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VALUE MONOIDS OF ZERO-DIMENSIONAL VALUATIONS OF RANK
ONE

EDWARD MOSTEIG

ABSTRACT. Classically, Grobner bases are computed by first prescribing a set monomial
order. Moss Sweedler suggested an alternative and developed a framework to perform such
computations by using valuation rings in place of monomial orders. We build on these ideas
by providing a class of valuations on k(z,y) that are suitable for this framework. For these
valuations, we compute v(k[x,y]*) and use this to perform computations concerning ideals
in the polynomial ring k[z,y|. Interestingly, for these valuations, some ideals have a finite
Grobner basis with respect to the valuation that is not a Grobner basis with respect to any
monomial order, whereas other ideals only have Grébner bases that are infinite with respect
to the valuation.

1. INTRODUCTION

Unless stated otherwise, k£ will denote an arbitrary field, and N will denote the set of
nonnegative integers. Whenever R is a ring or monoid, we denote by R* the nonzero elements
of R.

One of the fundamental ideas of the theory of Grobner bases is that monomial orders are
well-orderings on the set of monomials, which leads us to a natural reduction process using
multivariate polynomial division. In this section, we provide a brief account of a generalized
theory of Grobner bases that uses valuations in place of monomial orders, which will yield
a more general reduction process. The development of this theory can be found in the
unpublished manuscript [Sw] of Sweedler, and it is briefly discussed in this section solely
for the sake of completeness. In that manuscript, Sweedler develops the theory in terms of
valuation rings. Here we present the same results in terms of valuations rather than valuation
rings. Proofs are omitted since they can all be found in [Sw].

Suppose k is a subfield of a field F'. A valuation on F' is a homomorphism v from the
additive group of nonzero elements of F' to an ordered group (called the value group) such
that for f,g € F* where f +¢ # 0, v(f + g) < max{v(f),v(g)}. Note that the triangle
inequality was chosen to be opposite of the most common definition, which is so that our
results most closely coincide with those concerning monomial orders. For more details, see
[MoSw1], [MoSw2], and [M]. A valuation on F' over k is a valuation on F' such that its
restriction to k* is the zero map. For our purposes, we restrict our attention to valuations
on rational function fields. In this setting, we require that our valuations have the additional
properties given in the following definition.

Definition 1.1. We say that a valuation v on k(x) over k is suitable relative to k[x] if
satisfies the following three properties.

(i) For all f € kx|, v(f) =01iff f € k.
1



2 EDWARD MOSTEIG
(i) If v(f) = v(g) where f,g € k(x)*, then I\ € k* such that f = Ag or v(f — A\g) <
v(f).

(iil) v(k[x]*) is a well-ordered monoid.

When using monomial orders, one must determine divisibility among monomials. The
analogue for valuations uses arithmetic in the monoid v(k[x]").

Definition 1.2. Let v be a valuation on k(x). Given f, g € k[x], we say that v(g) divides
v(f), denoted v(g) | v(f), if there exists h € k[x] such that v(f) = v(gh). We say that
h is an approximate quotient of f by g (relative to v), if f = gh, or if f # gh and

v(f —gh) <v(f).
The following simple proposition follows from the definition above.

Proposition 1.3. Let v be a valuation on k(x) over k that is suitable relative to k[x|. Let
f,g € k[x]. Then v(g) divides v(f) if and only if there exists an approrimate quotient h of

fbyg.

The following is a generalized form of the standard polynomial reduction algorithm that
makes use of valuations.

Algorithm 1.4. Let v be a valuation on k(x) over k that is suitable relative to k[x]|. Let
v be a valuation on k(x) over k. Let I be an ideal in k[x] and G be a generating set for I.
The following algorithm computes a reduction of a polynomial a € k[x] over G relative to v.
e Set i =0and fy=f.
e While f; # 0 and v(g) | v(f;) for some g € G do:
Choose g; € G such that v(g;) | v(fi). Let h; be an an approximate quotient of
fi by gi. Set fir1 = fi — g;h;. Increment i by 1.

We say that f,, is the nth reductum of f over G. We say that f reduces to b if b is a
reductum of f. It can be shown that if v is suitable with respect to k[x], then reduction of
any element of k[x| over G terminates after a finite number of steps. We will call a subset
G C I" a Grobner basis for I with respect to v if it satisfies the equivalent conditions
of the following proposition.

Proposition 1.5. Let v be a valuation on k(x) over k that is suitable relative to k[x|. Let
I be an ideal in k[x]| and G C I*. The following are equivalent:

(i) Every nonzero element of I has a first reductum over G.
(ii) Every element of I reduces to 0 over G.
(iii) Given f € k[x]|, f € I if and only if f reduces to 0 over G.

We can use Grobner bases in the generalized setting to solve the ideal membership problem
in much the same way that we do in the case of monomial orders. Just as in the classical
case, it can be shown that a Grobner basis with respect to a valuation necessarily generates
the given ideal. To compute Grobner bases, we must work with ideals of v(k[x]"), where an
ideal J of a commutative monoid M is a subset J C M such that for any m € M,j € 7,
j+m € J. The smallest ideal containing my, ..., m, will be denoted (my,...,m,) and is
called the ideal generated by mq,...,my
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Definition 1.6. Let v be a valuation on k(x) over k that is suitable relative to k[x]. We
say that T C v(k[x]") is an ideal generating set for f and g with respect to v if T
generates the ideal (v(f)) N (v(g)) in v(k[x]"). Tt can be shown that for each ¢ € T there are
a,b € k[x]" such that v(af) = v(bg) =t and af = bg or af # bg and v(af — bg) < t. This
gives a map T — k[x], t — af — bg. The image of this map is a syzygy family for f and
g indexed by T. We say that af — bg is the element of the family corresponding to ¢.

This definition shows one of the main differences between the generalized theory using
valuations and the classical theory using monomial orders, namely, that each pair of polyno-
mials may have many minimal syzygies. Sweedler constructs an example in [Sw| where this
family consists of multiple elements. Using syzygy families, the algorithm below provides a
method for constructing a Grobner basis for an nonzero ideal I with generating set G.

Algorithm 1.7 (Grébner Basis Construction Algorithm). Let v be a valuation on k(x) over
k that is suitable relative to k[x], and G C I* is a generating set for a nonzero ideal I.
(ii) For each pair of distinct elements g, h € G, find a monoid generating set qu , for g, h
and a syzygy family Sg’h for g, h indexed by TQOJL. Define U = U#heG SSJL.
(iii) Determine the set H; of nonzero final reductums that occur from reducing the le-
ments of U; over Gj.
(iv) If H; is empty, stop.
(v) Define G;41 = G; U H;.
(vi) For each pair of distinct element g € G;11, h € H;, find a monoid generating set Tg}zl
for g, h and a syzygy family S;j?ll for g, h indexed by Tgij;l. Define U = U, e S;ﬁll.
(vii) Increment ¢ by 1 and go to step (iii).

Sweedler shows that if G is finite and v(I*) is Noetherian (i.e., every ascending chain of
ideals stabilizes), then the construction algorithm can be completed so that it terminates
with a finite Grébner basis. However, even if v(I*) isn’t Noetherian, the set U, G, is a
Grobner basis.

