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Discrete velocity fields with explicitly computable
Lagrangian law

Curtis D. Bennett 1

Craig L. Zirbel 2

August 12, 2002

Abstract. We introduce a class of random velocity fields on the periodic lattice and in discrete
time having a certain hidden Markov structure. The generalized Lagrangian velocity (the velocity
field as viewed from the location of a single moving particle) has similar hidden Markov structure,
and its law is found explicitly. Its rate of convergence to equilibrium is studied in small numerical
examples and in rigorous results giving absolute and relative bounds on the size of the second–largest
eigenvalue modulus. The effect of molecular diffusion on the rate of convergence is also investigated;
in some cases it slows convergence to equilibrium. After repeating the velocity field periodically
throughout the integer lattice, it is shown that, with the usual diffusive rescaling, the single–particle
motion converges to Brownian motion in both compressible and incompressible cases. An exact
formula for the effective diffusivity is given and numerical examples are shown.

Key words and phrases. Lagrangian velocity, Lagrangian observations, discrete velocity,
hidden Markov model, homogeneous turbulence.
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1 Introduction

A fundamental and longstanding problem in statistical fluid mechanics is this: given a
random velocity field U having a known probability law, determine the law of motion
of a single particle moved by U , with or without the additional influence of molecular
diffusion. This article introduces velocity fields in discrete space and time for which one
may explicitly write down the probability law of the particle’s velocity and thus obtain the
probability law of the particle’s motion. These models are well adapted to doing exact
numerical calculations of Lagrangian statistics, rather than simulating, as is usually done.

We begin with the continuous space–time setting of the problem. Let U = {U(x, t), x ∈
R
d, t ≥ 0} be a random vector field taking values in Rd. Think of U as a velocity field and

consider the motion of a particle whose position satisfies the trajectory equation

dXt

dt
= U(Xt, t), t > 0,(1.1)

assuming sufficient smoothness of U . If molecular diffusion is desired, consider instead the
stochastic differential equation

dXt = U(Xt, t)dt+ σ(Xt, t)dWt, t > 0,(1.2)

where σ is the molecular diffusivity and W is a Wiener process independent of U .
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The fundamental problem is to determine the law of the particle’s trajectory Xt, t ≥ 0,
from knowledge of the law of the velocity field U and the molecular diffusivity σ. A slightly
simpler goal is to determine the law of the Lagrangian velocity process U(Xt, t), t ≥ 0, which
is the particle’s velocity under (1.1) or its drift under (1.2). (By contrast, U is called the
Eulerian velocity field.) Note that even determining the appropriate law for U is nontrivial,
however moving forward from a given law is an important part of the larger problem.

The most widely applicable way to study particle motion in a random velocity field is
to repeatedly drop a particle into identically distributed realizations of the velocity field,
track it, and analyze the data statistically. For example, Avellaneda et al. (1993), Elliott
and Majda (1996), and Carmona and Cerou (1999) have examined particle motion in nu-
merical simulations of model velocity fields with given laws. Similarly, Yeung and Pope
(1989) and Gotoh et al. (1993) have studied particle motion in numerical simulations of
forced Navier–Stokes turbulence. The same technique is used in physical flows, for ex-
ample in oceanography, where drifting instruments have been tracked remotely to obtain
approximate particle trajectories which can be used to estimate the laws of Xt, t ≥ 0 and
U(Xt, t), t ≥ 0 in the ocean; see the review Davis (1991) and references therein.

Statistical methods may be used to estimate numerical parameters of the law of particle
motion, but the estimates always have a margin of error which makes it difficult to tell how
small changes in the Eulerian law will affect the Lagrangian law. Thus, for example, it is
difficult to make or refute conjectures about the Lagrangian law.

There are several rigorous results concerning the asymptotic convergence of the rescaled
processes εXt/ε2 , t ≥ 0 to Brownian motion as ε → 0; among these are Bhattacharya
(1985), Molchanov (1996), Carmona and Xu (1997), and Fannjiang and Komorowski (1997,
1999). These are known as homogenization results from the original connection with partial
differential equations; indeed the mean concentration in these cases evolves according to an
effective diffusion equation under a similar rescaling of space and time. Majda and Kramer
(1999) give shear flow models for which the effective diffusivity can be computed exactly.

A key ingredient in many homogenization results is that U is homogeneous, stationary,
and divergence free. Under these conditions, the Lagrangian velocity U(Xt, t), t ≥ 0 is
strictly stationary for both (1.1) and (1.2), as was shown by Lumley (1962) and Zirbel
(2001). Moreover, the generalized Lagrangian velocity V defined by

V (x, t) = U(x+Xt, t), x ∈ Rd, t ≥ 0,(1.3)

is strictly stationary, as shown by Osada (1982) for (1.2) and Zirbel (2001) for (1.1) and
(1.2). The generalized Lagrangian velocity is the view of the whole velocity field at time t
from the location of the particle at time t.

When the Eulerian velocity field U is homogeneous and Markov in time, the generalized
Lagrangian velocity V is Markov, even when U is divergent, cf. Zirbel (2000). Carmona
and Xu (1997) showed this in a case in which U is, in addition, stationary, Gaussian, and
divergence free. They and Fannjiang and Komorowski (1999) have computed the generator
of V and have obtained L2 rate of convergence results for functionals of V in terms of the
spectral gap of the Eulerian field, provided it is divergence free.
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In the current paper, we introduce a large class of Eulerian velocity fields U on the
periodic lattice and in discrete time for which the law of the generalized Lagrangian velocity
V can be found explicitly in both incompressible and compressible cases. Exact numerical
calculations of Lagrangian statistics may be performed instead of simulations. Thus, one
may quickly check (or reject) conjectures numerically. The models are especially well suited
to studying the phenomenology of particle motion due to simple fluid motifs such as localized
vortices which move over time, as the examples will show. The fundamental difficulty
in continuous space and time is the non–linear relationship between U and X. This is
retained in the discrete setting with analogues of (1.1) and (1.2); see (2.1) and (8.1). While
the discrete nature of the model might appear to be a limitation, we note that numerical
approximations of particle motion in both random and Navier–Stokes velocity fields are
necessarily discrete also, albeit with a very fine lattice.

