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VALUE MONOIDS OF ZERO-DIMENSIONAL VALUATIONS OF RANK
ONE

EDWARD MOSTEIG

Abstract. Classically, Gröbner bases are computed by first prescribing a set monomial
order. Moss Sweedler suggested an alternative and developed a framework to perform such
computations by using valuation rings in place of monomial orders. We build on these ideas
by providing a class of valuations on k(x, y) that are suitable for this framework. For these
valuations, we compute ν(k[x, y]∗) and use this to perform computations concerning ideals
in the polynomial ring k[x, y]. Interestingly, for these valuations, some ideals have a finite
Gröbner basis with respect to the valuation that is not a Gröbner basis with respect to any
monomial order, whereas other ideals only have Gröbner bases that are infinite with respect
to the valuation.

1. Introduction

Unless stated otherwise, k will denote an arbitrary field, and N will denote the set of
nonnegative integers. Whenever R is a ring or monoid, we denote by R∗ the nonzero elements
of R.

One of the fundamental ideas of the theory of Gröbner bases is that monomial orders are
well-orderings on the set of monomials, which leads us to a natural reduction process using
multivariate polynomial division. In this section, we provide a brief account of a generalized
theory of Gröbner bases that uses valuations in place of monomial orders, which will yield
a more general reduction process. The development of this theory can be found in the
unpublished manuscript [Sw] of Sweedler, and it is briefly discussed in this section solely
for the sake of completeness. In that manuscript, Sweedler develops the theory in terms of
valuation rings. Here we present the same results in terms of valuations rather than valuation
rings. Proofs are omitted since they can all be found in [Sw].

Suppose k is a subfield of a field F . A valuation on F is a homomorphism ν from the
additive group of nonzero elements of F to an ordered group (called the value group) such
that for f, g ∈ F ∗ where f + g 6= 0, ν(f + g) ≤ max{ν(f), ν(g)}. Note that the triangle
inequality was chosen to be opposite of the most common definition, which is so that our
results most closely coincide with those concerning monomial orders. For more details, see
[MoSw1], [MoSw2], and [M]. A valuation on F over k is a valuation on F such that its
restriction to k∗ is the zero map. For our purposes, we restrict our attention to valuations
on rational function fields. In this setting, we require that our valuations have the additional
properties given in the following definition.

Definition 1.1. We say that a valuation ν on k(x) over k is suitable relative to k[x] if
satisfies the following three properties.

(i) For all f ∈ k[x], ν(f) = 0 iff f ∈ k.
1
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(ii) If ν(f) = ν(g) where f, g ∈ k(x)∗, then ∃!λ ∈ k∗ such that f = λg or ν(f − λg) <
ν(f).

(iii) ν(k[x]∗) is a well-ordered monoid.

When using monomial orders, one must determine divisibility among monomials. The
analogue for valuations uses arithmetic in the monoid ν(k[x]∗).

Definition 1.2. Let ν be a valuation on k(x). Given f, g ∈ k[x], we say that ν(g) divides
ν(f), denoted ν(g) | ν(f), if there exists h ∈ k[x] such that ν(f) = ν(gh). We say that
h is an approximate quotient of f by g (relative to ν), if f = gh, or if f 6= gh and
ν(f − gh) < ν(f).

The following simple proposition follows from the definition above.

Proposition 1.3. Let ν be a valuation on k(x) over k that is suitable relative to k[x]. Let
f, g ∈ k[x]. Then ν(g) divides ν(f) if and only if there exists an approximate quotient h of
f by g.

The following is a generalized form of the standard polynomial reduction algorithm that
makes use of valuations.

Algorithm 1.4. Let ν be a valuation on k(x) over k that is suitable relative to k[x]. Let
ν be a valuation on k(x) over k. Let I be an ideal in k[x] and G be a generating set for I.
The following algorithm computes a reduction of a polynomial a ∈ k[x] over G relative to ν.

• Set i = 0 and f0 = f .
• While fi 6= 0 and ν(g) | ν(fi) for some g ∈ G do:

Choose gi ∈ G such that ν(gi) | ν(fi). Let hi be an an approximate quotient of
fi by gi. Set fi+1 = fi − gihi. Increment i by 1.

We say that fn is the nth reductum of f over G. We say that f reduces to b if b is a
reductum of f . It can be shown that if ν is suitable with respect to k[x], then reduction of
any element of k[x] over G terminates after a finite number of steps. We will call a subset
G ⊂ I∗ a Gröbner basis for I with respect to ν if it satisfies the equivalent conditions
of the following proposition.

Proposition 1.5. Let ν be a valuation on k(x) over k that is suitable relative to k[x]. Let
I be an ideal in k[x] and G ⊆ I∗. The following are equivalent:

(i) Every nonzero element of I has a first reductum over G.
(ii) Every element of I reduces to 0 over G.
(iii) Given f ∈ k[x], f ∈ I if and only if f reduces to 0 over G.

We can use Gröbner bases in the generalized setting to solve the ideal membership problem
in much the same way that we do in the case of monomial orders. Just as in the classical
case, it can be shown that a Gröbner basis with respect to a valuation necessarily generates
the given ideal. To compute Gröbner bases, we must work with ideals of ν(k[x]∗), where an
ideal J of a commutative monoid M is a subset J ⊂ M such that for any m ∈ M, j ∈ j,
j + m ∈ J . The smallest ideal containing m1, . . . ,m` will be denoted 〈m1, . . . ,m`〉 and is
called the ideal generated by m1, . . . ,m`
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Definition 1.6. Let ν be a valuation on k(x) over k that is suitable relative to k[x]. We
say that T ⊆ ν(k[x]∗) is an ideal generating set for f and g with respect to ν if T
generates the ideal 〈ν(f)〉 ∩ 〈ν(g)〉 in ν(k[x]∗). It can be shown that for each t ∈ T there are
a, b ∈ k[x]∗ such that ν(af) = ν(bg) = t and af = bg or af 6= bg and ν(af − bg) < t. This
gives a map T → k[x], t 7→ af − bg. The image of this map is a syzygy family for f and
g indexed by T . We say that af − bg is the element of the family corresponding to t.

This definition shows one of the main differences between the generalized theory using
valuations and the classical theory using monomial orders, namely, that each pair of polyno-
mials may have many minimal syzygies. Sweedler constructs an example in [Sw] where this
family consists of multiple elements. Using syzygy families, the algorithm below provides a
method for constructing a Gröbner basis for an nonzero ideal I with generating set G.

Algorithm 1.7 (Gröbner Basis Construction Algorithm). Let ν be a valuation on k(x) over
k that is suitable relative to k[x], and G ⊆ I∗ is a generating set for a nonzero ideal I.

(i) Set G0 = G.
(ii) For each pair of distinct elements g, h ∈ G, find a monoid generating set T 0

g,h for g, h

and a syzygy family S0
g,h for g, h indexed by T 0

g,h. Define U =
⋃

g 6=h∈G S
0
g,h.

(iii) Determine the set Hi of nonzero final reductums that occur from reducing the le-
ments of Ui over Gi.

(iv) If Hi is empty, stop.
(v) Define Gi+1 = Gi ∪Hi.
(vi) For each pair of distinct element g ∈ Gi+1, h ∈ Hi, find a monoid generating set T i+1

g,h

for g, h and a syzygy family Si+1
g,h for g, h indexed by T i+1

g,h . Define U =
⋃

g 6=h∈G S
i+1
g,h .

(vii) Increment i by 1 and go to step (iii).

