(i) For each x ∈ X, the map fx : X → X defined by fx(y) = y B x is
invertible, with inverse f−1x (y) denoted by y B−1 x.

(ii) For each x, y, z ∈ X, we have (xB y) B z = (xB z) B (y B z).

A quandle is a rack with the added condition:

(iii) For all x ∈ X, we have xB x = x.

Note that (ii) is equivalent to the requirement that each map fx : X → X
be a rack homomorphism, i.e.,

fz(x . y) = (x . y) . z = (x . z) . (y . z) = fz(x) . fz(y),

so we can alternatively define a rack as a set X with a bijection fx : X → X
for each x ∈ X such that every fx is an automorphism of the structure on
X defined by x . y = fy(x).

Standard examples of racks include:

• (t, s)-racks. Any module over Λ̈ = Z[t±1, s]/(s2− (1− t)s) is a rack
under

x . y = tx+ sy.
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If s is invertible, then s2 − (1 − t)s = 0 implies s = 1 − t and we
have a quandle known as an Alexander quandle.
• Conjugation racks. Every group G is a rack (indeed, a quandle)

under n-fold conjugation for any n ∈ Z:

x . y = y−nxyn.

• The fundamental rack of a framed oriented link. Let L ⊂ S3 be a
link of c components, n(L) a regular neighborhood of L with set
of framing curves F = {F1, . . . , Fc} giving the framing of L, x0 ∈
S3 \n(L) a base point and FR(L) the set of isotopy classes of paths
from x0 to Fi where the terminal point of the path can wander along
Fi during the isotopy. For each point x1 ∈ Fi there is a meridian
m(x1) in n(L), unique up to isotopy, linking the ith component of
L once. Then for each path y : [0, 1] → S3 \ n(L) representing an
isotopy class in FR(L), let p(y) = y−1 ∗m(y(1)) ∗ y ∈ π1(S3 \n(L))
where ∗ is path concatenation reading right-to-left. Then FR(L) is
a rack under the operation

[x] . [y] = [x ∗ p(y)].

Combinatorially, FR(L) can be understood as equivalence classes
of rack words in a set of generators corresponding one-to-one with
the set of arcs in a diagram of L under the equivalence r elation
generated by the rack axioms and crossing relations in L. See [6]
for more details.

Definition 2. Let X = {x1, . . . , xn} be a finite set. We can specify a rack
structure on X by a rack matrix MX in which the (i, j)th entry is k when
xk = xi.xj . Rack axiom (i) is equivalent to the condition that every column
of MX is a permutation; rack axiom (ii) requires checking each triple for the
condition MMi,j ,k = MMi,k,Mj,k

.

Example 1. The (t, s)-rack structure on

Z4 = {x1 = 1, x2 = 2, x3 = 3, x4 = 4}

with t = 1 and s = 2 has rack matrix

MX =


3 1 3 1
4 2 4 2
1 3 1 3
2 4 2 4

 .
Definition 3. Let X be a rack and L an oriented link diagram. An X-
labeling or rack labeling of L by X is an assignment of an element of X to
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each arc in L such that the condition below is satisfied:

Indeed, the rack axioms are algebraic distillations of Reidemeister moves
II and III under this labeling scheme; the quandle condition corresponds to
the unframed Reidemeister move I, and the framed Reidemeister I moves do
not impose any additional conditions. Accordingly, labelings of arcs of ori-
ented framed knot or link diagrams by rack elements (respectively, quandle
elements) as shown above are preserved by oriented framed Reidemeister
moves (respectively, oriented unframed Reidemeister moves) as illustrated
in the figures below. 

respectively,



Definition 4. Let X be a rack. We call the map π : X → X defined
by π(x) = x B x the kink map. The rack rank or rack characteristic of
X, denoted by N(X), is the order of the permutation π considered as an
element of the symmetric group S|X|. Equivalently, for every element x ∈ X,
the rank of x, denoted by N(x), is the smallest positive integer N such that
πN (x) = x. Thus, N(X) is the least common multiple of the ranks N(x)
for all x ∈ X. In particular, the kink map of a rack structure on a finite
set X = {x1, . . . , xn} given by a rack matrix MX is the permutation in S|X|
which sends k to the (k, k) entry of MX . That is, the image of π is given by
the entries along the diagonal of MX .
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Example 2. The rack in Example 1 has kink map satisfying π(1) = 3,
π(2) = 4, π(3) = 1 and π(4) = 2 (or, in cycle notation, π = (13)(24)) and
hence has rack rank N = 2.