When U is homogeneous and Markov in time, it can be described by two parameters,
the velocity field type I and the location L. Together (I, L) forms a Markov chain. This
observation forms the basis for the class of velocity fields we introduce (Section 3). By
choosing the state space of I to be large enough, a very large class of Eulerian laws is allowed,
including non–Markov models and numerical simulations of Navier–Stokes turbulence.

The generalized Lagrangian velocity V has the same hidden Markov structure as U ,
except that its location parameter M evolves differently than L (Section 4). The transition
matrix of (I,M) can be written in terms of that of (I, L) in an elegant way. We give
bounds on the rate of convergence to equilibrium of (I,M) (and thus V ) in Sections 5 –
7. The effect of adding a discrete analogue of molecular diffusion is studied in Section 8.
Finally, homogenization of single particle motion in Zd is studied by periodically repeating
U throughout Zd (Section 9). Under the usual diffusive scaling, this motion converges
to Brownian motion in both incompressible and compressible cases. We give an exact,
computable formula for the effective diffusivity and provide some numerical examples which
show that the effective diffusivity is increased by compressibility.

2 Discrete velocity fields

Particle motion on the lattice has become very familiar with the various studies of Markov
motion in a homogeneous random environment. Our situation differs primarily in that the
environment (the velocity field) changes over time (it is not “quenched”) and that it models
particles carried by a fluid rather than the molecular motion of systems of particles. The
recent papers on card shuffling (for example, Bayer and Diaconis (1992)) also bear some
similarity to our situation, with each shuffle moving all particles (cards) incompressibly.
The main difference is that successive shuffles are independent, whereas we seek models in
which the velocity field exhibits strong dependence in time. Similar comments apply to
random transposition models; see Diaconis (1988).

Let us now turn to describing our situation. The spatial domain will be D = {0, 1, . . . , n1−
1} × · · · × {0, 1, . . . , nd − 1}, which has n = n1n2 · · ·nd points. Addition of elements of D
is done componentwise modulo the numbers n1, . . . , nd, which we call addition modulo D.
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We think of D as a lattice with periodic boundary conditions.

A velocity field u on D is a mapping from D to Zd. Figure ?? illustrates two–dimensional
discrete fields on successively finer grids which approximate a continuous velocity field. We
denote by U the set of all velocity fields on D. A random velocity field U is a stochastic
process Ut, t = 0, 1, . . . taking values in U . A velocity field u in U generates a mapping
α : D → D by α(x) = x + u(x), x ∈ D. If α is a permutation on D, we say that u is
incompressible. This is the discrete–space analogue of a divergence–free vector field. We
denote by U0 the set of all incompressible vector fields. A random velocity field U taking
values in U0 is said to be incompressible, otherwise it is called compressible.

The velocity field U is said to be homogeneous if, for all z in D, the random velocity field
Ũ defined by Ũt(x) = Ut(x+ z), x ∈ D, t = 0, 1, . . . has the same distribution as U . In other
words, the law of U is invariant under spatial translation. The definition of stationarity is
similar, but for temporal translations.

The trajectory equation in discrete time with no molecular diffusion is

Xt+1 = Xt + Ut(Xt), t = 0, 1, . . . ,(2.1)

with X0 fixed and using addition modulo D. Molecular diffusion is discussed in Section 8.
The generalized Lagrangian velocity V is defined by

Vt(x) = Ut(x+Xt), x ∈ D, t = 0, 1, . . . ,(2.2)

which is the same as (1.3). Note that Xt = X0 +
t−1∑
s=0

Vs(0) for t = 0, 1, . . . , which is an

additive functional of V . Also note that if U is homogeneous, stationary, and incompressible,
then V is strictly stationary, as in the continuous case, cf. Zirbel (2001).

3 Eulerian velocity fields with hidden Markov structure

We now introduce the class of Eulerian velocity fields with hidden Markov structure that
will be considered in the remainder of the paper. Fix m ≥ 1 and let I = {1, . . . ,m}.
Let u : I → U , so that each i in I is associated with a vector field u(i, ·) in U . We call
u(1, ·), . . . , u(m, ·) vortex types. Let It, t = 0, 1, . . . be a Markov chain on I with transition
matrix R. We assume that this type process is irreducible and aperiodic. The distribution
of I0 is immaterial at this point.

For example, we may have d = 2 and m = 2 with u(1, ·) being a clockwise vortex and
u(2, ·) being an anticlockwise vortex as in Figure ??. Then u(It, x), t = 0, 1, . . . , x ∈ D is
a random velocity field which alternates between clockwise and anticlockwise vortices over
time.

Next, we allow the vortices to move in D, each in their own characteristic way. For each i
and j in I, let cij : D→ [0, 1] be a function for which

∑
x∈D cij(x) = 1. For all types i, j and

times t = 0, 1, . . ., let At(i, j) be a random variable taking values in D with IP(At(i, j) =
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x) = cij(x), and, moreover, let the collection A = {At(i, j), i, j ∈ I, t = 0, 1, . . .} be
mutually independent and independent of I. Let L0 be a random variable taking values in
D and independent of A and I. Define the location process Lt, t = 0, 1, . . . recursively by

Lt+1 = Lt +At(It, It+1), t = 0, 1, . . . ,(3.1)

with addition modulo D. We must impose a mild condition on the cij to guarantee that for
all t large enough, the distribution of Lt is supported on all of D. We require that there be
a sequence i1, i2, . . . , iN of types for which Ri1i2 , . . . , RiN−1iN > 0 and the distribution of
A1(i1, i2) + · · ·+ AN−1(iN−1, iN ) is supported on all of D, since by irreducibility of R, the
type process I will make all of these transitions at some point.