These algorithms will allow us to compute Grobner bases using a class of valuations on
k(x,y) originally studied by Zariski in [Z]. In Section 2, we develop the background necessary
to work with a valuation v of this type, and we state one of the main results of the paper,
which is an explicit formula for v(k[z, y|*). In Section 3, we prove some intermediate results
concerning sequences associated with the valuations developed in Section 2. In particular,
recursive formulas are given for a generating set of v(k[z,y]*). In Section 4, we build on
these ideas to show that certain elements of v(k[z,y|*) have unique representations, which
leads to a complete description of v(k[x,y]*) in Section 5. Finally, in Section 6, we use this
description to make the algorithms developed by Sweedler constructive. With the exception
of Section 4, all of the proofs herein are fairly elementary.

2. VALUE GROUPS AND MONOIDS FROM POWER SERIES

In this section, we examine a class of valuations of k(z,y) studied by Zariski in [Z]. The
value groups of these valuations were explicitly constructed by MacLane and Schilling in
[MacSch]. In this section, we state one of our main results, which is an explicit construction
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of the restriction of such valuations to the underlying polynomial ring k[x,y]. Since the
valuations of interest are constructed using generalized power series, we begin with a review
of the relevant concepts.

We say that a set T" C QQ is Noetherian if every subset of 7" has a largest element. Given
a function z : Q — k, the support of z is defined by Supp(z) = {q € Q | 2(q¢) # 0}. The
collection of Noetherian power series, denoted by k((t?)), consists of all functions from
Q to k with Noetherian support. More commonly in the literature, generalized power series
are defined as functions with well-ordered support, and we will freely use the analogues of
these results for Noetherian power series. We choose the supports of our series to be opposite
of the usual definition so that our results more closely fit with the theory of monomial orders
and Grobner bases.

As demonstrated in [H], the collection of Noetherian power series forms a field in which
addition is defined pointwise and multiplication is defined via convolution; i.e., if 2,29 €
B({t9)) and g € Q, then (2 + 2)(q) = 21(q) + 22() and (2122)(@) = Y0y 21 (W) 22(v). We
often write power series as formal sums: z = 3 g,y 2(5)t*, where z(s) denotes the image
of s under z.

Example 2.1. Given the series z; = t'/2 +t/* +¢/8 4 ... and 2, = 3t + 1, their sum and
product are

Z1 + 22 :?)t—i-(t1/2—|—t1/4—|—t1/8_|_...)+1
and
zam = (32 4 3 4 3 ) (Pt B ),

Given a series z € k((t?)), define the leading exponent of z to be the rational number
given by LE(z) = max{s | s € Supp(z)}. If s = LE(z), we denote z(s) by LC(z) and call
it the leading coefficient of z. Note that LE(z122) = LE(21) + LE(z2) and LC(z122) =
LC(z1)LC(z2). Moreover, we have LE(z; + 2z2) < max(LE(z1),LE(2)), with equality
holding in case LE(z1) # LFE(2).

We say that a nonzero series z € k((t®)) is simple if it can be written in the form

n
z= g it
i=1

where ¢; € k*,n € N*U {00}, e; € Q,e; > e;.1. Whenever we write a series in this form,
we implicitly assume that each ¢; is nonzero and the exponents are written in descending
order. We call e = (ey, eg,...) the exponent sequence of z. Now write e; = n;/d; where
d; > 0 and ged(n;, d;) = 1. We define rg = 1 and for ¢ > 1, set 7; = lem(dy, ..., d;) and call
r = (rg,71,72,...) the ramification sequence of z.

Example 2.2. Consider the simple series
2= 22 4 313 a5

Here LE(z) = 1/2 and LC(z) = 2. The series z has exponent sequence (1/2,1/3,1/4,1/5,--+)
and ramification sequence (1,2,6,12,60,---).
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We are now in a position to define valuations on k(zx,y) based on Noetherian power series.
Let 2 € k({t?)) be a Noetherian power series such that ¢ and z are algebraically independent
over k. Consider the embedding ¢, : k(z,y) — k{((t%)), x — t, y — 2. It can be shown
that £F is a valuation on k((t?)), and hence the composite map LE o ¢, : k(z,y) — Q
is a valuation on k(z,y). Given a valuation v on k(x), V = {f € k(x)" | v(f) <0} isa
valuation ring with maximal ideal m = {f € k(x)" | v(f) < 0}, in which case dim(V/m) is
the dimension of the valuation. The rank of the valuation v is defined to be the number
of isolated subgroups of v(k(x)*). It follows that LE o ¢, is a zero-dimensional valuation of
rank one.

Example 2.3. Let k be a field such that char k # 2. Given z = t"/2 4 tV/* 4+ ¢1/8 4 ...
(LEop.)(x) = LE(t) =1
(LEop)(y) = LE(z)=1/2
(LEop.)(y* —x) = LE(Z?—t)=LE((t+2t3* 42658 4...) —t) = 3/4
MacLane and Schilling proved the following result in [MacSch]:

Theorem 2.4. Let z € k{(t®)) be a simple series such that t and z are algebraically inde-
pendent over k. If e is the exponent sequence of z, then the value group of LE o ¢, 1is

(LE o) (k(x,y)") =7+ Zey + Zex + - - -

One of the primary goals of this paper is to restrict the valuation to the polynomial ring
k[x,y] and compute

(2.1) A= (LEog.)(klz,y]") ={LE(f(t,2)) | f(z,y) € k(z,y)"},
which we call the value monoid with respect to z.

Now suppose z is a simple series with exponent sequence e and ramification sequence
r. The sequence obtained from the ramification sequence {r;};eny by removing repetitions
is called the reduced ramification sequence and is denoted {r’*?},cy. For each i € N,
denote by /(i) the smallest natural number such that r7e
(2.2) 1(i) = min{j € N | r; = r*?}.
Example 2.5. The series

P i o e e

has ramification sequence

= Ti(); i.e.,

r=(1,2,2,6,30,210,2310,...),
and hence has reduced ramification sequence
(1,2,6, 30,210, 2310, ... ).
Thus 1(0) =0, (1) =1, I(i) =i+ 1 for i > 2.

We define the bounding sequence u = (ug, u1, ug, ... ) given by ug = 0, and for i > 1,
i—1

(2.3) uzz<%_ T >ej+1.

=0 Tj+1
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For ¢ > 1, we define the monoid generating sequence:

(2.4) pi = wE)-1+ ).
We can fully describe the value monoid with respect to z in terms of the monoid generating

sequence. The following result will be proved in Section 5 (in fact, it follows directly from
the stronger result given in Theorem 5.8).

Theorem 2.6. Let z € k({(t®)) be a simple series such that t and z are algebraically inde-
pendent over k. Assume further that the components of the exponent sequence are positive
and no component is divisible by the characteristic of k. Then the value monoid with respect
to z s

A= (LEoy,)(klz,y]") =N+Np +Npp + -

It is of interest to determine whether this result can be generalized. In particular, it would
be nice to compute the value monoid after either removing the restriction that the exponent
sequence must be positive or permitting some of the components of the exponent sequence
to be divisible by the characteristic of the the ground field.

3. ASSOCIATED SEQUENCES

In this section, we prove some elementary results about the sequences described in the
previous section. In particular, we will construct recurrence relations and formulas concern-
ing the monoid generating sequence. To this end, there is one more sequence that will be
needed in the sequel. Using the ramification sequence r of a simple series z and the formula
(2.2), we define partial ramification sequence by

S; = T‘Z(i)/T’l(z‘—l)ZTl(i)/Tl(i)—l-

Convention 3.1. For the remainder of this paper, we adopt the following conven-
tions.

The series z € k{(t®)) is simple with positive support.

The series z is transcendental over k(t).

The value monoid of z is denoted A.

The exponent sequence of z is denoted e = (eq, e, €3,...).