Remark 3. The quandle condition implies that the rank of every quandle
element is 1, and thus the rack rank of a quandle is always 1. Indeed,
quandles are simply racks with rack rank N = 1.

Rack rank can be understood geometrically in terms of the Reidemeister
type I move: if an arc in a knot diagram is labeled with a rack element x,
going through a positive kink changes the label to π(x). A natural question
is then: how many kinks must we go though to end up again with x? This
notion of order is the rank of x. We can illustrate the concept of rack rank
with the N -phone cord move pictured below:

If N is the rank of X, then labelings of a link diagram L by X are preserved
by N -phone cord moves. In particular, if X is a rack of rack rank N , and
L and L′ are framed oriented links related by framed Reidemeister moves
with framings congruent modulo N , then the sets of X-labelings of L and L′

are in bijective correspondence and we have |Hom(L,X)| = |Hom(L′, X)|.
It follows that the number of homomorphisms is periodic in the framing
number with period N . Since each component of a link L has its own
independent framing number, a link of c components has a Zc-lattice of
framings, and the numbers of X-labelings of these framed links form a tiling
of the lattice by blocks of side length N . In particular, while the number of
X-labelings of a diagram is an invariant only of framed isotopy, the number
of labelings over a complete tile is an invariant of unframed ambient isotopy.

Definition 5. Let X be a rack with rank N and let L be an oriented
link of c components. Let w ∈ (ZN )c be a framing vector specifying a
framing modulo N for each component of L, and let us denote a diagram of
L with framing vector w by (L,w). We thus obtain a set of N c diagrams of
framings of L mod N . For each such diagram (L,w), we have a set of X-
labelings corresponding to homomorphisms f : FR(L,w) → X. Summing
the numbers of X-labelings over the set {(L,w) | w ∈ (ZN )c}, we obtain an
invariant of unframed links known as the integral rack counting invariant,
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which is denoted by:

ΦZ
X(L) =

∑
w∈(ZN )c

|Hom(FR(L,w), X)|.

Example 4. Let X be the rack with rack matrix MX =

[
2 2
1 1

]
. As a

labeling rule, the rack structure of X says that at a crossing, the understrand
switches from 1 to 2 or from 2 to 1 since 1 . x = 2 and 2 . x = 1 for x = 1, 2.
The kink map is the transposition (12), so N = 2. Thus, to compute ΦZ

X
on a link of c = 2 components, we must count X-labelings on the set of
N c = 22 = 4 diagrams with writhe vectors in (ZN )c. The (4, 2)-torus link
L4a1 and the Hopf link L2a1 both have four X-labelings as depicted below,
so we have ΦZ

X(L4a1) = ΦZ
X(L2a1) = 4.

An enhancement of ΦZ
X(L) is a link invariant defined by associating to

each X-labeling of L a quantity which is unchanged by X-labeled framed
Reidemeister moves and N -phone cord moves. Examples include:

• Image Enhanced Invariant. The image subrack of a rack homomor-
phism is closed under . and thus is unchanged by N -phone cord
moves. Hence we have an enhancement:

ΦIm
X (L) =

∑
w∈(ZN )c

 ∑
f∈Hom(FR(L,w),X)

u|Im(f)|


where u is a formal variable.
• Writhe Enhanced Invariant. Keeping track of which labelings are

contributed by which writhes yields another enhancement:

ΦW
X (L) =

∑
w∈(ZN )c

|Hom(FR(L,w), X)|qw

where q(w1,...,wc) = qw1
1 . . . qwc

c is a product of formal variables.
• Cocycle Invariants. A finite rack X has a cohomology theory anal-

ogous to group cohomology. For any f ∈ HomZ(Z[Xn],Z), define
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δn : Z[Xn]→ Z[Xn+1] by

(δnf)(x1, . . . , xn+1) =
n+1∑
k=2

(−1)k(f(x1, . . . , xk−1, xk+1, . . . , xn+1)

− f(x1 . xk, . . . , xk−1 . xk, xk+1, . . . , xn+1))

and extend linearly. Let Dn be the subgroup of Z[Xn] generated
by elements of the form

N∑
k=1

(x1, . . . , π
k(xj), π

k+1(xj), . . . , xn), j = 1, . . . , n− 1,

where N is the rack rank of X. Then (Dn, δn) is a subcomplex of
(Z[Xn], δn); the quotient complex (Z[Xn]/Dn, δn) is the N -reduced
rack cochain complex (or the quandle cochain complex if N = 1),
with cohomology groups denoted by Hn

R/ND(X). For every element

φ ∈ H2
R/ND(X) (such a φ is called an N -reduced 2-cocycle) we have

an enhancement

Φφ
X(L) =

∑
w∈(ZN )c

 ∑
f∈Hom(FR(L,w),X)

uBW (f)


where BW (f), the Boltzmann weight of f , is the sum over all cross-
ings in f of φ evaluated at the arc labelings of each crossing.