It is clear that the paired process (It, Lt), t = 0, 1, . . . is an aperiodic, irreducible Markov
chain. Now define the velocity field U by

Ut(x) = u(It, x− Lt), t = 0, 1, . . . .(3.2)

Note that U is not Markov in general, but will be Markov if knowledge of Ut allows one to
uniquely determine It and Lt. The process Ut, t = 0, 1, . . . will be homogeneous if the initial
location L0 is uniformly distributed on D. It will be stationary if, in addition, I0 has the
invariant distribution for R. It can be shown that, if U is homogeneous and Markov, then
U can be written as in (3.2). Thus, this construction generalizes the case of homogeneous
Markov velocity fields.

We now compute the transition matrix P of (I, L) for later use. First, note that

P ((i, y); (j, z)) = IP(Lt+1 − Lt = z − y|It+1 = j, It = i)IP(It+1 = j|It = i) = cij(z − y)Rij .

For each i, j in I, define a matrix Cij by Cij(y, z) = cij(z − y), y, z ∈ D. Note that Cij
is doubly indexed by D and is doubly stochastic. When D is one–dimensional, Cij is a
circulant matrix. In higher–dimensions, Cij is more awkward to write out as a conventional
matrix, but it still has the analogue of the circulant property, which is closely related to
homogeneity. Now we may write P in block form:

P = [RijCij ] =

 R11C11 · · · R1mC1m
...

...
Rm1Cm1 · · · RmmCmm

 .(3.3)

We think of the blocks as being indexed by type, with type transitions given by the Rij .
Once the type transition is made, the appropriate circulant matrix Cij is used to determine
the transition of the location.

4 The law of the generalized Lagrangian velocity

The generalized Lagrangian velocity V can be written in terms of the vortex type It, the
vortex location Lt, and the particle position Xt as Vt(x) = u(It, x− (Lt −Xt)). Define the
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Lagrangian location process M by Mt = Lt − Xt, t = 0, 1, . . .. A short calculation shows
that M evolves according to

Mt+1 = σ(It,Mt) +At(It, It+1), t = 0, 1, . . . ,(4.1)

where for each i in I, we define σ(i, ·) : D→ D by σ(i, x) = x− u(i,−x), x ∈ D. Note that
σ(i, ·) is a permutation if and only if u(i, ·) is incompressible.

It is clear that the paired process (I,M) is Markov. Thus, the Eulerian and generalized
Lagrangian velocity processes have very similar structure: they are obtained in the same
way from Markov chains (I, L) and (I,M), respectively, and the type process I is the same
in both cases. The only difference is that the Lagrangian location Mt undergoes a “shuffle”
σ(It, ·) before it is shifted by A, to account for the change of perspective brought about by
the motion of the particle, while the Eulerian location Lt is just shifted.

We now find the transition matrix Q of (I,M). First, M makes a deterministic transition
m → σ(i,m) according to the current value of It. This may be represented by a block
diagonal matrix Σ:

Σ =

 Σ1 · · · 0
...

. . .
...

0 · · · Σm

 ,(4.2)

where Σi is the transition matrix corresponding to σ(i, ·). That is, Σi(x, y) equals 1 if
y = σ(i, x) and is 0 otherwise. The off–diagonal blocks of Σ are zero because only the
location changes at this step. The transition given by Σ is followed by a transition of I and
the addition of At(It, It+1), which is accomplished by P . Thus, we have the very simple
formula Q = ΣP for the relation between the transition matrix P underlying the Eulerian
velocity field and the transition matrix Q underlying the Lagrangian field.

When the Eulerian velocity field U is incompressible, the matrices Σi and Σ are per-
mutation matrices. Thus, Q = ΣP is obtained by permuting rows of P within each block
according to the velocity field corresponding to that block. When U is compressible, at
least one Σi is not a permutation matrix, and at least one row of P appears twice in Q. As
we shall see, this has many consequences for the law of V and makes this case more difficult
than the incompressible case.

Note that we have found the exact law of the generalized Lagrangian velocity V in terms
of the law of the Eulerian velocity field U . Moreover, since the particle position X satisfies
Xt = X0 +

∑t−1
s=0 u(Is,−Ms), it is an additive functional of the Markov chain (I,M), and

so, in principle, its law is known.

5 Eigenvectors of P and Q

Here we begin the study of the eigenvectors and eigenvalues of the transition matrices P
and Q underlying U and V in order to understand their rates of convergence to equilibrium.
The rows and columns of P,Σ, and Q are indexed by type i ∈ I and location x ∈ D. They
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are functions f from I × D to C, which can be thought of as vectors in Cmn. For b in Cm

and c in C
D, we will write f = b ⊗ c for the Kronecker product f(i, x) = bic(x), where

b1, . . . , bm are the components of b. Note that b ⊗ c may denote either a row or a column
vector; which it is will be clear from the context. We denote by 1 the vector in CD with all
components equal to 1.

Let π denote the invariant distribution of the type transition matrix R. Because the Cij
are doubly stochastic, (π⊗1)P = (π⊗1), so that under the invariant distribution 1

n(π⊗1),
the type It is independent of the Eulerian location Lt, which is uniformly distributed on D.
Moreover, in the incompressible case, the matrix Σ is a permutation matrix, and so π ⊗ 1
is also the invariant distribution for Q, so the same comments apply to (I,M). In particu-
lar, when the Eulerian parameters (I, L) are started in the invariant distribution, both the
Eulerian and generalized Lagrangian velocity are stationary with the same invariant distri-
bution. The same is true in general, cf. Zirbel (2001). However, in the compressible case,
π ⊗ 1 fails to be invariant for Q because Σ is no longer doubly stochastic. The invariant
type distribution is still π, but the Lagrangian location parameter M is now dependent on
the type under the invariant distribution.