Sweedler shows that if G is finite and ν(I∗) is Noetherian (i.e., every ascending chain of
ideals stabilizes), then the construction algorithm can be completed so that it terminates
with a finite Gröbner basis. However, even if ν(I∗) isn’t Noetherian, the set ∪∞n=1Gn is a
Gröbner basis.

These algorithms will allow us to compute Gröbner bases using a class of valuations on
k(x, y) originally studied by Zariski in [Z]. In Section 2, we develop the background necessary
to work with a valuation ν of this type, and we state one of the main results of the paper,
which is an explicit formula for ν(k[x, y]∗). In Section 3, we prove some intermediate results
concerning sequences associated with the valuations developed in Section 2. In particular,
recursive formulas are given for a generating set of ν(k[x, y]∗). In Section 4, we build on
these ideas to show that certain elements of ν(k[x, y]∗) have unique representations, which
leads to a complete description of ν(k[x, y]∗) in Section 5. Finally, in Section 6, we use this
description to make the algorithms developed by Sweedler constructive. With the exception
of Section 4, all of the proofs herein are fairly elementary.

2. Value Groups and Monoids from Power Series

In this section, we examine a class of valuations of k(x, y) studied by Zariski in [Z]. The
value groups of these valuations were explicitly constructed by MacLane and Schilling in
[MacSch]. In this section, we state one of our main results, which is an explicit construction
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of the restriction of such valuations to the underlying polynomial ring k[x, y]. Since the
valuations of interest are constructed using generalized power series, we begin with a review
of the relevant concepts.

We say that a set T ⊂ Q is Noetherian if every subset of T has a largest element. Given
a function z : Q → k, the support of z is defined by Supp(z) = {q ∈ Q | z(q) 6= 0}. The
collection of Noetherian power series, denoted by k〈〈tQ〉〉, consists of all functions from
Q to k with Noetherian support. More commonly in the literature, generalized power series
are defined as functions with well-ordered support, and we will freely use the analogues of
these results for Noetherian power series. We choose the supports of our series to be opposite
of the usual definition so that our results more closely fit with the theory of monomial orders
and Gröbner bases.

As demonstrated in [H], the collection of Noetherian power series forms a field in which
addition is defined pointwise and multiplication is defined via convolution; i.e., if z1, z2 ∈
k〈〈tQ〉〉 and q ∈ Q, then (z1 + z2)(q) = z1(q) + z2(q) and (z1z2)(q) =

∑
u+v=q z1(u)z2(v). We

often write power series as formal sums: z =
∑

s∈Supp(z) z(s)t
s, where z(s) denotes the image

of s under z.

Example 2.1. Given the series z1 = t1/2 + t1/4 + t1/8 + · · · and z2 = 3t+ 1, their sum and
product are

z1 + z2 = 3t+ (t1/2 + t1/4 + t1/8 + · · · ) + 1

and

z1z2 = (3t3/2 + 3t5/4 + 3t9/8 + · · · ) + (t1/2 + t1/4 + t1/8 + · · · ).

Given a series z ∈ k〈〈tQ〉〉, define the leading exponent of z to be the rational number
given by LE(z) = max{s | s ∈ Supp(z)}. If s = LE(z), we denote z(s) by LC(z) and call
it the leading coefficient of z. Note that LE(z1z2) = LE(z1) + LE(z2) and LC(z1z2) =
LC(z1)LC(z2). Moreover, we have LE(z1 + z2) ≤ max(LE(z1),LE(z2)), with equality
holding in case LE(z1) 6= LE(z2).

We say that a nonzero series z ∈ k〈〈tQ〉〉 is simple if it can be written in the form

z =
n∑

i=1

cit
ei ,

where ci ∈ k∗, n ∈ N∗ ∪ {∞}, ei ∈ Q, ei > ei+1. Whenever we write a series in this form,
we implicitly assume that each ci is nonzero and the exponents are written in descending
order. We call e = (e1, e2, . . . ) the exponent sequence of z. Now write ei = ni/di where
di > 0 and gcd(ni, di) = 1. We define r0 = 1 and for i ≥ 1, set ri = lcm(d1, . . . , di) and call
r = (r0, r1, r2, . . . ) the ramification sequence of z.

Example 2.2. Consider the simple series

z = 2t1/2 + 3t1/3 + 4t1/4 + 5t1/5 + · · · .

Here LE(z) = 1/2 and LC(z) = 2. The series z has exponent sequence (1/2, 1/3, 1/4, 1/5, · · · )
and ramification sequence (1, 2, 6, 12, 60, · · · ).
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We are now in a position to define valuations on k(x, y) based on Noetherian power series.
Let z ∈ k〈〈tQ〉〉 be a Noetherian power series such that t and z are algebraically independent
over k. Consider the embedding ϕz : k(x, y) → k〈〈tQ〉〉, x 7→ t, y 7→ z. It can be shown
that LE is a valuation on k〈〈tQ〉〉, and hence the composite map LE ◦ ϕz : k(x, y) → Q
is a valuation on k(x, y). Given a valuation ν on k(x), V = {f ∈ k(x)∗ | ν(f) ≤ 0} is a
valuation ring with maximal ideal m = {f ∈ k(x)∗ | ν(f) < 0}, in which case dimk(V/m) is
the dimension of the valuation. The rank of the valuation ν is defined to be the number
of isolated subgroups of ν(k(x)∗). It follows that LE ◦ ϕz is a zero-dimensional valuation of
rank one.

Example 2.3. Let k be a field such that char k 6= 2. Given z = t1/2 + t1/4 + t1/8 + · · · ,
(LE ◦ ϕz)(x) = LE(t) = 1

(LE ◦ ϕz)(y) = LE(z) = 1/2

(LE ◦ ϕz)(y
2 − x) = LE(z2 − t) = LE(((t+ 2t3/4 + 2t5/8 + · · · )− t) = 3/4

MacLane and Schilling proved the following result in [MacSch]:

Theorem 2.4. Let z ∈ k〈〈tQ〉〉 be a simple series such that t and z are algebraically inde-
pendent over k. If e is the exponent sequence of z, then the value group of LE ◦ ϕz is

(LE ◦ ϕz)(k(x, y)
∗) = Z + Ze1 + Ze2 + · · ·

One of the primary goals of this paper is to restrict the valuation to the polynomial ring
k[x, y] and compute

(2.1) Λ = (LE ◦ ϕz)(k[x, y]
∗) = {LE(f(t, z)) | f(x, y) ∈ k(x, y)∗},

which we call the value monoid with respect to z.
Now suppose z is a simple series with exponent sequence e and ramification sequence

r. The sequence obtained from the ramification sequence {ri}i∈N by removing repetitions
is called the reduced ramification sequence and is denoted {rred

i }i∈N. For each i ∈ N,
denote by l(i) the smallest natural number such that rred

i = rl(i); i.e.,

(2.2) l(i) = min{j ∈ N | rj = rred
i }.

Example 2.5. The series

z = t2 + t3/2 + t1/2 + t1/3 + t1/5 + t1/7 + t1/11 + · · ·
has ramification sequence

r = (1, 2, 2, 6, 30, 210, 2310, . . . ),

and hence has reduced ramification sequence

(1, 2, 6, 30, 210, 2310, . . . ).

Thus l(0) = 0, l(1) = 1, l(i) = i+ 1 for i ≥ 2.