See [3, 5, 10] for further details.

Example 5. In Example 4, the links L2a1 and L4a1 have the same number
of X-labelings over a complete period of framings mod N , but these labelings
occur at different framing vectors. In particular, all four labelings of L4a1
occur with writhe vector w = (0, 0) while all four labelings of L2a1 occur
with writhe vector x = (1, 1). Thus the writhe enhanced invariant ΦW

X

distinguishes the links, with ΦW
X (L4a1) = 4 6= 4q1q2 = ΦW

X (L2a1).

In [1] an algebra known as the rack algebra Z[X] was associated to each
finite rack X; in [7] a modified form of the rack algebra was used to define
an enhancement of ΦZ

X . The idea is to add a secondary labeling to an X-
labeled link diagram by putting beads on each arc and defining a (t, s)-rack
style operation on the beads at a crossing with t and s values indexed by
the arc labels in X as depicted below:

c = tx,ya+ sx,yb
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Definition 6. Let X be a finite rack with rack rank N . The rack algebra of
X, denoted by Z[X], is the quotient of the polynomial algebra Z[t±1x,y, sx,y]

generated by noncommuting variables t±1x,y and sx,y for each x, y ∈ X modulo
the ideal I generated by the relators

tx.y,ztx,y − tx.z,y.ztx,z, tx.y,zsx,y − sx.z,y.ztx,z,

sx.y,z − sx.z,y.zsy,z − tx.z,y.zsx,z and 1−
N−1∏
k=0

(
tπk(x),πk(x) + sπk(x),πk(x)

)
for all x, y, z ∈ X. An X-module is a representation of Z[X], that is, an
abelian group G with automorphisms tx,y : G → G and endomorphisms
sx,y : G→ G such that the maps defined by the relators of I are zero.

Example 6. Let R be a commutative ring. Then any R-module becomes
an X-module with a choice of automorphisms and endomorphisms given by
multiplication by invertible elements tx,y ∈ R and generic elements sx,y ∈ R
such that the ideal I is zero. We can express such a structure conveniently
with a block matrix MR = [ T S ] where the (i, j) entries of T and S are
txi,yj and sxi,yj respectively.

Example 7. Let X be a rack and let f ∈ Hom(FR(L), X) be an X-labeled
link diagram. The fundamental Z[X]-module of f , denoted by Z[f ], is the
quotient of the free Z[X]-module generated by the set of arcs in f modulo
the ideal generated by the crossing relations.

In [7] an enhancement of ΦZ
X was defined using the number of bead label-

ings of an X-labeled diagram of a framed oriented link L as a signature as
follows:

Definition 7. Let X be a finite rack and R a commutative ring with an
X-module structure. The rack module enhanced invariant is given by:

ΦX,R(L) =
∑

w∈(ZN )c

 ∑
f∈Hom(FR(L,w),X)

u|Hom(Z[f ],R)|

 .

Example 8. Let X be the rack from Example 4 and let R = Z3. The
matrix

MR = [T |S] =

[
1 1 1 2
1 1 2 1

]
defines an X-module structure on R. To compute ΦX,R for the Hopf link
L2a1, we must compute |Hom(Z[f ], R)| for each valid X-labeling of L2a1.
For instance, the followingX-labeled diagram has fundamental Z[X]-module
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with listed presentation matrix:

MZ[f ] =


t2,2 + s2,2 −1 0 0

0 s1,1 −1 t1,1
t2,2 −1 s2,2 0
0 0 −1 t1,1 + s1,1


Replacing each tx,y and sx,y with its value from MR and row-reducing over
Z3, we have 

2 2 0 0
0 1 2 1
1 2 1 0
0 0 2 2

→


1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 0

 ,
so the solution space (i.e., the set of bead labelings) is the set

{(0, 0, 0, 0), (2, 1, 2, 1), (1, 2, 1, 2)}

and this X-labeling contributes u3 to ΦX,R(L2a1). Repeating for the other
labelings, we have ΦX,R(L2a1) = 4u3.