Vectors of the form b⊗ 1 may also be right eigenvectors, for

P (b⊗ 1) = Q(b⊗ 1) = (Rb)⊗ 1,(5.1)

in both the incompressible and compressible cases. Thus, if b is an eigenvector of R, then
b⊗ 1 is an eigenvector of both P and Q with the same eigenvalue as b has for R. Consider
the set G = {b ⊗ 1 : b ∈ Cm}. The following result shows that in the incompressible case,
the eigenvectors of Q split naturally over G and its orthogonal complement H = {h ∈ Cmn :
g∗h = 0 for all g ∈ G}, where ∗ denotes conjugate transpose. It is useful to think of G as
the set of vectors which are constant on blocks and of H as the set of vectors which sum to
zero on each block.

5.2 Proposition. Suppose that Σ is a permutation matrix of the form (4.2) and that Q =
ΣP is diagonalizable. Then a basis of eigenvectors of Q can be chosen so that each is either
an element of H or of the form b⊗ 1 where b is a right eigenvector of R. Moreover, Q can
be written as the direct sum of its restrictions to G and H.

Proof: Equation (5.1) shows that QG ⊆ G. We claim that QH ⊆ H as well. Let h ∈ H
and g = b ⊗ 1 ∈ G. We must show that g∗Qh = 0. But g∗Qh = g∗ΣPh, and g∗Σ = g∗

because Σ is a permutation matrix of the form (4.2). Moreover, g∗P = ((b∗R)∗ ⊗ 1)∗, and
so g∗Ph = 0. Thus, QH ⊆ H. This establishes the last claim of the proposition.

Now let {f (j)} be a basis for Cmn consisting of eigenvectors of Q with eigenvalues µ(j).
We may write f (j) = g(j) +h(j) where g(j) ∈ G and h(j) ∈ H. Because QG ⊆ G and QH ⊆ H,
we have that Qg(j) = µ(j)g(j) and Qh(j) = µ(j)h(j). From among the g(j) we may choose a
basis for G, and from the h(j) a basis for H, which gives the basis claimed.

Finally, each g(j) chosen may be written in the form b ⊗ 1. The equation Qg = λg
becomes (Rb)⊗ 1 = (λb)⊗ 1 by (5.1), and so b must be an eigenvector of R, as claimed.
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The eigenvectors of P are related to the eigenvectors of circulant matrices. Let c : D→ C

and define a matrix C doubly–indexed by D by C(y, z) = c(z− y), y, z ∈ D. We say that C
is circulant by extension of the case d = 1. For each k in D define a vector φ(k) in CD by
φ(k)(x) = exp(2πik · x)/

√
n, x ∈ D, where n = n1n2 · · ·nd and the inner product is defined

by k · x = k1x1/n1 + · · ·+ kdxd/nd. The vectors φ(k) are the standard Fourier basis. They
are orthonormal, φ(k)∗φ(`) = δk`, k, ` ∈ D, and for each k in D, φ(k) is an eigenvector of C
with eigenvalue λ(k) =

√
ncTφ(k).

The eigenvectors of P split over a large number of mutually orthogonal subspaces, as
the next result will show. It is an extension of Proposition 5.2 for the case Σ = I. For each
k in D, let G(k) be the space {b⊗φ(k) : b ∈ Cm}. These spaces are then mutually orthogonal
and G0 = G from above. Let λ(k)

ij denote the eigenvalue of Cij corresponding to φ(k). For

each k in D, let R(k) be the matrix R(k) = [Rijλ
(k)
ij ], and note that R(0) = nR.

5.3 Proposition. Suppose that P is diagonalizable. Then the eigenvectors of P are b(i,k)⊗
φ(k), i ∈ I, k ∈ D where b(i,k), i ∈ I are the eigenvectors of R(k).

Proof: A simple computation similar to (5.1) shows that P (b ⊗ φ(k)) = (R(k)b) ⊗ φ(k).
Thus, for each k in D, PG(k) ⊆ G(k). We now proceed as in the proof of Proposition 5.2 to
select a basis b(i,k) ⊗ φ(k), i ∈ I of eigenvectors of P for each subspace G(k) and recognize
that the b(i,k) must be eigenvectors of R(k).

6 Absolute bound on eigenvalues

The moduli of eigenvectors determine the rate of convergence to equilibrium for Markov
chains. As shown in (5.1), the matrices P and Q share eigenvectors of the form b⊗1, where
b is an eigenvector of R. These eigenvalues depend only on type transitions and not on
the velocity fields encoded in Σ, so they are of relatively little interest. By Proposition 5.2,
in the incompressible case, the remaining eigenvalues correspond to eigenvectors which lie
entirely in H. As our techniques work only for such eigenvectors, we restrict attention to
the incompressible case. If M is a diagonalizable matrix, we denote by eig1(M) the largest
of the moduli of the eigenvalues of M and the second largest by eig2(M). Similarly, we
write eig1(M,L) for the largest eigenvalue modulus among eigenvectors in the subspace L.

6.1 Theorem. Suppose that Σ is a permutation matrix and that Q = ΣP is diagonalizable.
Then eig1(Q,H) ≤ eig1(T ), where T = [Rijeig2(Cij)] is an m×m matrix.