No component of the exponent sequence is divisible by char k.

The ramification sequence of z is denoted r = (79, 71,72, ...).

The bounding sequence of z is denoted u = (ug, uy, us, . . . ).

The function [(¢) is defined in (2.2).

The monoid generating sequence of z is denoted p = (p1, pa, p3, - - - ).
The partial ramification sequence of z is given by s = (s1, sg, S3, . .. ).

Since /(i) marks the index where the ramification index increases, we have r; = ry; for
I(i) <j<l(i+1), and so

(3.1) ri/ri-1 =1 for 1(i) <j<l(i+1).
In particular, this yields
(3.2) Ti(i—1) = Ti(i)—1
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and

(3-3) Up(i—1) = Ui(i)-1

despite the fact that e;;_1) and e;;—1 need not be the same.

Note that the ramification sequence of a series z € k{(t?)) increases without bound unless
z € k((t'™)) for some n € N. However, it is still possible that the ramification sequence
occasionally (even infinitely many times) stabilizes for a finite number of steps. Whenever the
ramification sequence stabilizes for a number of indices, the sequence {u; };en also stabilizes,
as seen in the next result.

Lemma 3.2. If r; = r for indices i and k, then u; = uy.

Proof. The result is trivial if ¢ = k, so we assume ¢ < k. Since r; = 7y, it follows that r; = r;,;
fori < j <k —1, and so by (2.3), ux = Zf;é <’;—’; — >ej+1 = Z?;é <:—J‘ — n )ej+1 =

Tjt1 i1
A+ (e = O
U; Jj=t Tj Tj+1 6.7""1 = Uj.
Since our main objective is to prove that A is generated by the sequence 1, py, pa, ..., we

must first justify some elementary properties that allow us to understand better the behavior
of this sequence. We begin by showing that the monoid generating sequence satisfies a simple
recursive relation.

Lemma 3.3. The monoid generating sequence in (2.4) satisfies the following recurrence
relation:

P11 = €);

Pi+1 = SiPi — €iG) T €l(i+1)-

Proof. By (3.3), wia)-1 = wa-1) = uo = 0, and so by (2.4), p1 = e;q). Also, we have by

m—1
m T'm
Uy + Em+1 = <— - ) €j+1 + €m+1
=0 TJ 7"]+1
m—2
T'm 'm—1 T'm—1 T'm T'm
= ( ) < — €]+1 + — — | Em + €m+1
Tm—1 =0 ] Tj+1 T'm—1 T'm
m—2
T'm 'm—1 Tm—1 'm
= ( ) < - €j+1 + €m em + €m+1
Tm—1 im0 Ty Tjt+1 m—1
T'm
= ( ) [Um,1 + em] em + €m+1,
Tm—1

and so

T'm
(34) Ym+1 = < ) Ym — Em + Cm+1
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where 7, := U1 + €. Replacing m by (i), we obtain

T
(3.5) Vi) +1 = <Tl(‘() )1> Vi(i) — €1) T €ia)+1 = SiVi(s) — €l(i) T €l(i)+1-

If i(i) <m < (i+ 1), then r,,/r,,—1 = 1 by (3.1), and so (3.4) yields
Ym+1 = Vm — €m t €m+1-
Multiple applications of this formula yields a telescoping sum, and so
Vi(i+1) = Vi(i+1)—1 — Cl(i+1)—1 T Ci(i+1)
= (%(i+1)—2 — €lii+1)—2 T el(i—i—l)—l) — €l(i+1)—1 T €l(i+1)

= Vi(i+1)-2 — Ci(i+1)—2 T €i(i+1)

= Y@)+1 — €)+1 T+ et
This equation in conjunction with (3.5) yields
Vi+1) = V@41 — €li)+1 T €l(i+1)
Si7i(i) — €1@i) T €igi)+1 — €l@i)+1 T Ci(i+1)
= SiM@) — €iG) T Cl(i+1)s
and since p; = wy;)—1 + €5 = () for all ¢, we have
Pit1 = SiPi — €i(i) T €l(i+1)-

O

We can also construct a recursive formula for the terms of the ramification sequence, as
given in the next result.

Lemma 3.4. Fori € N,

Proof. This follows from the simple computation

D (55 = Drigon = > _((riggy/rig—1) = Drig-1y = > _(rigs) = 7igg—1)) = 7)) = Tagoy = 7y — 1.

j=1 j=1 =1
For the case i = 0, we take the summation Z;Zl(sj — 1)ryj-1) to be 0. O

Using Lemma 3.3, we can construct yet another recurrence relation for the terms of the
monoid generating sequence.

Lemma 3.5. For: > 1,
i1

pi = Z(S]‘ —1)p; + e

j=i
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Proof. We proceed by induction. If ¢ = 1, then by Lemma 3.3,
0

p1=eq)=0+eq = Z(Sj — 1)pj + e
j=1

since the summation that appears is empty. Now suppose the statement holds for the index
7. Then by Lemma 3.3 and the induction hypothesis,
i i1

Pi+1 — Z(Sj —Dpj = pir1—(si—1)pi — Z(Sj — L)p;
j=1 J=1
= Pit1 — (Si - 1)/%‘ - (:Oi - €z(i))
= sipi — €y T eiirr) — (si — 1)pi — (pi — ei))
= €@i+1)-

O

Using this lemma, we can extract information about the denominators of the components
of the monoid generating sequence, as shown in the next three results. Given ¢ € Q, ¢Z
denotes the set {qz | z € Z}.

Lemma 3.6. Fori>1, p; € (1/ri))Z — (1/7(i-1))Z.

Proof. The result follows by a simple induction. Indeed, p1 = ey € (1/mu)Z — Z =
(1/r11))Z — (1/71(0y)Z. Now, assuming that p; € (1/r4))Z, we see by Lemma 3.5, pi1q =
> o1 (85 = 1)pj + eyiyr). Since pj € (1/ryj))Z C (1/ry3))Z for 1 < j <, we have 7. (s; —
l)pj S (1/7“[@))2. Moreover, elii+1) € (1/7‘1(2-_;,_1))2 — (1/Tl(i))Z, and so Pi+1 € (1/Tl(i+1))Z —
(1/Tl(i))Z' D

Lemma 3.7. If we write p; = ¢; /1), then ged(c;, s;) = 1.

Proof. Rewrite the expression p; = ¢;/ry;) in lowest terms: p; = o;/8;, o, f; € N* where
ng(aiyﬁi) = 1. Then ¢; = aﬂ’l(i)/ﬁz‘ = az‘lcm(ﬁ(i—n,ﬁi)/ﬂi = %‘ﬁ(i—l)/ng(ﬁ(i—l),ﬂz‘)- Also
1)/ Tii—1) = lem(ria—1y, Bi) /Ti—1y) = Bi/ged(rii-1), Bi). Therefore,

ged(cis iy [rigi-1)) = ng(aiTZ(i—l)/ng(TZ(i—l)7 Bi), 5i/ng(7"l(i—1), B5))-
Since ged(a;, 4;) = 1 and ng(Tl(ifl)/ng(rl(ifl)a @')7@'/ng(7’1(1‘71), Bi)) = 1, we have ged(c;, s;) =
ged(cs, iy /Tii—1y) = 1. O

Lemma 3.8. If0 <d; <s; for1 <j<iandd; #0, then
(3.6) Y dip; € (/i) Z — (1/r16-1)Z.
j=1

Proof. For j < i, we have by Lemma 3.6, p; € (1/ry;))Z C (1/7:))Z, and so Z;.:l dip; €
(1/7r133))Z. We now must prove 22:1 dip; & (1/ry;-1))Z by induction.