3. Dynamical cocycles and enhancements of the counting
invariant

In this section we generalize the rack module idea to remove the restric-
tions of the abelian group structure, keeping only those conditions required
by the Reidemeister moves. The result is a rack structure on the product
X×S defined via a map α : X×X → Maps(S×S, S) known as a dynamical
cocycle. Dynamical cocycles were defined in [1] and used to construct ex-
tension racks; we will use dynamical cocycles satisfying an extra condition,
which we call N -reduced dynamical cocycles, to define an enhancement of
the rack counting invariant ΦZ

X .

Definition 8. Let X be a finite rack of rack rank N and S be a finite set.
The elements of S will be called beads. A map α : X×X → Maps(S×S, S)
may be understood as a collection of binary operations ·x,y : S × S → S
indexed by pairs of elements ofX where where we write a·x,yb = α(x, y)(a, b).
Such a map α is a dynamical cocycle on S if the maps satisfy:

(i) For all x, y ∈ X and b ∈ S, the map fx,yb : S → S defined by
fx,yb (a) = a ·x,y b is a bijection.

(ii) For all x, y, z ∈ X and a, b, c ∈ S, we have

(a ·x,y b) ·x.y,z c = (a ·x,z c) ·x.z,y.z (b ·y,z c).

Definition 9. Let X be a rack of rack rank N and α : X ×X → Maps(S×
S, S) a dynamical cocycle. Define ρx : S → S by ρx(a) = a ·x,x a. Then if



346 ALISSA S. CRANS, SAM NELSON AND APARNA SARKAR

the diagram

commutes for every x ∈ X and a ∈ S, we say the cocycle α is N -reduced.

The definition of a dynamical cocycle is chosen so that bead labelings of
an X-labeled diagram according to the rule

c = a ·x,y b

are preserved under X-labeled framed oriented Reidemeister moves as shown
below:

d = b ·y,z c d = b ·y,z c
e = (a ·x,y b) ·x.y,z c e = (a ·x,z c) ·x.z,y.z (b ·y,z c)

The Reidemeister II and framed type I moves require the operations ·x,y :
S × S → S to be right-invertible; the N -reduced condition is required by
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the N -phone cord move:

b = ρx(a)
c = ρπ(x)(b) = ρπ(x)(ρx(a))

...
a = ρπN (x)(ρπN−1(x)(. . . (ρx(a)) . . . ))

Example 9. Let X be a finite rack and M an X-module as defined in
Section 2. Then the operations

a ·x,y b = tx,ya+ sx,yb

define an N -reduced dynamical cocycle on M .

More generally, if X is a finite rack of cardinality n, we can describe a
dynamical cocycle on a finite set S = {b1, . . . , bk} with an (nk)× (nk) block
matrix, Mx,y, encoding the operations tables for ·x,y

Mx,y =


M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n
...

...
. . .

...
Mn,1 Mn,2 . . . Mn,n


where the (i, j)th entry of Mx,y is l when bi ·x,y bj = bl.

Definition 10. Let X be a finite rack and α an N -reduced dynamical
cocycle on a set S. For an X-labeled link diagram f , let L(f) be the set of
S-labelings of f . Then we define the N -reduced dynamical cocycle enhanced
invariant or α-enhanced invariant ΦX,α(L) by:

ΦX,α(L) =
∑
w∈W

 ∑
f∈Hom(FR(L,w))

u|L(f)|

 .

By construction, we have:

Theorem 1. Let X be a finite rack and α an N -reduced dynamical cocycle
on a set S. If L and L′ are ambient isotopic links, then ΦX,α(L) = ΦX,α(L′).

Remark 10. The α-enhanced invariant is well-defined for virtual knots by
the usual convention of ignoring virtual crossings.
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4. Computations and examples

In this section we present example computations of the N -reduced dy-
namical cocycle enhanced invariant.

Example 11. Let X be the rack with rack matrix MX =

[
2 2
1 1

]
and let

α be the dynamical cocycle on S = {1, 2, 3} given by the block matrix

Mα =


3 1 2 2 1 3
1 2 3 3 2 1
2 3 1 1 3 2
2 1 3 3 1 2
3 2 1 1 2 3
1 3 2 2 3 1

 .