Proof: Let h ∈ H be an eigenvector of Q with eigenvalue µ. Writing hi for the blocks
of h, the equation Qh = µh becomes

∑m
j=1RijΣiCijhj = µhi, i = 1, . . . ,m. Fix i. Noting

that the CD vector norm is invariant under the permutation matrix Σi, we obtain

|µ|‖hi‖ =

∥∥∥∥∥∥
m∑
j=1

RijCijhj

∥∥∥∥∥∥ ≤
m∑
j=1

Rij‖Cijhj‖,(6.2)
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by the triangle inequality. Now h is in H and so, in particular, h is orthogonal to ej ⊗ 1
where ej is the jth standard basis vector for Cm. Thus, 1Thj = 0, and so hj is orthogonal
to φ(0). Writing hj as a linear combination of the φ(k), k 6= 0, we see that

‖Cijhj‖2 =
∑
k 6=0

|φ(k)∗hj |2|λ(k)
ij |

2 ≤ eig2(Cij)2‖hj‖2.(6.3)

Using this in (6.2) yields |µ|‖hi‖ ≤
∑m
j=1 Tij‖hj‖. Now T has non–negative entries, so

by a corollary of the Perron–Frobenius Theorem (cf. Theorem 15.5.1 of Lancaster and
Tismenetsky (1985)), T has a left eigenvector a with non–negative entries and a positive
real eigenvalue equal to eig1(T ). Multiplying |µ|‖hi‖ by ai and summing over i yields

|µ|
m∑
i=1

ai‖hi‖ ≤
m∑
j=1

m∑
i=1

aiTij‖hj‖ =
m∑
j=1

eig1(T )aj‖hj‖,(6.4)

from which we conclude |µ| ≤ eig1(T ).

7 Relative bounds on eigenvalues

For non–divergent random velocity fields in continuous space and time, Fannjiang and Ko-
morowski (1999) have shown that the spectral gap of the generalized Lagrangian velocity
exceeds that of the Eulerian velocity, so that the Lagrangian velocity converges to equilib-
rium at least as quickly as the Eulerian. Surprisingly, in discrete space and time, one can
find counterexamples to this behavior. In this section we give a simple counterexample and
then identify two conditions on the Eulerian velocity field which are sufficient to guarantee
that eig1(Q,H) ≤ eig1(P,H), meaning that the generalized Lagrangian velocity V converges
to equilibrium at least as fast as U .

7.1 Example. Consider the one–dimensional velocity fields u(1, ·) = [1 −2 0 0 0 0 1]
and u(2, ·) = [−1 −1 0 0 0 0 2]. The type I makes transitions according to the transition
matrix R =

[
0.8
0.2

0.2
0.8

]
. Given the type transition, the vortex location L makes transitions

according to circulant matrices Cij whose first rows are given by

c11 = [0.2 0.75 0 0 0 0 0.05]
c12 = c21 = [1 0 0 0 0 0 0]

c22 = [0.2 0.05 0 0 0 0 0.75]

Then we find eig1(P,H) = 0.6813 and yet eig1(Q,H) = 0.8455. However, if we interchange
c11 and c22, then eig1(P,H) = 0.6813 and eig1(Q,H) = 0.6546.

7.2 Proposition. Suppose that U is incompressible, Cij = C for all i, j in I and that R is
diagonalizable. Then eig1(Q,H) ≤ eig1(P,H).
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Proof: Let b(i), i = 1, . . . ,m denote the eigenvectors of R and ρ(i) the corresponding
eigenvalues. Recalling the definition of R(k), we have R(k) = [Rijλ(k)] = λ(k)R, and so the
b(i) are also the eigenvectors of R(k). The eigenvectors of P are thus of the form b(i)⊗φ(k) and
the corresponding eigenvalues are ρ(i)λ(k). The eigenvalues over H correspond to k 6= 0, and
the largest of these occurs when ρ(i) = 1 and |λ(k)| = eig2(C). Thus eig1(P,H) = eig2(C).
In the current case, T = [Rijeig2(C)] = eig2(C)R, and so eig1(T ) = eig2(C). Theorem 6.1
gives eig1(Q,H) ≤ eig1(T ) = eig2(C) = eig1(P,H), which is the desired result.

7.3 Remark. Equations (3.1) and (4.1) become, in the present case, Lt+1 = Lt + At and
Mt+1 = σ(It,Mt)+At. We have written At in place of At(It, It+1) because the law of At(i, j)
does not depend on i and j when Cij = C. It is clear that the processes I and L evolve
independently. These equations can be thought of as describing the motion of a particle
L undergoing diffusion and a particle M subject to diffusion and incompressible advection.
The advecting velocity field Wt(x) = σ(It, x) − x need not be homogeneous, and can be
made to have virtually any law by suitably enlarging the state space of I.

Now L is Markov but M alone is not. For a proper comparison of their rates of conver-
gence to equilibrium we compare the Markov chains (I, L) and (I,M). The eigenvalues over
H are germane to the rate of convergence of the distributions of L and M to the uniform
distribution, and Proposition 7.2 concludes that eig1(Q,H) ≤ eig1(P,H), which means that
diffusion plus incompressible advection makes particle location converge to uniform more
quickly than diffusion alone. The analogue for motion on Z

d or Rd is that the effective
diffusivity exceeds the molecular diffusivity; cf. Isichenko (1992), Equation (4.16).

Next, we will assume that the Eulerian velocity field is incompressible and reversible and
show that eig1(Q,H) ≤ eig1(P,H). The inspiration for this case is Section 2 of Carmona
and Xu (1997), where the Eulerian velocity field is incompressible, Markov, and reversible.

As in Section 5, let π be the invariant distribution of the type process I, so that 1
n(π⊗1)

is the invariant distribution of (I, L). Note that the components of π are non–zero. Set
Π = diag(π ⊗ 1). The Markov chain (It, Lt), t = 0, 1, . . . is reversible if ΠP is symmetric;
then the law of U is invariant under time reversal.