First, we show that d;p; & (1/r;j-1))Z whenever 0 < d; < s;. Write p; = c¢;/ri;).
Suppose, for contradiction, d;p; = (djc;)/rjy € (1/ryj-1))Z where 0 < d; < s;. Thus,
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1y | dicjrig—1y- Now, s; = ry¢;)/ri(j—1y, and so s; | d;c;. By Lemma 3.7, ged(cj, ;) = 1, and
so s; | d;. Since 0 < d; < s;, we have a contradiction.

Now we proceed to show the inductive step. Suppose 0 < d; < s; for 1 < j <4i+1 and
diy1 # 0. We write

it1 i
>~ (o) s
j=1 j=1
By the induction hypothesis, Z;zl dip; € (1/1ys)Z. Now, diy1piv1 € (1/73i41))Z, and by
the previous paragraph, diy1pi41 € (1/713))Z. Thus Z;J:l dip; € (1/ris1))Z— (1)) 2. O

4. REPRESENTATIONS OF ELEMENTS OF THE VALUE MONOID

In this section, we demonstrate that certain elements of A have a unique representation
as a sum of elements of {1, py,ps,...}. Using these representations, we prove that A is
generated by {1, p1, p2, ps,...}. To accomplish this, we must factor each element of k[t,y]
completely as f(t,y) = q(t) [[(y — s;) where s; lies in the algebraic closure of k().

An element of k{(t®)) is said to be Puiseux if it lies in k((t~'/™)) for some positive integer
m. Puiseux’s Theorem states that the algebraic closure of the field of Laurent series k((¢71))
in k({t®)) precisely consists of all elements of k{(t®)) that are Puiseux. Using Kedlaya’s
characterization of the generalized power series that are algebraic over the Laurent power
series field when k has positive characteristic in [Ke], we have the following characteristic-free
generalization of Puiseux’s Theorem.

Theorem 4.1. Let w € k{(t?)) such that no element of its support is divisible by char k.
Then w is algebraic over k((t™1)) iff w is Puiseuz.

The result below follows directly from techniques found in [Ab] and [D].

Proposition 4.2. Let w = c;t™/" + .- 4+ ¢,t™/™ be a finite Puiseuz expansion with rami-
fication index n where m; € Z*, n € Z", and ¢; € k*. If k has positive characteristic, then
assume that n is not divisible by char k. Then the minimal polynomial of w over k(t) is

p(y) =10 (y — wi) € k(t)[y], where
w; = Q(Citl/n)ml 44 Cs(Citl/n)ms,
and ¢ is a primitive nth root of unity in k.

The ramification index of a Puiseux series w € k((t?)) is the smallest positive integer
7 such that w € k((t7Y7)). Given 2,2z € k{(t®)), we say that z; and z, agree to (finite)
order m € N if the first m terms of z; and z; are identical, but the (m + 1)st terms (if they
exist) of z; and z, are different. If we use Theorem 4.1 in place of Puiseux’s Theorem, then
Proposition 4.6 of [M] can be strengthened to the following characteristic-free form, where
we continue the assumption that no component of the exponent sequence is divisible by char
k as stated in Convention 3.1.

Proposition 4.3. Let w be a Puiseur series in k{{t®)). Define p(y) € k((t™1))[y] to be the
minimal polynomial of w over k((t™')) where w agrees with z to order m, and none of the
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conjugates of w agree with z to a greater order. If R is the ramification index of w, then

R R
(4.1) LE(p(z)) = (—) [um + LE(z — w)} > (—) [um + €m+1i| .
Tm rm
The simplest polynomials to which we can apply this result are those whose roots are
finite Puiseux series. We make these calculations explicit in the following lemma.

Lemma 4.4. If g(t,y) € k(t)[y| is the minimal polynomial of
ottt + -+ Cl(i)_ltelu)ﬂ
over k(t), then deg,(g(t,v)) = rys-1 and LE(g(t, z)) = p;-

Proof. Let g(t,y) € k((t™1))[y] be the minimal polynomial of Zé@fl c;t% over k((t™1)). Since
the exponent sequence e consists solely of positive numbers, ¢(t,y) € k[t,y] by Proposition
4.2. Since Zz(i)f ! c;t% has ramification index 7y;)—1, it follows from Proposition 4.2 that
deg, g(t,y) = 7135—1. Moreover, by Proposition 4.3, LE(g(t,2)) = (M> (w1 + @) =

Ti(i)—1

Pi- U

We will see that in order to generate A, we need only consider images of polynomials whose
roots are finite Puiseux series. To demonstrate this, we first show that over the collection
of polynomials of a fixed degree in y, the polynomials that have the smallest image under
LFE o ¢, are those whose roots are finite Puiseux series.

Proposition 4.5. Let k be a perfect field. For each nonzero p(x,y) € k[x,y], there exists
h(z,y) € k[z,y] such that the following hold:

(i) deg, p(z,y) = deg, h(z,y),
(i) LE(p(t,2)) > LE(A(t,2)) |
(iii) the roots of h(t,y) in k((t=1))[y] are finite Puiseux series of the form Zé@fl it

Proof. First, factor p(t,y) as a polynomial in y as p(t,y) = q(t) [[-, pi(t, v), where q(t) € k[t]
and p;(t,y) is a monic, irreducible element of k((¢71))[y]. We will find h;(x,y) € k[z,y| such
that deg, pi(z,y) = deg, hi(x,y), LE(pi(t,2z)) = LE(hi(t,2)), and the roots of h;(t,y) are
finite Puiseux series of the desired form. It then follows that h(z,y) = q(z) [~ hi(z,y)
satisfies the conditions of the proposition.

Since p;(t,y) is a monic, irreducible element of k((¢71))[y], it is the minimal polynomial of
some generalized power series 3 € k((t®)). If k is a field of characteristic zero, by Puiseux’s
Theorem (Theorem 4.1), § is Puiseux. If k£ has positive characteristic, § is not necessarily
Puiseux and the algebraic closure of k((¢7!)) is described by Kedlaya in [Ke]. We prove the
result by considering two cases:

Case 1: No element of Supp(z) is divisible by char k.
Case 2: Some element of Supp(z) is divisible by char k.

Case 1: Without loss of generality, we assume that no conjugate of 3 agrees with z to a
higher order. We denote this order by m, and denote the ramification index of § by R, in
which case r,, | R. As shown in [St], p;(t,y) € k((t™"))[y] must be a polynomial of degree R.
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Let L be the largest index such that r;, = r,,, in which case ry; > r, and so L+1 is of the
form [(k) for some k € N. Let g(t,y) € k[t,y] be the minimal polynomial of Zl(” c;t over
k(t). Then by Lemma 4.4, deg,(g(t,y)) = riyx)-1 = 7 = ™m and LE(g(t, )) = ps. There-
fore, if we define h(z,y) = g(z,y) /™), then LE(h(t,z)) = (R/ry)p. and deg,(h(z,y)) =
(R/rm) deg,(g) = R = deg, (pi(z,y)).

Since r;, = r,,, we know by Lemma 3.2 that u;, = u,,. Moreover, L > m, and so
em+1 > ert1. Thus by Proposition 4.3, LE(p;(t,2)) > (R/rm)[tm + €ms1] = (R/rm)ur +
epy1] = (R/Tm)[ul (r)—1 T €i(x ] (R/Tm)p,.i = LE(h(t, 2)).