We define the bounding sequence u = (u0, u1, u2, . . . ) given by u0 = 0, and for i ≥ 1,

(2.3) ui =
i−1∑
j=0

( ri

rj

− ri

rj+1

)
ej+1.
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For i ≥ 1, we define the monoid generating sequence:

ρi = ul(i)−1 + el(i).(2.4)

We can fully describe the value monoid with respect to z in terms of the monoid generating
sequence. The following result will be proved in Section 5 (in fact, it follows directly from
the stronger result given in Theorem 5.8).

Theorem 2.6. Let z ∈ k〈〈tQ〉〉 be a simple series such that t and z are algebraically inde-
pendent over k. Assume further that the components of the exponent sequence are positive
and no component is divisible by the characteristic of k. Then the value monoid with respect
to z is

Λ = (LE ◦ ϕz)(k[x, y]
∗) = N + Nρ1 + Nρ2 + · · ·

It is of interest to determine whether this result can be generalized. In particular, it would
be nice to compute the value monoid after either removing the restriction that the exponent
sequence must be positive or permitting some of the components of the exponent sequence
to be divisible by the characteristic of the the ground field.

3. Associated Sequences

In this section, we prove some elementary results about the sequences described in the
previous section. In particular, we will construct recurrence relations and formulas concern-
ing the monoid generating sequence. To this end, there is one more sequence that will be
needed in the sequel. Using the ramification sequence r of a simple series z and the formula
(2.2), we define partial ramification sequence by

si = rl(i)/rl(i−1) = rl(i)/rl(i)−1.

Convention 3.1. For the remainder of this paper, we adopt the following conven-
tions.

• The series z ∈ k〈〈tQ〉〉 is simple with positive support.
• The series z is transcendental over k(t).
• The value monoid of z is denoted Λ.
• The exponent sequence of z is denoted e = (e1, e2, e3, . . . ).
• No component of the exponent sequence is divisible by char k.
• The ramification sequence of z is denoted r = (r0, r1, r2, . . . ).
• The bounding sequence of z is denoted u = (u0, u1, u2, . . . ).
• The function l(i) is defined in (2.2).
• The monoid generating sequence of z is denoted ρ = (ρ1, ρ2, ρ3, . . . ).
• The partial ramification sequence of z is given by s = (s1, s2, s3, . . . ).

Since l(i) marks the index where the ramification index increases, we have rj = rl(i) for
l(i) ≤ j < l(i+ 1), and so

(3.1) rj/rj−1 = 1 for l(i) < j < l(i+ 1).

In particular, this yields

(3.2) rl(i−1) = rl(i)−1
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and

(3.3) ul(i−1) = ul(i)−1

despite the fact that el(i−1) and el(i)−1 need not be the same.
Note that the ramification sequence of a series z ∈ k〈〈tQ〉〉 increases without bound unless

z ∈ k((t1/n)) for some n ∈ N. However, it is still possible that the ramification sequence
occasionally (even infinitely many times) stabilizes for a finite number of steps. Whenever the
ramification sequence stabilizes for a number of indices, the sequence {ui}i∈N also stabilizes,
as seen in the next result.

Lemma 3.2. If ri = rk for indices i and k, then ui = uk.

Proof. The result is trivial if i = k, so we assume i < k. Since ri = rk, it follows that rj = rj+1

for i ≤ j ≤ k − 1, and so by (2.3), uk =
∑k−1

j=0

(
rk

rj
− rk

rj+1

)
ej+1 =

∑k−1
j=0

(
ri

rj
− ri

rj+1

)
ej+1 =

ui +
∑k−1

j=i

(
ri

rj
− ri

rj+1

)
ej+1 = ui. �

Since our main objective is to prove that Λ is generated by the sequence 1, ρ1, ρ2, . . . , we
must first justify some elementary properties that allow us to understand better the behavior
of this sequence. We begin by showing that the monoid generating sequence satisfies a simple
recursive relation.

Lemma 3.3. The monoid generating sequence in (2.4) satisfies the following recurrence
relation:

ρ1 = el(1);

ρi+1 = siρi − el(i) + el(i+1).

Proof. By (3.3), ul(1)−1 = ul(1−1) = u0 = 0, and so by (2.4), ρ1 = el(1). Also, we have by
(2.3),

um + em+1 =
m−1∑
j=0

(
rm

rj

− rm

rj+1

)
ej+1 + em+1

=

(
rm

rm−1

)m−2∑
j=0

(
rm−1

rj

− rm−1

rj+1

)
ej+1 +

(
rm

rm−1

− rm

rm

)
em + em+1

=

(
rm

rm−1

)m−2∑
j=0

(
rm−1

rj

− rm−1

rj+1

)
ej+1 +

(
rm

rm−1

)
em − em + em+1

=

(
rm

rm−1

)
[um−1 + em]− em + em+1,

and so

(3.4) γm+1 =

(
rm

rm−1

)
γm − em + em+1
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where γm := um−1 + em. Replacing m by l(i), we obtain

(3.5) γl(i)+1 =

(
rl(i)

rl(i)−1

)
γl(i) − el(i) + el(i)+1 = siγl(i) − el(i) + el(i)+1.

If l(i) < m < l(i+ 1), then rm/rm−1 = 1 by (3.1), and so (3.4) yields

γm+1 = γm − em + em+1.

Multiple applications of this formula yields a telescoping sum, and so

γl(i+1) = γl(i+1)−1 − el(i+1)−1 + el(i+1)

= (γl(i+1)−2 − el(i+1)−2 + el(i+1)−1)− el(i+1)−1 + el(i+1)

= γl(i+1)−2 − el(i+1)−2 + el(i+1)

...

= γl(i)+1 − el(i)+1 + el(i+1).

This equation in conjunction with (3.5) yields

γl(i+1) = γl(i)+1 − el(i)+1 + el(i+1)

= siγl(i) − el(i) + el(i)+1 − el(i)+1 + el(i+1)

= siγl(i) − el(i) + el(i+1),

and since ρi = ul(i)−1 + el(i) = γl(i) for all i, we have

ρi+1 = siρi − el(i) + el(i+1).

�

We can also construct a recursive formula for the terms of the ramification sequence, as
given in the next result.

Lemma 3.4. For i ∈ N,

rl(i) = 1 +
i∑

j=1

(sj − 1)rl(j−1).

Proof. This follows from the simple computation

i∑
j=1

(sj − 1)rl(j−1) =
i∑

j=1

((rl(j)/rl(j−1))− 1)rl(j−1) =
i∑

j=1

(rl(j) − rl(j−1)) = rl(i) − rl(0) = rl(i) − 1.

For the case i = 0, we take the summation
∑i

j=1(sj − 1)rl(j−1) to be 0. �

Using Lemma 3.3, we can construct yet another recurrence relation for the terms of the
monoid generating sequence.

Lemma 3.5. For i ≥ 1,

ρi =
i−1∑
j=i

(sj − 1)ρj + el(i).
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Proof. We proceed by induction. If i = 1, then by Lemma 3.3,

ρ1 = el(1) = 0 + el(1) =
0∑

j=1

(sj − 1)ρj + el(1)

since the summation that appears is empty. Now suppose the statement holds for the index
i. Then by Lemma 3.3 and the induction hypothesis,

ρi+1 −
i∑

j=1

(sj − 1)ρj = ρi+1 − (si − 1)ρi −
i−1∑
j=1

(sj − 1)ρj

= ρi+1 − (si − 1)ρi − (ρi − el(i))

= siρi − el(i) + el(i+1) − (si − 1)ρi − (ρi − el(i))

= el(i+1).

�

Using this lemma, we can extract information about the denominators of the components
of the monoid generating sequence, as shown in the next three results. Given q ∈ Q, qZ
denotes the set {qz | z ∈ Z}.