Reversibility puts rather severe restrictions on U . The ij block of ΠP is πiRijCij .
Symmetry of ΠP requires the matrix equation πiRijCij = πjRjiC

T
ji to be satisfied. Since Cij

(and hence Cji) is doubly stochastic, summing across the first row yields πiRij = πjRji. But
then we must also have Cij = CTji. Thus, when (I, L) is reversible, the type process I must
be reversible and the motion of the velocity fields must satisfy Cij = CTji. In particular, when
type i is followed by type i, the location must make a transition according to a symmetric
circulant matrix Cii. This prevents preferential drift in any direction for type i.

7.4 Proposition. Suppose U is incompressible and that (I, L) is reversible. Then
eig1(Q,H) ≤ eig1(P,H).

Proof: For vectors f and g in Cmn, define an inner product by 〈f, g〉Π = f∗Πg, where
∗ denotes conjugate transpose. The inner product induces a norm by ‖f‖2Π = 〈f, f〉Π =
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∑m
i=1 πi‖f(i, ·)‖2. Because Σ is a permutation matrix with block diagonal form (4.2), it does

not change the norms of the blocks f(i, ·), and so ‖Σf‖Π = ‖f‖Π for all f in Cmn.

Let h ∈ H be an eigenvector of Q with eigenvalue µ. Then

|µ|‖h‖Π = ‖µh‖Π = ‖Qh‖Π = ‖ΣPh‖Π = ‖Ph‖Π(7.5)

by the preceding paragraph. An easy computation shows that P is self–adjoint with respect
to the inner product 〈·, ·〉Π. Also, by the proof of Proposition 5.2, P preserves the subspace
H, and so its restriction to H is self–adjoint. Thus, by the spectral theorem, there exists
a basis for H consisting of eigenvectors of P , and these eigenvectors are orthonormal. A
standard argument (cf. (6.3)) shows that ‖Ph‖Π ≤ eig1(P,H)‖h‖Π. Combining this with
(7.5) yields |µ| ≤ eig1(P,H), which was to be shown.

8 Molecular diffusion

In this section we see that molecular diffusivity directly reduces the bounds found in the
previous sections. The analogue of motion with diffusion is

Xt+1 = Xt + Ut(Xt) + ∆t, t = 0, 1, . . . ,(8.1)

where ∆0,∆1, . . . are independent, identically distributed random variables taking values
in Zd, and independent of U . The common distribution of ∆t is given by a function d0 on
D. The strength of the diffusion can be controlled by concentrating d0 around 0 or not.

Note that (8.1) is identical to the numerical implementation of the Euler scheme for
simulating the solution of a stochastic differential equation with Brownian noise, except
that we are working on a coarse lattice rather than a lattice of machine–precision numbers.

The diffusion does not affect the Eulerian velocity field U , but it does affect the gener-
alized Lagrangian velocity: Equation (4.1) for the Lagrangian location parameter becomes

Mt+1 = σ(It,Mt) + ∆t +At(It, It+1), t = 0, 1, . . . .(8.2)

It is easy to see that (I,M) is still Markov. Its transition matrix QD can be written as

QD = ΣDP,(8.3)

where D is a block diagonal matrix with each diagonal block equal to the circulant matrix
D0(y, z) = d0(z − y). Note that in the degenerate case in which ∆t = 0 with probability 1,
D reduces to the identity matrix and (8.3) reduces to Q = ΣP as in Section 4.

The presence of diffusion modifies the absolute bound on eigenvalues for incompress-
ible velocity fields in the following way. The product DP is a block matrix of the form
[RijD0Cij ], and so in Theorem 6.1 we may replace Cij by D0Cij . As D0 and Cij are both
circulant, they have the same eigenvectors. Denoting the eigenvalues of D0 and Cij by
δ(k) and λ

(k)
ij , the eigenvalues of D0Cij are equal to δ(k) · λ(k)

ij , k ∈ D. Then T can be

11



replaced by (TD)ij = Rij max(|δ(k) · λ(k)
ij |, k 6= 0), and the bound of Theorem 6.1 reads

eig1(QD,H) ≤ eig1(TD). In particular, we have (TD)ij ≤ Rijeig2(D0)eig2(Cij), from which,

eig1(QD,H) ≤ eig1(TD) ≤ eig2(D0)eig1(T ) ≤ eig2(D0).(8.4)

The second inequality shows a reduction in the absolute bound on eigenvalues due to diffu-
sion, and the third shows an absolute bound which depends solely on the molecular diffusion.

While the presence of diffusion lowers the eigenvalue bound eig1(TD), in specific in-
stances it can be shown to increase eig1(QD,H). That is, in some cases we may have
eig1(ΣP,H) < eig1(ΣDP,H). In such cases, the addition of diffusion slows the convergence
of the Lagrangian location parameter M to its equilibrium distribution.

8.5 Example. Diffusion slows convergence. Consider again the velocity fields of Example
7.1. Let I make transitions according to R =

[
1/2
2/3

1/2
1/3

]
. Let the first rows of Cij be

c11 = [0.262 0.143 0.037 0 0.098 0.162 0.298]
c12 = [0.275 0.184 0.042 0 0.035 0.189 0.275]
c21 = [0.099 0.211 0.104 0 0.106 0.132 0.348]
c22 = [0.166 0.237 0.113 0 0.147 0.158 0.179],

and let the distribution of diffusion be given by d0 = [0.5 0.25 0 0 0 0 0.25]. Then we
find eig1(ΣP,H) = 0.1623 and yet eig1(ΣDP,H) = 0.2201, so that the addition of diffusion
slows convergence to equilibrium.