Case 2 : Let char k = p. Let F be the normal closure of k((¢t71))(8)/k((t7")). As in the
proof of Corollary 9 of [Kel, if M is the integral closure of k in F, then E can be expressed as
a tower of Artin-Schreier extensions over M ((t~'/™4)), where ¢ is the degree of inseparability
of E/k((t™")). Since E is normal over k((¢7')), and hence over k((t~'/™9)), the normal
closure of k((¢t~")) must be contained in E. The field k(¢,,)((t7/™9)) = k((p, t=7™) ((t71))
is the normal closure of k((¢~1/4)) (it is the splitting field of X™7 — ¢t~ over k((t7'))), and
so we have the following normal extensions:

k(1)) C k(Ga) (7)) C E.

Define F = k((m)((t_l/mq)), and let 7, € Gal(F/k((t™!))) be given by /e s ¢at¢t/am,
Note that as CO ,Cm, ...,¢™ ! runs through all the mth roots of unity, so does the list
a... ,Cim=14 gince ged(m, q) = 1. Each element of Gal(F/k((t71))) can be written as
Tgu Where p e Gal( (Cm)/k). We write the collection of all elements of Gal(F/k((t71))) as
{1}
Define a homomorphism A, : Q — &k~ by Ag(ap™/b) = (#* where a € Z, b € N*, ptab and
s =p" mod b (or, if n <0, we require sp™™ =1 mod b) It is stralghtforward to show that
if \:Q— % is a homomorphism whose kernel contains Z and p € Gal(k(C,)/k), then

(4.2) D witt e > A ()t

el iel

is a k((t™'))-automorphism of k({t?)) (where I is any Noetherian subset of Q). Given
V; € Gal(F/k((t71))), we write ¢; = 7pu for some 1 < ¢ < m and p € Gal(k(¢,)/k). In
case A = ), note that the function in (4.2) is an extension of ¥; to k((t?)). We denote
the restriction of this function to E by ¢;. We will show that ¢; sends k((t~1)) to itself,
and since F is a normal extension of k((¢7')), it follows that ¢; € Gal(E/k((t™!))) is an
extension of ;.

To show that ¢; sends k((t~1)) to itself, we appeal to Kedlaya’s description of the algebraic
closure in Corollary 9 of [Ke|. First, we review a few key ideas from that paper. The support
of any algebraic series must be a set of the form

Smave = {(Lfm)(w +bip™ 4 -+ byp I 4 (byp ) [w <0, b < )

where m € N,v,c > 0. Note that S, is defined differently than the form given by Kedlaya
since our support is Noetherian rather than well-ordered. We say that a sequence ¢, satisfies
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a linearized recurrence relation (LRR) if for some dy, ..., dy, for all n € N,
docn + d1CfL+1 + -+ dkczllk

Let > x;t" be a series with support Smwe We say Szt is twist-recurrent if for each
w < v, Y. b < ¢, the sequence ¢, = T(1Jm)(w-bip— o tb;_ypi+4p-n(bp—it)) Satisfies an
LRR. According to [Ke], the algebraic closure of k((t7')) consists of all twist-recurrent series
x =Y x;t" such that the z; lie in a finite extension of k.

Now suppose Y z;t* is a twist-recurrent series. We will show that ¢; (3 z;t%) is also twist-
recurrent, and so by the previous paragraph, ¢; sends k((t~1)) to itself. Since > ;' is
twist-recurrent, it follows that ¢, = T(1/m)(w+bip-14--4b;_1p=3+14p-n(b;p-i+...)) Satisfies an LRR

of the form doc, + dich, + -+ dkcpk . = 0. To show that ¢; (3 x;t") is twist-recurrent,

we must prove that A(f(n ))p(cn) satisfies an LRR where f(n) = (1/m)(w +byp~ ' + -+ +
bj_piTt +p’"(b p 7+ ), A=)\ for some ¢ and p € Gal(k((n)/k). If ¢, satisfies the

LRR YF - odich i =0, it follows that 0 = p <ZZ 0 nﬂ) = Zfzo w(d) p(cnes)?, and so
,u(cn) satlsﬁes an LRR. Thus we only have to show that if ¢, satisfies an LRR, then so does
cn = Ae(f(n))en.

NOW suppose ¢, satisfies the LRR Z . =0. Rewrite w +byp~t + - 4+ bj_1p~7T!
as o where pfa; and my < j — 1. If We rewrlte bip ™ 4+ bjpp - as % where p { ay
and mgy > j, then
ap™ " +ap™  ap™ ™M + ag
f(?’L) - mi+mo+n - m2+n
mp mp
If we define s,,d;, ds so that s,p" =1 mod m, dip™ =1 mod m, and dop™ =1 mod m,

mo—mi+n i
then \o(f(n)) = (onpm2 ™ rag)sndy ¢ondr. cozdzsn - and so if we define d, = ¢, *1%P"d;, then

k k k

D= DG G G = DG G G

i=0 i=0 =0
which simplifies as

k k k
Do (Gt et = Y (G el = (G2) Y did =0,
=0 =0 =0
and so ¢, satisfies an LRR.

So far, we have shown that ¢; sends k((¢t~!)) to itself, and since E is a normal extension
of k((t™1)), we know ¢; € Gal(E/k((t™!))) is an extension of ¢;. Let {oy,...,04} be the
complete collection of F-automorphisms of E. Since F/F and F/k((t™')) are normal exten-
sions, a routine exercise shows that the collection {¢;0; | 1 <17 < b,1 < j < d} consists of
all k((t7!))-automorphisms of E. Since ¢ is the degree of inseparability of E over k((t7!)),
the minimal polynomial mg of 3 over k((¢7')) can be factored as

b

mg(t,y) = H (H(y - %mﬁ)) -

Jj=1
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For any series s = )., ¢;t, we define an associated Puiseux series by P(s) = >, c;it®
where J ={a/be I |a€Z,be N* and p1b} and remainder by R(s) = s — P(s). Since no
component of the ramification sequence of z is divisible by p, we obtain
Since ¢; is of the form (4.2), for any series s € k{(t?)), P(¢;s) = ¢;(P(s)). Applying this
to (4.3), we obtain

LE(z — ¢;j0i8) = LE(z — ¢;P(0:f)).
Of all the conjugates ¢,(P(0;3)) of P(0;5) over F, choose «; to be the one that agrees with
z to the highest order. Note that H§:1(y — ¢ja;) must be of the form m,,(¢,y)% where
Mg, (t,y) is the minimal polynomial of a; over k((¢t7')) and ¢; € N. Since a; is a Puiseux

series such that no element of its support is divisible by p, we have reduced the problem to
Case 1, and the proof is complete. O

Now, we define a sequence of rational numbers that give the minimal possible value of an
image of a polynomial of degree d under the map LFE o .

Definition 4.6. For each natural number d,
Aa = min{LE(f(t,2)) | f € k[z,y]" and deg,(f(z,y)) = d}.
Lemma 4.7. Let k be a perfect field. For any positive integer d,

(4.4) \i = LE <ﬂ fi(t, z)df>

j=1
where w s a positive integer, the exponent d; is nonnegative, and f; is the minimal polynomial

of Zigfl cit® over k(t). Moreover, d =) d;deg,(f;(z,y)).