Lemma 3.6. For i ≥ 1, ρi ∈ (1/rl(i))Z− (1/rl(i−1))Z.

Proof. The result follows by a simple induction. Indeed, ρ1 = el(1) ∈ (1/rl(1))Z − Z =
(1/rl(1))Z − (1/rl(0))Z. Now, assuming that ρi ∈ (1/rl(i))Z, we see by Lemma 3.5, ρi+1 =∑i

j=1(sj − 1)ρj + el(i+1). Since ρj ∈ (1/rl(j))Z ⊂ (1/rl(i))Z for 1 ≤ j ≤ i, we have
∑i

j=1(sj −
1)ρj ∈ (1/rl(i))Z. Moreover, el(i+1) ∈ (1/rl(i+1))Z − (1/rl(i))Z, and so ρi+1 ∈ (1/rl(i+1))Z −
(1/rl(i))Z. �

Lemma 3.7. If we write ρi = ci/rl(i), then gcd(ci, si) = 1.

Proof. Rewrite the expression ρi = ci/rl(i) in lowest terms: ρi = αi/βi, αi, βi ∈ N∗ where
gcd(αi, βi) = 1. Then ci = αirl(i)/βi = αilcm(rl(i−1), βi)/βi = αirl(i−1)/gcd(rl(i−1), βi). Also
rl(i)/rl(i−1) = lcm(rl(i−1), βi)/rl(i−1) = βi/gcd(rl(i−1), βi). Therefore,

gcd(ci, rl(i)/rl(i−1)) = gcd(αirl(i−1)/gcd(rl(i−1), βi), βi/gcd(rl(i−1), βi)).

Since gcd(αi, βi) = 1 and gcd(rl(i−1)/gcd(rl(i−1), βi), βi/gcd(rl(i−1), βi)) = 1, we have gcd(ci, si) =
gcd(ci, rl(i)/rl(i−1)) = 1. �

Lemma 3.8. If 0 ≤ dj < sj for 1 ≤ j ≤ i and di 6= 0, then

(3.6)
i∑

j=1

djρj ∈ (1/rl(i))Z− (1/rl(i−1))Z.

Proof. For j ≤ i, we have by Lemma 3.6, ρj ∈ (1/rl(j))Z ⊂ (1/rl(i))Z, and so
∑i

j=1 djρj ∈
(1/rl(i))Z. We now must prove

∑i
j=1 djρj 6∈ (1/rl(i−1))Z by induction.

First, we show that djρj 6∈ (1/rl(j−1))Z whenever 0 < dj < sj. Write ρj = cj/rl(j).
Suppose, for contradiction, djρj = (djcj)/rl(j) ∈ (1/rl(j−1))Z where 0 < dj < sj. Thus,
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rl(j) | djcjrl(j−1). Now, sj = rl(j)/rl(j−1), and so sj | djcj. By Lemma 3.7, gcd(cj, sj) = 1, and
so sj | dj. Since 0 < dj < sj, we have a contradiction.

Now we proceed to show the inductive step. Suppose 0 ≤ dj < sj for 1 ≤ j ≤ i + 1 and
di+1 6= 0. We write

i+1∑
j=1

djρj =

(
i∑

j=1

djρj

)
+ di+1ρi+1.

By the induction hypothesis,
∑i

j=1 djρj ∈ (1/rl(i))Z. Now, di+1ρi+1 ∈ (1/rl(i+1))Z, and by

the previous paragraph, di+1ρi+1 6∈ (1/rl(i))Z. Thus
∑i+1

j=1 djρj ∈ (1/rl(i+1))Z−(1/rl(i))Z. �

4. Representations of Elements of the Value Monoid

In this section, we demonstrate that certain elements of Λ have a unique representation
as a sum of elements of {1, ρ1, ρ2, . . . }. Using these representations, we prove that Λ is
generated by {1, ρ1, ρ2, ρ3, . . . }. To accomplish this, we must factor each element of k[t, y]
completely as f(t, y) = q(t)

∏
(y − si) where si lies in the algebraic closure of k(t).

An element of k〈〈tQ〉〉 is said to be Puiseux if it lies in k((t−1/m)) for some positive integer
m. Puiseux’s Theorem states that the algebraic closure of the field of Laurent series k((t−1))
in k〈〈tQ〉〉 precisely consists of all elements of k〈〈tQ〉〉 that are Puiseux. Using Kedlaya’s
characterization of the generalized power series that are algebraic over the Laurent power
series field when k has positive characteristic in [Ke], we have the following characteristic-free
generalization of Puiseux’s Theorem.

Theorem 4.1. Let w ∈ k〈〈tQ〉〉 such that no element of its support is divisible by char k.
Then w is algebraic over k((t−1)) iff w is Puiseux.

The result below follows directly from techniques found in [Ab] and [D].

Proposition 4.2. Let w = c1t
m1/n + · · · + cst

ms/n be a finite Puiseux expansion with rami-
fication index n where mi ∈ Z∗, n ∈ Z+, and ci ∈ k∗. If k has positive characteristic, then
assume that n is not divisible by char k. Then the minimal polynomial of w over k(t) is
p(y) =

∏n−1
i=0 (y − wi) ∈ k(t)[y], where

wi = c1(ζ
it1/n)m1 + · · ·+ cs(ζ

it1/n)ms ,

and ζ is a primitive nth root of unity in k.

The ramification index of a Puiseux series w ∈ k〈〈tQ〉〉 is the smallest positive integer
r such that w ∈ k((t−1/r)). Given z1, z2 ∈ k〈〈tQ〉〉, we say that z1 and z2 agree to (finite)
order m ∈ N if the first m terms of z1 and z2 are identical, but the (m+1)st terms (if they
exist) of z1 and z2 are different. If we use Theorem 4.1 in place of Puiseux’s Theorem, then
Proposition 4.6 of [M] can be strengthened to the following characteristic-free form, where
we continue the assumption that no component of the exponent sequence is divisible by char
k as stated in Convention 3.1.

Proposition 4.3. Let w be a Puiseux series in k〈〈tQ〉〉. Define p(y) ∈ k((t−1))[y] to be the
minimal polynomial of w over k((t−1)) where w agrees with z to order m, and none of the
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conjugates of w agree with z to a greater order. If R is the ramification index of w, then

(4.1) LE(p(z)) =
( R
rm

)[
um + LE(z − w)

]
≥
( R
rm

)[
um + em+1

]
.

The simplest polynomials to which we can apply this result are those whose roots are
finite Puiseux series. We make these calculations explicit in the following lemma.

Lemma 4.4. If g(t, y) ∈ k(t)[y] is the minimal polynomial of

c1t
e1 + · · ·+ cl(i)−1t

el(i)−1

over k(t), then degy(g(t, y)) = rl(i)−1 and LE(g(t, z)) = ρi.

Proof. Let g(t, y) ∈ k((t−1))[y] be the minimal polynomial of
∑l(i)−1

j=1 cjt
ej over k((t−1)). Since

the exponent sequence e consists solely of positive numbers, g(t, y) ∈ k[t, y] by Proposition

4.2. Since
∑l(i)−1

j=1 cjt
ej has ramification index rl(i)−1, it follows from Proposition 4.2 that

degy g(t, y) = rl(i)−1. Moreover, by Proposition 4.3, LE(g(t, z)) =
(

rl(i)−1

rl(i)−1

)
(ul(i)−1 + el(i)) =

ρi. �

We will see that in order to generate Λ, we need only consider images of polynomials whose
roots are finite Puiseux series. To demonstrate this, we first show that over the collection
of polynomials of a fixed degree in y, the polynomials that have the smallest image under
LE ◦ φz are those whose roots are finite Puiseux series.