Finally, let us consider the results of Section 7 in the presence of diffusion. The case
Cij = C is already closely connected with diffusion; we simply replace C by D0C. The only
change is that now Proposition 7.2 may conclude with the stronger inequality eig1(QD,H) ≤
eig2(D0)eig1(P,H) using (8.4). In the reversible case, the argument of Proposition 7.4 carries
through once we note that ‖DPh‖2Π =

∑m
i=1 πi‖D0(Ph)i‖2 ≤ eig2(D0)2‖Ph‖2Π, using an

argument similar to (6.3). Again we conclude that eig1(QD,H) ≤ eig2(D0)eig1(P,H).

9 Homogenization and effective diffusivity

Repeat the velocity field U periodically throughout Zd and let Y move in this velocity field
according to Yt+1 = Yt + Ut(Yt mod D) + ∆t, t = 0, 1, . . . , where the addition is no longer
modulo D. We will see that Y converges to Brownian motion upon rescaling space and time
in the usual way, and we will compute the limiting diffusion coefficient exactly in terms of
the law of the Eulerian velocity field and the distribution of the diffusion. The result holds
for both compressible and incompressible cases.

If we set Y0 = 0 and Xt = Yt mod D, then X and the type–location process (I,M)
evolve as in Section 8. Then Y evolves according to,

Yt+1 = Yt + u(It,−Mt) + ∆t, t = 0, 1, . . . .(9.1)
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The process (I,M,∆) is Markov and Y is an additive functional of it. As such, we expect
that Y will converge to Brownian motion when properly scaled. More importantly, the
limiting diffusivity can be expressed in terms of the transition matrix QD of (I,M) and the
covariance of ∆, rather than using the much larger transition matrix of (I,M,∆).

Let π be the invariant distribution corresponding to the transition matrix QD of (8.3).
Let πu =

∑
i,m π(i,m)u(i,−m) be the mean drift due to U and IE∆ =

∑
a∈Zd d0(a)a be

the mean drift due to the diffusion. For t = 0, 1, . . . , let Zt = Yt − (πu + IE∆)t and for
non–integer t define Zt by linear interpolation. Finally, define an inner product for functions
from I × D to R by 〈f, g〉π =

∑
i,m π(i,m)f(i,m)g(i,m).

9.2 Theorem. Suppose that QD is irreducible and aperiodic. Then as ε→ 0, the processes
εZt/ε2 , t ≥ 0 converge in distribution to d–dimensional Brownian motion with zero drift
and covariance matrix β given by

βk` = −〈fk, f `〉π − 〈fk, g`〉π − 〈gk, f `〉π + Cov(∆k,∆`)− 〈1,ΣDkPg
` + ΣD`Pg

k〉π,(9.3)

where f : I × D→ R
d is given by f(i,m) = u(i,−m)− πu, gk is the solution of

(I −QD)gk = −fk, k = 1, . . . , d(9.4)

and Dk is the matrix Dk =
∑
a∈Zd d0(a)(ak− IE∆k)Σa. For each a in Zd, Σa is the transition

matrix on I × D corresponding to the addition of a to the second component modulo D.

9.5 Remark. The first three terms in (9.3) reflect the limiting covariance of∑t−1
s=0 u(Is,−Ms), the fourth comes straight from molecular diffusion, and the last term re-

flects an interaction between diffusion and advection. In the absence of molecular diffusion,
βk` = −〈fk, f `〉π − 〈fk, g`〉π − 〈gk, f `〉π and gk satisfies (I −Q)gk = −fk, cf. (9.7).

Proof: By (9.1), at integer times, Zt =
∑t−1
s=0 f̂(Is,Ms,∆s), where f̂ is defined by

f̂(i,m, a) = f(i,m) + µ(a), with µ(a) = a − IE∆. The process (I,M,∆) is a Markov
chain with transition matrix Q̂ given by

Q̂(i,m, a; j, n, b) = Rij · Cij(n− σ(i,m)− a) · d0(b).(9.6)

This chain has state space I × D× support(d0) and is irreducible aperiodic because QD is
irreducible aperiodic and the value of ∆ is chosen independently at each step. The invariant
distribution π̂ of (I,M,∆) satisfies π̂(i,m, a) = π(i,m)d0(a).

Note that the mean of f̂ under π̂ is zero. Thus, for each k = 1, . . . , d, the equation
(I− Q̂)ĝk = −f̂k has a solution, as will be explained below. By Theorem VIII.3.74 of Jacod
and Shiryaev (1987), the processes εZt/ε2 , t ≥ 0 converge in distribution as ε → 0 to a
Brownian motion with zero drift and covariance matrix β given by

βk` = −〈f̂k, f̂ `〉π̂ − 〈f̂k, ĝ`〉π̂ − 〈ĝk, f̂ `〉π̂, k, ` = 1, . . . , d.(9.7)

The inner product here is analogous to 〈·, ·〉π defined before the theorem. To be precise,
Jacod and Shiryaev (1987) establish (9.7) for k = `, but it may be checked for k 6= ` by
consideration of the additive functional based on f̂k + f̂ ` and polarization.
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We now compute ĝ and β in terms of the smaller matrices P,Σ, QD, and Σa. The
solution of (I − Q̂)ĝk = −f̂k is ĝk = −

∑∞
n=0 Q̂

nf̂k, which converges because π̂f̂ = 0 and Q̂
is irreducible aperiodic. Now Q̂nµ = 0 for n = 1, 2, . . . , so we have ĝk = −µk−

∑∞
n=0 Q̂

nfk,
where we think of f as a function of i,m, and a, although it does not really depend on a.
The infinite sum defining ĝk may be written

∞∑
n=0

(Q̂nfk)(i,m, a) = f(i,m) +
∞∑
n=1

IE[fk(In,Mn)|I0 = i,M0 = m,∆0 = a].