Proof. By the definition of Ay, there exists p(x,y) € k[z,y] such that deg, (p(z,y)) = d and
LE(p(t,z)) = A\g. By Proposition 4.5, there exists h(z,y) such that \y = LE(p(t,2)) >
LE(h(t,2)), deg,(h(z,y)) = d, and h(t,y) has finite Puiseux series as roots. Thus, by the
definition of Ay, A\q = LE(h(t, 2)). Since h(x,y) is a product of minimal polynomials of finite
Puiseux series, we can write h as h(t, z) = H;f;l f;(t,2)%, where w is a positive integer, and
for each 1 < j < w, the exponent d; is nonnegative, and f; is the minimal polynomial of
Zl.(ji_l cit® over k(t). O

1=

Using this lemma, we can produce a unique representation for each )\, in terms of the
monoid generating sequence.

Proposition 4.8. Let k be a perfect field. For any positive integer d, Ay can be uniquely
expressed in the form

(45) )\d - Zdjpj,
j=1

where w is a positive integer, and for each 1 < j < w, we have
(46) 0< dj < 8;.
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In this case,

d
d= Z djrl(jfl)'
j=1

Proof. By Lemma 4.7, there exists h(x,y) € k[z,y] such that \y = LE(h(t, 2)), deg,(h(z,y)) =

d, and
= Hf](ta Z)d]7
j=1

where w is a positive integer, and for each 1 < j < w, the exponent d; is nonnegative, and
f; is the minimal polynomial of Zi(:]i_l c;it® over k(t). By Lemma 4.4, deg, f;(z,y) = 7(j)-1
and LE(f;(t,z)) = p;, and so

A= LE <H fj(t,z)df) Zd LE(f;(t,2) Zd]p]
j=1
and

d = deg, h( Zd deg, fi(z,y) Zd Ti(j)—1 = Zdjﬁ(j—l)-
j=1

7j=1
Next we show that each d; satisfies the bounds given by (4.6). Suppose for contradiction,
for some k, d, > s, =1, k)/rl k—1)- Define

d; +1 if j =Fk+1;
Dj: dj—Sj lf]:k,
d; otherwise.

Using this in conjunction with the recurrence relation given in Lemma 3.3, we obtain

> dip; = Dip; = (di — Di)pi + (dir — Disr) P
j=1 =1

SkPk — P41
€l(k) — Cl(k+1)»

and so
Z djrii—1) — Z Djryj—1y = (dg — Dy)rige—1) + (dey1 — Dig1) i)
— —
SET1(k—1) — Ti(k)
= 0.
These equations in conjunction with Lemma 4.4 yield

LE (H fj(th)Dj> - ZDij Zdjp] Cilk) T €ik+1) < Zd]pj = LE(h)
i=1 j=1

7=1
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and

deg <H fj<t,z>Df) ZD deg(f;) ZD rig—y = Y _ djrig-1y = deg(h).
j=1

j=1

However, LE(h) = A4, and so we have contradicted the minimality of LE(h). Thus 0 <
d; < sj for each 1 < j < w, and so we have proved the bounds given by (4.6).

Finally, we demonstrate that the expression for A; in (4.5) is uniquely determined. Suppose
we are given two representations for Ay:

A=Y dip; = dip;
j=1 j=1

where 0 < d;,dj < s;. If we define A; = d; — dj, then Y 77 Ajp; = 0 and |A;] < s;.
Multiply the expression by ry,—1), and we see

w—1
(Z T’Z(w—nAg‘Pj) + Tw—1)Dwpw = 0.

j=1

However, ry,-1)A;p; € Z for j < w — 1, and s0 7yp—1)Awpw € Z. Now write py, as Cy/Ti(w)

where ¢,, € N. Then 7y(y—1)AwCu/Tiw) € Z, and so s, = ™ l(m | A,y Since s, and ¢,
are relatively prime by Lemma 3.7, s, | A,. However, |A, | < sw, and so A, = 0. Thus,
Zw ! Ajp; = 0. Repeating this argument, we find A,y = A9 = --- = Ay =0, and so
d—d’foralllgjgw. O

The idea that each \; has a unique representation can be extended further. In fact,
there is a natural bijective correspondence between representations of natural numbers and
representations of terms of the form \;. First, we state the following simple lemma without
proof.

Lemma 4.9. Let by, by, by, b3, ... be a sequence of positive integers such that by = 1,b;11 > b;
and b; | bit1 for all i. Then every positive integer n € N has a unique representation of the

form
d=">_dib,
=0

where w is a positive integer, d, # 0, and 0 < d; < b;41/b;.

For example, if b; = 107, then this says that every positive integer has a unique base 10
representation. Using this lemma, we produce a method for quickly computing A,.

Proposition 4.10. Let k be a perfect field. Given a positive integer w and 0 < d; < s; for

each 1 < j <w,
d= Z djT'l(jfl) S A= Z djpj.
j=1 j=1
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Proof. The reverse implication follows directly from Proposition 4.8. For the forward im-
plication, suppose we are given d = Zw d;r - 1) where 0 < d; < s;. By Proposition 4.8,
Ag is of the form A\g = > 77, dp; where d = Z =1 djmi(j-1). By the uniqueness promised by
Lemma 4.9, w = w’ and d; = dj for all 1 < j <w. Thus \y = Z;: d;p;. O

5. CONSTRUCTION OF THE VALUE MONOID

The goal of this section is to describe the value monoid A explicitly in terms of the
sequences {\;}ieny and {p;}ien. Throughout the remainder, in addition to Convention 3.1,
we assume that k is a perfect field and {\;};en is given by Definition 4.6. We begin by
showing that {\;};en is an increasing sequence.

Lemma 5.1. The sequence Ao, A1, Aa, ... is increasing.

Proof. We will show that A\;.1 > Ay for all d. By Proposition 4.8, we can write \y =
> i1 djpj where 0 < d; < s; and

w
d= Z djrl(j—l)-
j=1

We now consider different cases, depending on the size of the coefficients d;.

Case 1:  First we consider the case d; = s; — 1 for all j. Then d = > 7", (s; — 1)r(j—1), and
so by Lemma 3.4, d+1 = ry,). Thus by Pr0p081t10n 4.10, Agi1 = puwy1 and Ay = Z djp],
and so by Lemma 3.5, Agy1 — Aa = pur1 — ;1 (85 — 1)pj = €igwyr) > 0.

Case 2:  Consider the case d; < s1—1. Now d+1 = (dy + 1)7(g) +Z§J:2 d;ryj-1), and so by
Proposition 4.10, Agy1 = (d1+1)py —1—2?’:2 dipj. Thus Agp1 —Ag = (d1+1)p1 —dipr = p1 > 0.

Case 3: Finally we consider the case where there exists an index v > 1 such that d, < s,—1
and for j < v, d; = s; — 1. Write Ay as A\g = > 7 H(s; — D)p; + iy djpj. By Proposition

410, d = 3071 (s; — Dryg-1) + 2o, dyrigj—1), and so by Lemma 3.4,

d+1_1+z Tl] 1+Zdrlj 1) = Ti(v— 1+Zdrlj 1)_(d+]—)rlv 1+Z drl]l

Jj=v Jj=v j=v+1
Therefore, by Proposition 4.10, Ag1 = (dy + 1)py + 351,11 djpj, and 50 Agy1 — Ag = (dy +

w v—1 v—1
D)py + Zj:v+1 djp; — (Z; (85— )p;j + ZJ _, dipj) = po — ZJ 1 (85 —1)p;. By Lemma 3.5,
this is simply €;(v), which is positive. O

Given a submonoid M of a commutative monoid N, we define an equivalence relation on
N by setting ny ~js ng if and only if there exist mq, my € M such that m; +ny = mo + ns.
Denote by N/M the collection of all equivalence classes under this relation, and define a
quotient map 7 from N to N/M that sends n to the equivalence class containing n. The set
N/M has an additive monoid structure where we define 7(n;) + m(ng) = m(ny + na).
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Given a polynomial f(z,y) € k[z,y], we define deg,(f(z,y)) to be the smallest d > 0 such
that f(z,y) € klz]y* + klz]y®' + - - - + k[z]y + k[z], and we denote

(5.1) Aa(z) ={LE(f(t,2)) | f € klz,y]" and deg,(f(z,y)) < d}.