Proposition 4.5. Let k be a perfect field. For each nonzero p(x, y) ∈ k[x, y], there exists
h(x, y) ∈ k[x, y] such that the following hold:

(i) degy p(x, y) = degy h(x, y),
(ii) LE(p(t, z)) ≥ LE(h(t, z)),

(iii) the roots of h(t, y) in k((t−1))[y] are finite Puiseux series of the form
∑l(i)−1

j=1 cjt
ej .

Proof. First, factor p(t, y) as a polynomial in y as p(t, y) = q(t)
∏m

i=1 pi(t, y), where q(t) ∈ k[t]
and pi(t, y) is a monic, irreducible element of k((t−1))[y]. We will find hi(x, y) ∈ k[x, y] such
that degy pi(x, y) = degy hi(x, y), LE(pi(t, z)) = LE(hi(t, z)), and the roots of hi(t, y) are
finite Puiseux series of the desired form. It then follows that h(x, y) = q(x)

∏m
i=1 hi(x, y)

satisfies the conditions of the proposition.
Since pi(t, y) is a monic, irreducible element of k((t−1))[y], it is the minimal polynomial of

some generalized power series β ∈ k〈〈tQ〉〉. If k is a field of characteristic zero, by Puiseux’s
Theorem (Theorem 4.1), β is Puiseux. If k has positive characteristic, β is not necessarily
Puiseux and the algebraic closure of k((t−1)) is described by Kedlaya in [Ke]. We prove the
result by considering two cases:

Case 1: No element of Supp(z) is divisible by char k.
Case 2: Some element of Supp(z) is divisible by char k.

Case 1: Without loss of generality, we assume that no conjugate of β agrees with z to a
higher order. We denote this order by m, and denote the ramification index of β by R, in
which case rm | R. As shown in [St], pi(t, y) ∈ k((t−1))[y] must be a polynomial of degree R.
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Let L be the largest index such that rL = rm, in which case rL+1 > rL, and so L+1 is of the

form l(κ) for some κ ∈ N. Let g(t, y) ∈ k[t, y] be the minimal polynomial of
∑l(κ)−1

j=1 cjt
ei over

k(t). Then by Lemma 4.4, degy(g(t, y)) = rl(κ)−1 = rL = rm and LE(g(t, z)) = ρκ. There-

fore, if we define h(x, y) = g(x, y)(R/rm), then LE(h(t, z)) = (R/rm)ρκ and degy(h(x, y)) =
(R/rm) degy(g) = R = degy(pi(x, y)).

Since rL = rm, we know by Lemma 3.2 that uL = um. Moreover, L ≥ m, and so
em+1 ≥ eL+1. Thus by Proposition 4.3, LE(pi(t, z)) ≥ (R/rm)[um + em+1] ≥ (R/rm)[uL +
eL+1] = (R/rm)[ul(κ)−1 + el(κ)] = (R/rm)ρκ = LE(h(t, z)).

Case 2 : Let char k = p. Let E be the normal closure of k((t−1))(β)/k((t−1)). As in the
proof of Corollary 9 of [Ke], if M is the integral closure of k in E, then E can be expressed as
a tower of Artin-Schreier extensions over M((t−1/mq)), where q is the degree of inseparability
of E/k((t−1)). Since E is normal over k((t−1)), and hence over k((t−1/mq)), the normal
closure of k((t−1)) must be contained in E. The field k(ζm)((t−1/mq)) = k(ζm, t

−1/qm)((t−1))
is the normal closure of k((t−1/mq)) (it is the splitting field of Xmq − t−1 over k((t−1))), and
so we have the following normal extensions:

k((t−1)) ⊂ k(ζm)((t−1/mq)) ⊂ E.

Define F = k(ζm)((t−1/mq)), and let τ` ∈ Gal(F/k((t−1))) be given by t1/qm 7→ ζq`
m t

1/qm.
Note that as ζ0

m, ζm, . . . , ζ
m−1
m runs through all the mth roots of unity, so does the list

ζ0
m, ζ

q
m, . . . , ζ

(m−1)q
m since gcd(m, q) = 1. Each element of Gal(F/k((t−1))) can be written as

τ`µ where µ ∈ Gal(k(ζm)/k). We write the collection of all elements of Gal(F/k((t−1))) as
{ψ1, . . . , ψb}.

Define a homomorphism λ` : Q → k
∗

by λ`(ap
n/b) = ζa`s

b where a ∈ Z, b ∈ N∗, p - ab and
s ≡ pn mod b (or, if n < 0, we require sp−n ≡ 1 mod b). It is straightforward to show that

if λ : Q → k
∗

is a homomorphism whose kernel contains Z and µ ∈ Gal(k(ζm)/k), then

(4.2)
∑
i∈I

xit
i 7→

∑
i∈I

λ(i)µ(xi)t
i

is a k((t−1))-automorphism of k〈〈tQ〉〉 (where I is any Noetherian subset of Q). Given
ψj ∈ Gal(F/k((t−1))), we write ψj = τ`µ for some 1 ≤ ` ≤ m and µ ∈ Gal(k(ζm)/k). In

case λ = λ`, note that the function in (4.2) is an extension of ψj to k〈〈tQ〉〉. We denote

the restriction of this function to E by φj. We will show that φj sends k((t−1)) to itself,
and since E is a normal extension of k((t−1)), it follows that φj ∈ Gal(E/k((t−1))) is an
extension of ψj.

To show that φj sends k((t−1)) to itself, we appeal to Kedlaya’s description of the algebraic
closure in Corollary 9 of [Ke]. First, we review a few key ideas from that paper. The support
of any algebraic series must be a set of the form

Sm,v,c = {(1/m)(w + b1p
−1 + · · ·+ bj−1p

−j+1 + p−n(bjp
−j + · · · )) | w ≤ v,

∑
bi ≤ c}

where m ∈ N, v, c ≥ 0. Note that Sa,b,c is defined differently than the form given by Kedlaya
since our support is Noetherian rather than well-ordered. We say that a sequence cn satisfies
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a linearized recurrence relation (LRR) if for some d0, . . . , dk, for all n ∈ N,

d0cn + d1c
p
n+1 + · · ·+ dkc

pk

n+k = 0.

Let
∑
xit

i be a series with support Sm,v,c. We say
∑
xit

i is twist-recurrent if for each
w ≤ v,

∑
bi ≤ c, the sequence cn = x(1/m)(w+b1p−1+···+bj−1p−j+1+p−n(bjp−j+··· )) satisfies an

LRR. According to [Ke], the algebraic closure of k((t−1)) consists of all twist-recurrent series
x =

∑
xit

i such that the xi lie in a finite extension of k.
Now suppose

∑
xit

i is a twist-recurrent series. We will show that φj (
∑
xit

i) is also twist-

recurrent, and so by the previous paragraph, φj sends k((t−1)) to itself. Since
∑
xit

i is
twist-recurrent, it follows that cn = x(1/m)(w+b1p−1+···+bj−1p−j+1+p−n(bjp−j+··· )) satisfies an LRR

of the form d0cn + d1c
p
n+1 + · · · + dkc

pk

n+k = 0. To show that φj (
∑
xit

i) is twist-recurrent,
we must prove that λ(f(n))µ(cn) satisfies an LRR where f(n) = (1/m)(w + b1p

−1 + · · · +
bj−1p

−j+1 + p−n(bjp
−j + · · · )), λ = λ` for some ` and µ ∈ Gal(k(ζm)/k). If cn satisfies the

LRR
∑k

i=0 dic
pi

n+i = 0, it follows that 0 = µ
(∑k

i=0 dic
pi

n+i

)
=
∑k

i=0 µ(di)µ(cn+i)
pi

, and so

µ(cn) satisfies an LRR. Thus we only have to show that if cn satisfies an LRR, then so does
c′n = λ`(f(n))cn.