The virtual knots 3.7 and the unknot both have Jones polynomial 1 and
integral rack counting invariant ΦZ

X = 2. Let us compare ΦX,α(3.7) with
ΦX,α(Unknot). Since X has rank N = 2, we need to consider diagrams with
writhes mod 2. The odd writhe diagrams have no valid X-labelings, and
there are two valid X-labelings of the even writhe diagrams. We collect the
valid bead labelings in the tables below.

x a x a
1 1 2 1
1 2 2 2
1 3 2 3
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x y z w a b c d x y z w a b c d
1 2 1 2 1 1 2 3 2 1 2 1 1 1 2 3
1 2 1 2 1 2 3 3 2 1 2 1 1 2 3 3
1 2 1 2 1 3 1 3 2 1 2 1 1 3 1 3
1 2 1 2 2 1 1 2 2 1 2 1 2 1 1 2
1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2
1 2 1 2 2 3 3 2 2 1 2 1 2 3 3 2
1 2 1 2 3 1 3 1 2 1 2 1 3 1 3 1
1 2 1 2 3 2 1 1 2 1 2 1 3 2 1 1
1 2 1 2 3 3 2 1 2 1 2 1 3 3 2 1

Hence, we have ΦX,α(3.7) = 2u9 6= 2u3 = ΦX,α(Unknot) and ΦX,α is not
determined by the Jones polynomial or the integral rack counting invariant
ΦZ
X .

Example 12. Similarly, the virtual knots 3.7 and 4.85 both have generalized
Alexander polynomial

∆ = (t2 − 1)(s2 − 1)(st− 1)

but are distinguished by ΦX,α with ΦX,α(3.7) = 2u9 6= 2u3 = ΦX,α(4.85) for
the rack X and dynamical cocycle α from Example 11.

x y z w a b c d x y z w a b c d
1 2 1 2 1 3 1 3 2 1 2 1 1 3 1 3
1 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2
1 2 1 2 3 1 3 1 2 1 2 1 3 1 3 1

Hence, ΦX,α is not determined by the generalized Alexander polynomial.
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Example 13. We randomly selected a small dynamical cocycle α on the
set S = {1, 2, 3} for the dihedral quandle X with matrices below:

MX =

 1 3 2
3 2 1
2 1 3

 , Mα =



1 3 2 3 2 1 1 3 2
3 2 1 2 1 3 3 2 1
2 1 3 1 3 2 2 1 3
3 2 1 1 3 2 2 1 3
2 1 3 3 2 1 1 3 2
1 3 2 2 1 3 3 2 1
1 3 2 2 1 3 1 3 2
3 2 1 1 3 2 3 2 1
2 1 3 3 2 1 2 1 3


.

We then computed ΦX,α for the list of prime classical knots with up to eight
crossings and prime classical links with up to seven crossings as listed at the
knot atlas [2]. The results are collected below. In particular, note that
the invariant values 6 + 3u9 6= 9u9 both specailize to the same rack counting
invariant value ΦZ

X = 9, and we see that ΦX,α is not determined by ΦZ
X .

ΦX,α(L) L
3u3 Unknot, 41, 51, 52, 62, 63, 71, 72, 73, 75, 76, 81, 82, 83, 84, 86, 87, 88,

89, 812, 813, 814, 816, 817, L2a1, L4a1, L5a1, L6a2, L6a4, L6n1,
L7a2, L7a3, L7a4, L7a6, L7a7, L7n1, L7n2

6 + 3u9 31, 74, 77, 85, 815, 819, 821, L6a1, L6a3, L6a5, L7a1
9u9 61, 810, 811, 820, L7a5

24 + 3u27 818

Our python results indicate that of the 116 prime virtual knots with up
to 4 classical crossings listed at the knot atlas, ΦX,α for this α is 6 + 3u9 for
the virtual knots 3.6, 3.7, 4.61, 4.61, 4.63, 4.64, 4.65, 4.66, 4.67, 4.68 and 4.98,
Φα
X,S = 9u9 for 4.99, and ΦX,α = 3u3 for the other virtual knots in the list.

Our python code for computing N -reduced dynamical cocycles and their
link invariants is available at www.esotericka.org.

5. Questions for future research

In this section we collect a few questions for future research.
For a given pair of knots or links, how can we choose X and α to maximize

the liklihood of ΦX,α distinguishing the knots or links in question? Is there
an algorithm, perhaps starting with presentations of the fundamental racks
of the knots, to construct a rack X and dynamical cocycle α such that ΦX,α

always distinguishes inequivalent knots?
A natural direction of generalization is to look at knotted surfaces in

R4, which have an integral quandle counting invariant which should be sus-
ceptible to enhancement by beads. What analog of the dynamical cocycle
condition arises from the Roseman moves with beads on each sheet?

www.esotericka.org
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