Using this notation, we show that any pair of terms of the sequence {\; };cn are inequivalent
modulo Z.

Proposition 5.2. For all i # k, \; o7 Ag.

Proof. Suppose \; ~z Ap. By Proposition 4.8, for some positive integer w we can write
\i = Z;'U:1 djp; and Ay = Z;.”:l d;p; where 0 < dj, d; < s;. For each 1 < j < w, we write
pj = ¢j/Ti;), where ¢; and s; are relatively prime, as promised by Lemma 3.7.

If we define Aj = d; — dj, then |A;] < s; = ry(5)/rij—1) and N — \p = Z;”Zl Ajp; ~z 0.

Multiply the expression by r;,—1) to obtain

w—1
(5.2) (Z Tl(w—l)Ajp]) + Tl(w—l)Awa ~z 0.
j=1
However, ry,—1)A;p; € Z for j < w—1since p; € (1/ryj))Z, and so by (5.2), 7i(w—1)DwCuw/T1(w)
Tiw-1)Dwpw € Z. That is, Aycw/Sw = Tiw-1)DwCu/Tiw) € Z, and so sy | Aycy. Since
sy and ¢, are relatively prime, s, | A,. However, |A,| < s, and so A, = 0. Thus,
Z;:ll A;p; ~z 0. Repeating this argument, we find A,,_; = A, =--- = A; =0, and so
Ai = A\g. By Lemma 5.1, 7 = k.

O

We quote the following result from [MoSw2].

Theorem 5.3. For every positive integer n, the quotient Ay/Ag has cardinality one greater
than that of Ag_1/M\o, or equivalently, Ay/Ag has cardinality d + 1.

Using this theorem in conjunction with Proposition 5.2, we compute the quotient Ay/Ay.
Corollary 5.4. The quotient Ay/ Ao consists precisely of the images of Ao, ..., Mg

Proof. Since \g, ..., \q € Ay, we know by Proposition 5.2 that the images of Ay, ..., \; are
distinct in Ag/Ag. By Theorem 5.3, these images constitute the entire quotient Ay/Ag. O

For each m € A, we make the following definition:
(5.3) A(m) =min{r € A | r ~z m}.
The next two results allow us to relate terms of the sequence {\; };en with elements in the
image of the map A : A — A.
Proposition 5.5. For all i € N, there exists m € A such that \; = A\(m).

Proof. We prove the following equivalent statement: for all i € N,m € A, if m ~z A;, then
Ai <m. Let i € N, m € A such that m ~z ;. Let j be the smallest index such that m € A;.
Suppose, for contradiction, j < i. Since the image of m must lie in the quotient A;/Ay, by
Corollary 5.4 it follows that m ~z A; for some t < j < i. Thus, \; ~z A, which contradicts
Proposition 5.2. Therefore, 7 > 4, and so by Lemma 5.1, m > \; > A,. U
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Proposition 5.6. For all m € A, there exists i € N such that \; = A\(m).
Proof. Let m € A. Now m € A; for some j € N, and so by Corollary 5.4, m ~z \; for some

i € N. By Proposition 5.5, A; = A(m’) for some m’ € A. Thus \; ~z m ~z m/, and so
Ai = A(m) = A(m). O

We are now in a position to decompose the value monoid as a disjoint union of cosets of
N.

Theorem 5.7. If the exponent sequence of z € k{{t®)) is strictly positive, then the value
monotd is the disjoint union

A= [OJ(N + Aa).
d=0

Proof. Given m € A, there exists an index d such that Ay = A(m) by Proposition 5.6.
Therefore, m — Ay € N, and so m € N 4+ \;. The reverse containment follows directly from
the fact that Ay € A. The sets are disjoint due to Proposition 5.2. U

Combining Theorem 5.7 and Proposition 4.8, we obtain the following.

Theorem 5.8. Fach element m € A has a unique representation of the form
(5.4) m :n+2djpj,
j=1

where n € N and for each 1 < j <w, 0 <d; < s;.

A weaker form of this theorem was stated earlier as Theorem 2.6.

6. ALGORITHMS

In this section, we develop algorithms to make computations involving the value monoid
A. It was shown in [M] that A is well-ordered, and so LE o ¢, is suitable relative to k[x] as
described in Definition 1.1, and we can use LFE o ¢, in the algorithms described in Section 1.
Throughout this section we refer to the composite maps LE o ¢, and LC' o ¢, as LF, and
LC,, respectively.

To begin, given a rational number m € Q, we would like to decide whether m € A, and
in case it is, express it in terms of the generators 1, p1, pa,.... To accomplish this, we first
prove a lemma.

Definition 6.1. For each i € N, define

sz{n—i—Zdij ‘,HEN,OSCZ]' <Sj}.

j=1
Lemma 6.2.
AﬂZ'{LPhP%PSw-wPi} :Q’L



20 EDWARD MOSTEIG

Proof. The containment ‘O’ being obvious, we only consider the case ‘C’. Let m € ANZ-
{1, p1, p2, p3, - - -, pi}. By Theorem 5.7, there is a unique pair n,d € N such that m = n+ A,.
Thus A\g € Z - {1, p1,p2, ..., pi}, and so by Lemma 3.6, A\q € (1/7:))Z

By Theorem 5.8, there exists a smallest £ € N such that A\; € Q. Suppose, for contradic-
tion, that £ > 4. Then by Lemma 3.8, \g € (1/r))Z — (1/r10-1))Z C (1/7ry))Z — (1/715)) Z
which contradicts our assertion that A; € (1/ry;))Z. Therefore, i = k, and so A\ €
N'{Lpla"'api}' O

We have the following corollary.
Corollary 6.3. The set €); is closed under addition.

Given a positive rational number m, write m as a/b where a, b are relatively prime positive
integers. If m € N, then it is automatically in A, and so we can assume that b > 1. Our
goal is to decide using modular arithmetic whether it is possible that m € A. First, find the
smallest ¢ such that b | ;). The set of all Z-linear combinations of 1, p1, ..., p;—1 is precisely
the set - 1 >Z. Since b does not divide 7;_1), it cannot possibly be an N-linear combination

i—

of 1,p1,...,pi—1. Now suppose m is a Z-linear combination of 1, pi,...,p; where j > .
However, since b | 7;(;), it follows that m € (1/ry;)Z =Z-{1,p1,...,p;}. If m € A, then by
Lemma 6.2, there exist n,d;,...,d; € N such that

m = n—l—Zd]p]
j=1

where 0 < d; < s for 1 < j < ¢ and d; # 0. From this discussion, we have the following
algorithm.