Now suppose cn satisfies the LRR
∑k

i=0 dic
pi

n+i = 0. Rewrite w + b1p
−1 + · · · + bj−1p

−j+1

as α1

pm1
where p - α1 and m1 ≤ j − 1. If we rewrite bjp

−j + bj+1p
−j−1 · · · as α2

pm2
where p - α2

and m2 ≥ j, then

f(n) =
α1p

m2+n + α2p
m1

mpm1+m2+n
=
α1p

m2−m1+n + α2

mpm2+n
.

If we define sn, d1, d2 so that snp
n ≡ 1 mod m, d1p

m1 ≡ 1 mod m, and d2p
m2 ≡ 1 mod m,

then λ`(f(n)) = ζ
(α1pm2−m1+n+α2)snd2
m = ζα1d1

m ·ζα2d2sn
m , and so if we define d′i = ζ−α1d1pi

m di, then

k∑
i=0

d′ic
′pi

n+i =
k∑

i=0

(ζ−α1d1pi

m )di(ζ
α1d1
m · ζα2d2sn+i

m )pi

cp
i

n+i =
k∑

i=0

(ζ−α1d1pi

m )di(ζ
α1d1pi

m )(ζα2d2sn+i
m )pi

cp
i

n+i,

which simplifies as

k∑
i=0

(ζα2d2sn+i
m )pi

dic
pi

n+i =
k∑

i=0

(ζα2d2snsi
m )pi

dic
pi

n+i = (ζα2d2sn
m )

k∑
i=0

dic
pi

n+i = 0,

and so c′n satisfies an LRR.

So far, we have shown that φj sends k((t−1)) to itself, and since E is a normal extension
of k((t−1)), we know φj ∈ Gal(E/k((t−1))) is an extension of ψj. Let {σ1, . . . , σd} be the
complete collection of F -automorphisms of E. Since E/F and F/k((t−1)) are normal exten-
sions, a routine exercise shows that the collection {φiσj | 1 ≤ i ≤ b, 1 ≤ j ≤ d} consists of
all k((t−1))-automorphisms of E. Since q is the degree of inseparability of E over k((t−1)),
the minimal polynomial mβ of β over k((t−1)) can be factored as

mβ(t, y) =
d∏

i=1

(
b∏

j=1

(y − φjσiβ)

)q

.
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For any series s =
∑

i∈I cit
ei , we define an associated Puiseux series by P(s) =

∑
i∈J cit

ei

where J = {a/b ∈ I | a ∈ Z, b ∈ N∗ and p - b} and remainder by R(s) = s− P(s). Since no
component of the ramification sequence of z is divisible by p, we obtain

(4.3) LE(z − φjσiβ) = LE(z − P(φjσiβ)−R(φjσiβ)) ≥ LE(z − P(φjσiβ)).

Since φj is of the form (4.2), for any series s ∈ k〈〈tQ〉〉, P(φjs) = φj(P(s)). Applying this
to (4.3), we obtain

LE(z − φjσiβ) ≥ LE(z − φjP(σiβ)).

Of all the conjugates φj(P(σiβ)) of P(σiβ) over F , choose αi to be the one that agrees with

z to the highest order. Note that
∏b

j=1(y − φjαi) must be of the form mαi
(t, y)`i where

mαi
(t, y) is the minimal polynomial of αi over k((t−1)) and `i ∈ N. Since αi is a Puiseux

series such that no element of its support is divisible by p, we have reduced the problem to
Case 1, and the proof is complete. �

Now, we define a sequence of rational numbers that give the minimal possible value of an
image of a polynomial of degree d under the map LE ◦ ϕz.

Definition 4.6. For each natural number d,

λd := min{LE(f(t, z)) | f ∈ k[x, y]∗ and degy(f(x, y)) = d}.

Lemma 4.7. Let k be a perfect field. For any positive integer d,

(4.4) λd = LE

(
w∏

j=1

fj(t, z)
dj

)
where w is a positive integer, the exponent dj is nonnegative, and fj is the minimal polynomial

of
∑l(j)−1

i=1 cit
ei over k(t). Moreover, d =

∑
dj degy(fj(x, y)).

Proof. By the definition of λd, there exists p(x, y) ∈ k[x, y] such that degy(p(x, y)) = d and
LE(p(t, z)) = λd. By Proposition 4.5, there exists h(x, y) such that λd = LE(p(t, z)) ≥
LE(h(t, z)), degy(h(x, y)) = d, and h(t, y) has finite Puiseux series as roots. Thus, by the
definition of λd, λd = LE(h(t, z)). Since h(x, y) is a product of minimal polynomials of finite
Puiseux series, we can write h as h(t, z) =

∏w
j=1 fj(t, z)

dj , where w is a positive integer, and
for each 1 ≤ j ≤ w, the exponent dj is nonnegative, and fj is the minimal polynomial of∑l(j)−1

i=1 cit
ei over k(t). �

Using this lemma, we can produce a unique representation for each λd in terms of the
monoid generating sequence.

Proposition 4.8. Let k be a perfect field. For any positive integer d, λd can be uniquely
expressed in the form

(4.5) λd =
w∑

j=1

djρj,

where w is a positive integer, and for each 1 ≤ j ≤ w, we have

(4.6) 0 ≤ dj < sj.
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In this case,

d =
d∑

j=1

djrl(j−1).

Proof. By Lemma 4.7, there exists h(x, y) ∈ k[x, y] such that λd = LE(h(t, z)), degy(h(x, y)) =
d, and

h(t, z) =
w∏

j=1

fj(t, z)
dj ,

where w is a positive integer, and for each 1 ≤ j ≤ w, the exponent dj is nonnegative, and

fj is the minimal polynomial of
∑l(j)−1

i=1 cit
ei over k(t). By Lemma 4.4, degy fj(x, y) = rl(j)−1

and LE(fj(t, z)) = ρj, and so

λd = LE

(
w∏

j=1

fj(t, z)
dj

)
=

w∑
i=1

djLE(fj(t, z)) =
w∑

i=1

djρj

and

d = degy h(x, y) =
w∑

j=1

dj degy fj(x, y) =
w∑

j=1

djrl(j)−1 =
w∑

j=1

djrl(j−1).

Next we show that each dj satisfies the bounds given by (4.6). Suppose for contradiction,
for some k, dk ≥ sk = rl(k)/rl(k−1). Define

Dj =

 dj + 1 if j = k + 1;
dj − sj if j = k;
dj otherwise.

Using this in conjunction with the recurrence relation given in Lemma 3.3, we obtain

w∑
j=1

djρj −
w∑

j=1

Djρj = (dk −Dk)ρk + (dk+1 −Dk+1)ρk+1

= skρk − ρk+1

= el(k) − el(k+1),

and so
w∑

j=1

djrl(j−1) −
w∑

j=1

Djrl(j−1) = (dk −Dk)rl(k−1) + (dk+1 −Dk+1)rl(k)

= skrl(k−1) − rl(k)

= 0.