The influence of ∆0 does not last long. It only affects the value of M1, since ∆1 is indepen-
dent of (I0,M0,∆0). After time 1, (I,M) evolves exactly as in Section 8, with transition
matrix QD, and we may ignore the value of ∆. For the first step, note that from (8.2),
M1 = σ(i,m) +a+A0(i, I1), so that the first transition of (I,M) is according to the matrix
ΣΣaP , where Σa corresponds to the deterministic addition of a modulo D. Thus,

IE[fk(In,Mn)|I0 = i,M0 = m,∆0 = a] = (ΣΣaPQ
n−1
D fk)(i,m),

where we have returned to regarding f as a function of i and m alone. By changing the
index of summation, we obtain

ĝk(·, ·, a) = −µk − fk − ΣΣaP
∞∑
n=0

QnDf
k = −µk − fk + ΣΣaPg

k,(9.8)

where gk satisfies (9.4). Finally, we simplify terms in (9.7). Because
∑
a∈Zd d0(a)µ(a) = 0,

〈f̂k, f̂ `〉π̂ = 〈fk, f `〉π + Cov(∆k,∆l).(9.9)

Next, from (9.8), 〈f̂k, ĝ`〉π̂ equals∑
i,m,a

π(i,m)d0(a)(fk(i,m) + µk(a))(−µ`(a)− f `(i,m) + (ΣΣaPg
`)(i,m))

= −〈fk, f `〉π +
∑
i,m

π(i,m)fk(i,m)(QDg`)(i,m)

−Cov(∆k,∆l) +
∑
i,m

π(i,m)(ΣDkPg
`)(i,m)

= 〈fk, g`〉π − Cov(∆k,∆l) + 〈1,ΣDkPg
`〉π,

using QDg` = f ` + g` from (9.4). Combining this and (9.9) into (9.7) yields (9.3).

9.10 Example. Numerical examples of effective diffusivity. Consider a velocity field having
two vortex types, u(1, ·) and u(2, ·). Switch types according to R =

[
0.8
0.2

0.2
0.8

]
, so that typically

each vortex type is used for a few steps, then the other, and back again. Define the matrix
C11 so that vortex 1 moves up and to the right, specifically, with probabilities 0.3 (right
one), 0.3 (up one), 0.2 (up one and right one), 0.2 (do not move). Define the matrix C22 so
that vortex 2 moves down and to the right, specifically, with probabilities 0.3 (right one),
0.3 (down one), 0.2 (down one and right one), 0.2 (do not move).
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The second largest eigenvalue modulus of the Eulerian velocity does not depend on the
vortex types used. The value is 0.9051 for this Eulerian velocity field.

To generate several examples, u(1, ·) and u(2, ·) will be chosen from among the four
vortex types shown in Figure ??. The first letter stands for Incompressible or Compressible,
the second for Clockwise or Anticlockwise.

Letting u(1, ·) = IC and u(2, ·) = IA, the Lagrangian velocity has second largest eigen-
value modulus 0.8532, indicating that it converges to equilibrium more quickly than the
Eulerian velocity field. This will be the case for all the examples here. The Lagrangian
drift πu is zero, while the effective diffusivity matrix is β =

[
0.1470
0.0000

0.0000
0.1550

]
. This is the

smallest effective diffusivity among these five examples.

Letting u(1, ·) = IC and u(2, ·) = IC, the Lagrangian velocity has second largest eigen-
value modulus 0.8197. The Lagrangian drift πu is zero, while the effective diffusivity matrix
is β =

[
0.3038
0.0000

0.0000
0.2081

]
. Here, the vortex has momentum either up and to the right, or down

and to the left, because it continues several steps in one direction before switching to the
other direction. This roughly doubles the diffusivity.

Letting u(1, ·) = IC and u(2, ·) = CC, so one of the vortex types is compressible, the
Lagrangian velocity has second largest eigenvalue modulus 0.8197. The Lagrangian drift
πu is [0.0769 − 0.0006], while the effective diffusivity matrix is β =

[
0.4586
−0.1455

−0.1455
0.3581

]
. Com-

pressible fields may have non–zero drift. Note that the diffusivity has increased compared
to the incompressible examples.

Letting u(1, ·) = CC and u(2, ·) = CA, the Lagrangian velocity has second largest eigen-
value modulus 0.8524. The Lagrangian drift πu is [0.1880 0.0000], while the effective
diffusivity matrix is β =

[
0.6818
0.0000

0.0000
0.6067

]
. Letting u(1, ·) = CA and u(2, ·) = CA, the La-

grangian velocity has second largest eigenvalue modulus 0.8558. The Lagrangian drift πu
is [0.2109 − 0.0169], while the effective diffusivity matrix is β =

[
0.6871
0.0595

0.0595
0.5622

]
. Using two

compressible vortex types gives the largest effective diffusivity.
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Osada, H. (1982). Homogenization of diffusion processes with random stationary coefficients. Pro-
ceedings of Fourth Japan–USSR Symposium on Probability Theory. Lecture Notes in Math. 1021
507–517. Springer, Berlin.

Weinstock, J. (1976). Lagrangian-Eulerian relation and the independence approximation. Phys.
Fluids. 19 #11. 1702–1711.

Yeung, P. K. and Pope, S. B. (1989). Lagrangian statistics from direct numerical simulations of
isotropic turbulence. J. Fluid Mech. 207 531–586.

Zirbel, C. L. (2000). Markov velocity fields and the generalized Lagrangian velocity. Available at
URL http://www-math.bgsu.edu/~zirbel

Zirbel, C. L. (2001). Lagrangian observations of homogeneous random environments. Adv. Appl.
Prob. 33 810–835.

16


	Discrete Velocity Fields with Explicitly Computable Lagrangian Law
	Digital Commons @ LMU & LLS Citation

	tmp.1481829909.pdf.xqzkF