Algorithm 6.4. Let m be a positive rational number. The following algorithm determines
whether m € A. If m € A, then the algorithm produces a decomposition of m as a linear
combination of 1, py,..., p;. Set p; = ¢;/ri).
(1) Write m as a/b where a, b are relatively prime, positive integers.
(2) Define i to be the smallest index such that b | ;).
(3) Define m® = m.
(4) Try to solve the congruence ¢;d; = 7; mod s; for d; where 0 < d; < s;. If there
are no solutions, then m ¢ A.
(5) For j = i—1,i—2,...,1, define m¥) = mU*Y) —d;,1p;.; and try to solve the
congruence c;d; = r; mod s; for d; where 0 < d; < s;. If any of the congruences
fail to yield a solution then m ¢ A.
(6) Define n =mY —dyp;. Thenm—n—i—z dip;. It n ¢ N, then m ¢ A. If n € A,
then we have a decomp081t10n of the desu"ed form

Once we have a test for whether a rational number is in the value monoid, we need to
be able to determine one of its preimages under the valuation. The following algorithm
accomplishes this task.

Algorithm 6.5. Let m € A. This algorithm constructs p(z,y) € k[x, y] such that LE. (p(z,y)) =

m.
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(1) Using Algorithm 6.4, write m = n + 23:1 dip;.
(2) For each 1 < j <, use Proposition 4.2 to compute p;(z, y), the minimal polynomial
of ZZ(Z cjz® over k(z,y).
(3) Define p(z,y) = 2™ HJ Pi(z,y)%. By Lemma 4.4, LE,(p(z,y)) = m.
The following algorithm describes how to perform division in k[x, y] relative to LE..

Algorithm 6.6. Let f, g € k[x|. This algorithm constructs h € k[z,y| such that LFE,(f —
gh) < LE,(f) provided that such an h exists.
(1) Compute m = LE,(f) — LE.(g).
(2) Use Algorithm 6.4 to determine whether m € A. If m ¢ A, then h does not exist.
(2) Using Algorithm 6.5, find p(x,y) € k[z,y| such that LE,(p) = m.
(3) Define h(z,y) = (LC.(f)/LC.(g9p))p(z,y). Then LC.(f) = LC,(gh), and since
LE.(f)=LE.(gh), it follows that LE.(f — gh) < LE.(f).

To compute syzygy families, we first need the following lemma.

Lemma 6.7. Let M be a monoid such that Z C M C Q, and let q be an element of
the quotient group of M (i.e., the set of differences of elements of M ). Then for n > 0,
qg+neM.

We now prove that the intersection of principal ideals in A, both generated by elements
of £;, must be finitely generated by elements of €;.

Lemma 6.8. Given f,g € k[x]" such that LE.(f),LE.(g) € Q;, there exists a finite subset
of Q; that generates (CE.(f)) N (LE.(g)).

Proof. By Lemma 6.7, for each element o of {2;, there exists a minimal 71, € Z such that
o—LE.(f)+n,,0—LE.(9)+n, € A; that is, c+n, € (LE,(f))N(LE,(g)). Define T; to be
the finite collection {o +1n, | o € Q;}. We will show that T; generates (LE.(f))N(LE.(g)).

Let m € (LE.(f)) N(LE.(g9)). By Theorem 5.8, A = [J;Z,€;, and so for some index
I, there exist af, o € €y such that m = LE,(f) + af = LE,.(9) + a,. Write oy as
o —i-zj _ii1dip; and oy as o +2j _i+1d;p; where ocf,a € Q and 0 < d;,d; < s5. By
Corollary 6.3, LE.(f)+a, EE (9) +a; € ;. By the uniqueness of representation promised
by Theorem 5.8, since m = (LE.(f) + o) + ZJI.:Z-H dip; = (LE.(g9) + ap) + E] _ir1 4pj,
we have d; = d; for i + 1 < j < I. Thus LE.(f) + o, = LE.(g) + aj. So by Theorem 5.8,
m' = LE.(f) +a} = LE.(9) +a, =n+ 23:1 d;p;j, where n € N and 0 < §; < s;. Define
o= Z;:l d;p;, and let n, be the smallest n, € Z such that o +n, € (LE.(f)) N (LE.(g9)).
Since m' = o +n € (LE,(f)) N <£E (g )>, it follows that n > n,. Thus m' = (n — n,) +
(0 +ny,) € N+ Ty, and so m = m’ +Z] _in1dip; = (n—ng) + (0 4+ ny) +Z§:i+1djpj €
N+7T,+A=7T,+A. O

The following algorithm uses the lemma above to produce a syzygy family for a pair of
polynomials.

Algorithm 6.9. Let f,g € k[z,y|. This algorithm will produce my, ..., m; € A such that
(LE.(f)) N (LE.(g9)) = (m1,...,myg). In addition a;,b; € k[x] will be produced such that
LE,(a;f —bjg) <m; foreach 1 < j </
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(1) Using Algorithm 6.4, write LE.(f) =n+ 37, djp; and LE.(g9) = n' + ZJ Vdip
where n,n' € N and 0 < d;, d; < s;.

(2) Let 01,..., 00 be the elements of {Z d;jp; | 0 <dj <s;}. Foreach 1 <t </, find
a minimal n; such that oy — LE,(f) + nt, oy — LE.(9) +n € A. To accomplish this,
begin with n = 0 and keep incrementing n, until oy —LE,(f)+n, 0.—LE,(g)+n, € A
by Algorithm 6.4.

(3) For each t, define m; = n; + n;. By Lemma 6.8, {m,...,m,} generates (LE,(f)) N
(LE.(9))-

Below is an example of a generalized Grobner basis with respect to a valuation that is not
a Grobner basis with respect to any monomial order.

Example 6.10. Let k be a field that is not of characteristic two. Define f; = y* — x and
fo = xy. Then one can check that the set B = {f1, fo} is a Grobner basis for the ideal
I = {f1, f) with respect to the valuation induced by z = t'/2 4+ ¢1/4 4 #1/8 1 1/16 1 ... ysing
Algorithm 1.7.

We now demonstrate that B is not a Grobner basis with respect to any monomial order.
Suppose, for contradiction, that B is a Grobner basis with respect to some monomial order
‘<’. Note that 2%, 3® € I since 2% = yf, — xf; and ¥ = yf; + fo. We consider two cases,
depending on whether x > y? or v < y?. If z < y?, then 1t(f;) = y* and 1t(fy) = xy. However,
x? € I, and so if B were a Grobner basis with respect to ‘<’, then either y? | 22 or zy | 22,
a contradiction. Now suppose x > y?, in which case 1t(f;) = = and 1t(f,) = zy. However,
y® € I, and so if B were a Grobner basis, then either z | y3 or zy | 3, a contradiction.

Lastly, we note by example that some ideals do not have finite Grobner bases with respect
to a given valuation. We first prove a short lemma.

Lemma 6.11. The sequence pg, p1, p2, ... 1S increasing.

Proof. Since s; > 1 for each index j, by Lemma 3.5, p; = Z; 11( —1)pj + ey > ZJ 1P+
ey > Pi-1-

Example 6.12. Consider the ideal (x,y) of k[x, y], and let G be a Grobner basis with respect
to the series z € k((t?)). For each p;, let p;(x,y) € klx,y] such that LE.(p;) = p;. Since
G is a Grobner basis, there exists g; € G such that LF,(g;) | LE,.(p;). That is, for some
h; € k[z,y], LE.(g;h;) = p;. Since GNk =0, LE.(g;) > 0, and so LE(h;) < p;. Suppose,
for contradiction, LE (g:) # pi- Then LE.(g;) < pi, and so by Theorem 5.8 and Lemma 6.11,
LE.(g;) = n+z djp; and LE,(h;) = n'+3'_) dip;. Thus, p; = LE.(g:ihi) € (1/ri-1))Z,

J=1"
which contradlcts Lemma 3.6. Therefore, LE.(g;) = p;, and thus G is infinite.
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