These equations in conjunction with Lemma 4.4 yield

LE

(
w∏

j=1

fj(t, z)
Dj

)
=

w∑
j=1

Djρj =
w∑

j=1

djρj − el(k) + el(k+1) <
w∑

j=1

djρj = LE(h)
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and

deg

(
w∏

j=1

fj(t, z)
Dj

)
=

w∑
j=1

Dj deg(fj) =
w∑

j=1

Djrl(j−1) =
w∑

j=1

djrl(j−1) = deg(h).

However, LE(h) = λd, and so we have contradicted the minimality of LE(h). Thus 0 ≤
dj < sj for each 1 ≤ j ≤ w, and so we have proved the bounds given by (4.6).

Finally, we demonstrate that the expression for λd in (4.5) is uniquely determined. Suppose
we are given two representations for λd:

λd =
w∑

j=1

djρj =
w∑

j=1

d′jρj

where 0 ≤ dj, d
′
j < sj. If we define ∆j = dj − d′j, then

∑w
j=1 ∆jρj = 0 and |∆j| < sj.

Multiply the expression by rl(w−1), and we see(
w−1∑
j=1

rl(w−1)∆jρj

)
+ rl(w−1)∆wρw = 0.

However, rl(w−1)∆jρj ∈ Z for j ≤ w − 1, and so rl(w−1)∆wρw ∈ Z. Now write ρw as cw/rl(w)

where cw ∈ N. Then rl(w−1)∆wcw/rl(w) ∈ Z, and so sw =
rl(w)

rl(w−1)
| ∆wcw. Since sw and cw

are relatively prime by Lemma 3.7, sw | ∆w. However, |∆w| < sw, and so ∆w = 0. Thus,∑w−1
j=1 ∆jρj = 0. Repeating this argument, we find ∆w−1 = ∆w−2 = · · · = ∆1 = 0, and so

dj = d′j for all 1 ≤ j ≤ w. �

The idea that each λd has a unique representation can be extended further. In fact,
there is a natural bijective correspondence between representations of natural numbers and
representations of terms of the form λd. First, we state the following simple lemma without
proof.

Lemma 4.9. Let b0, b1, b2, b3, . . . be a sequence of positive integers such that b0 = 1, bi+1 > bi
and bi | bi+1 for all i. Then every positive integer n ∈ N has a unique representation of the
form

d =
w∑

i=0

dibi,

where w is a positive integer, dw 6= 0, and 0 ≤ di < bi+1/bi.

For example, if bi = 10i, then this says that every positive integer has a unique base 10
representation. Using this lemma, we produce a method for quickly computing λd.

Proposition 4.10. Let k be a perfect field. Given a positive integer w and 0 ≤ dj < sj for
each 1 ≤ j ≤ w,

d =
w∑

j=1

djrl(j−1) ⇔ λd =
w∑

j=1

djρj.
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Proof. The reverse implication follows directly from Proposition 4.8. For the forward im-
plication, suppose we are given d =

∑w
j=1 djrl(j−1) where 0 ≤ dj < sj. By Proposition 4.8,

λd is of the form λd =
∑w′

j=1 d
′
jρj where d =

∑w′

j=1 d
′
jrl(j−1). By the uniqueness promised by

Lemma 4.9, w = w′ and dj = d′j for all 1 ≤ j ≤ w. Thus λd =
∑w

j=1 djρj. �

5. Construction of the Value Monoid

The goal of this section is to describe the value monoid Λ explicitly in terms of the
sequences {λi}i∈N and {ρi}i∈N. Throughout the remainder, in addition to Convention 3.1,
we assume that k is a perfect field and {λi}i∈N is given by Definition 4.6. We begin by
showing that {λi}i∈N is an increasing sequence.

Lemma 5.1. The sequence λ0, λ1, λ2, . . . is increasing.

Proof. We will show that λd+1 > λd for all d. By Proposition 4.8, we can write λd =∑w
j=1 djρj where 0 ≤ dj < sj and

d =
w∑

j=1

djrl(j−1).

We now consider different cases, depending on the size of the coefficients dj.

Case 1: First we consider the case dj = sj−1 for all j. Then d =
∑w

j=1(sj−1)rl(j−1), and

so by Lemma 3.4, d+1 = rl(w). Thus by Proposition 4.10, λd+1 = ρw+1 and λd =
∑w

j=1 djρj,

and so by Lemma 3.5, λd+1 − λd = ρw+1 −
∑w

j=1(sj − 1)ρj = el(w+1) > 0.

Case 2: Consider the case d1 < s1−1. Now d+1 = (d1 +1)rl(0) +
∑w

j=2 djrl(j−1), and so by

Proposition 4.10, λd+1 = (d1+1)ρ1+
∑w

j=2 djρj. Thus λd+1−λd = (d1+1)ρ1−d1ρ1 = ρ1 > 0.

Case 3: Finally we consider the case where there exists an index v > 1 such that dv < sv−1
and for j < v, dj = sj − 1. Write λd as λd =

∑v−1
j=1(sj − 1)ρj +

∑w
j=v djρj. By Proposition

4.10, d =
∑v−1

j=1(sj − 1)rl(j−1) +
∑w

j=v djrl(j−1), and so by Lemma 3.4,

d+1 = 1+
v−1∑
j=1

(sj−1)rl(j−1)+
w∑

j=v

djrl(j−1) = rl(v−1)+
w∑

j=v

djrl(j−1) = (dv+1)rl(v−1)+
w∑

j=v+1

djrl(j−1).

Therefore, by Proposition 4.10, λd+1 = (dv + 1)ρv +
∑w

j=v+1 djρj, and so λd+1 − λd = (dv +

1)ρv +
∑w

j=v+1 djρj − (
∑v−1

j=1(sj − 1)ρj +
∑w

j=v djρj) = ρv −
∑v−1

j=1(sj − 1)ρj. By Lemma 3.5,

this is simply el(v), which is positive. �

Given a submonoid M of a commutative monoid N , we define an equivalence relation on
N by setting n1 ∼M n2 if and only if there exist m1,m2 ∈M such that m1 + n1 = m2 + n2.
Denote by N/M the collection of all equivalence classes under this relation, and define a
quotient map π from N to N/M that sends n to the equivalence class containing n. The set
N/M has an additive monoid structure where we define π(n1) + π(n2) = π(n1 + n2).
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Given a polynomial f(x, y) ∈ k[x, y], we define degy(f(x, y)) to be the smallest d ≥ 0 such

that f(x, y) ∈ k[x]yd + k[x]yd−1 + · · ·+ k[x]y + k[x], and we denote

(5.1) Λd(z) = {LE(f(t, z)) | f ∈ k[x, y]∗ and degy(f(x, y)) ≤ d}.
Using this notation, we show that any pair of terms of the sequence {λi}i∈N are inequivalent

modulo Z.

Proposition 5.2. For all i 6= k, λi 6∼Z λk.

Proof. Suppose λi ∼Z λk. By Proposition 4.8, for some positive integer w we can write
λi =

∑w
j=1 djρj and λk =

∑w
j=1 d

′
jρj where 0 ≤ dj, d

′
j < sj. For each 1 ≤ j ≤ w, we write

ρj = cj/rl(j), where cj and sj are relatively prime, as promised by Lemma 3.7.
If we define ∆j = dj − d′j, then |∆j| < sj = rl(j)/rl(j−1) and λi − λk =

∑w
j=1 ∆jρj ∼Z 0.

Multiply the expression by rl(w−1) to obtain(
w−1∑
j=1

rl(w−1)∆jρj

)
+ rl(w−1)∆wρw ∼Z 0.(5.2)

However, rl(w−1)∆jρj ∈ Z for j ≤ w−1 since ρj ∈ (1/rl(j))Z, and so by (5.2), rl(w−1)∆wcw/rl(w) =
rl(w−1)∆wρw ∈ Z. That is, ∆wcw/sw = rl(w−1)∆wcw/rl(w) ∈ Z, and so sw | ∆wcw. Since
sw and cw are relatively prime, sw | ∆w. However, |∆w| < sw, and so ∆w = 0. Thus,∑w−1

j=1 ∆iρj ∼Z 0. Repeating this argument, we find ∆w−1 = ∆w−2 = · · · = ∆1 = 0, and so
λi = λk. By Lemma 5.1, i = k.

�

We quote the following result from [MoSw2].

Theorem 5.3. For every positive integer n, the quotient Λd/Λ0 has cardinality one greater
than that of Λd−1/Λ0, or equivalently, Λd/Λ0 has cardinality d+ 1.

Using this theorem in conjunction with Proposition 5.2, we compute the quotient Λd/Λ0.

Corollary 5.4. The quotient Λd/Λ0 consists precisely of the images of λ0, . . . , λd.

Proof. Since λ0, . . . , λd ∈ Λd, we know by Proposition 5.2 that the images of λ0, . . . , λd are
distinct in Λd/Λ0. By Theorem 5.3, these images constitute the entire quotient Λd/Λ0. �

For each m ∈ Λ, we make the following definition:

(5.3) λ(m) = min{r ∈ Λ | r ∼Z m}.
The next two results allow us to relate terms of the sequence {λi}i∈N with elements in the
image of the map λ : Λ → Λ.

Proposition 5.5. For all i ∈ N, there exists m ∈ Λ such that λi = λ(m).

Proof. We prove the following equivalent statement: for all i ∈ N,m ∈ Λ, if m ∼Z λi, then
λi ≤ m. Let i ∈ N, m ∈ Λ such that m ∼Z λi. Let j be the smallest index such that m ∈ Λj.
Suppose, for contradiction, j < i. Since the image of m must lie in the quotient Λj/Λ0, by
Corollary 5.4 it follows that m ∼Z λt for some t ≤ j < i. Thus, λi ∼Z λt, which contradicts
Proposition 5.2. Therefore, j ≥ i, and so by Lemma 5.1, m ≥ λj ≥ λi. �
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Proposition 5.6. For all m ∈ Λ, there exists i ∈ N such that λi = λ(m).

Proof. Let m ∈ Λ. Now m ∈ Λj for some j ∈ N, and so by Corollary 5.4, m ∼Z λi for some
i ∈ N. By Proposition 5.5, λi = λ(m′) for some m′ ∈ Λ. Thus λi ∼Z m ∼Z m′, and so
λi = λ(m′) = λ(m). �

We are now in a position to decompose the value monoid as a disjoint union of cosets of
N.

Theorem 5.7. If the exponent sequence of z ∈ k〈〈tQ〉〉 is strictly positive, then the value
monoid is the disjoint union

Λ =
∞⋃

d=0

(N + λd).

Proof. Given m ∈ Λ, there exists an index d such that λd = λ(m) by Proposition 5.6.
Therefore, m − λd ∈ N, and so m ∈ N + λd. The reverse containment follows directly from
the fact that λd ∈ Λ. The sets are disjoint due to Proposition 5.2. �

Combining Theorem 5.7 and Proposition 4.8, we obtain the following.

Theorem 5.8. Each element m ∈ Λ has a unique representation of the form

(5.4) m = n+
w∑

j=1

djρj,

where n ∈ N and for each 1 ≤ j ≤ w, 0 ≤ dj < sj.

A weaker form of this theorem was stated earlier as Theorem 2.6.

6. Algorithms

In this section, we develop algorithms to make computations involving the value monoid
Λ. It was shown in [M] that Λ is well-ordered, and so LE ◦ ϕz is suitable relative to k[x] as
described in Definition 1.1, and we can use LE ◦ϕz in the algorithms described in Section 1.
Throughout this section we refer to the composite maps LE ◦ ϕz and LC ◦ ϕz as LEz and
LCz, respectively.

To begin, given a rational number m ∈ Q, we would like to decide whether m ∈ Λ, and
in case it is, express it in terms of the generators 1, ρ1, ρ2, . . . . To accomplish this, we first
prove a lemma.

Definition 6.1. For each i ∈ N, define

Ωi = {n+
i∑

j=1

djρj |, n ∈ N, 0 ≤ dj < sj}.

Lemma 6.2.

Λ ∩ Z · {1, ρ1, ρ2, ρ3, . . . , ρi} = Ωi.
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Proof. The containment ‘⊃’ being obvious, we only consider the case ‘⊂’. Let m ∈ Λ ∩ Z ·
{1, ρ1, ρ2, ρ3, . . . , ρi}. By Theorem 5.7, there is a unique pair n, d ∈ N such that m = n+λd.
Thus λd ∈ Z · {1, ρ1, ρ2, . . . , ρi}, and so by Lemma 3.6, λd ∈ (1/rl(i))Z.

By Theorem 5.8, there exists a smallest k ∈ N such that λd ∈ Ωk. Suppose, for contradic-
tion, that k > i. Then by Lemma 3.8, λd ∈ (1/rl(k))Z− (1/rl(k−1))Z ⊂ (1/rl(k))Z− (1/rl(i))Z,
which contradicts our assertion that λd ∈ (1/rl(i))Z. Therefore, i = k, and so λd ∈
N · {1, ρ1, . . . , ρi}. �

We have the following corollary.

Corollary 6.3. The set Ωi is closed under addition.

Given a positive rational number m, write m as a/b where a, b are relatively prime positive
integers. If m ∈ N, then it is automatically in Λ, and so we can assume that b > 1. Our
goal is to decide using modular arithmetic whether it is possible that m ∈ Λ. First, find the
smallest i such that b | rl(i). The set of all Z-linear combinations of 1, ρ1, . . . , ρi−1 is precisely
the set 1

rl(i−1)
Z. Since b does not divide rl(i−1), it cannot possibly be an N-linear combination

of 1, ρ1, . . . , ρi−1. Now suppose m is a Z-linear combination of 1, ρ1, . . . , ρj where j > i.
However, since b | rl(i), it follows that m ∈ (1/rl(i))Z = Z · {1, ρ1, . . . , ρi}. If m ∈ Λ, then by
Lemma 6.2, there exist n, d1, . . . , di ∈ N such that

m = n+
i∑

j=1

djρj

where 0 ≤ dj < sj for 1 ≤ j ≤ i and di 6= 0. From this discussion, we have the following
algorithm.

Algorithm 6.4. Let m be a positive rational number. The following algorithm determines
whether m ∈ Λ. If m ∈ Λ, then the algorithm produces a decomposition of m as a linear
combination of 1, ρ1, . . . , ρi. Set ρi = ci/rl(i).

(1) Write m as a/b where a, b are relatively prime, positive integers.
(2) Define i to be the smallest index such that b | rl(i).

(3) Define m(i) = m.
(4) Try to solve the congruence cidi ≡ rl(i) mod si for di where 0 ≤ di < si. If there

are no solutions, then m 6∈ Λ.
(5) For j = i − 1, i − 2, . . . , 1, define m(j) = m(j+1) − dj+1ρj+1 and try to solve the

congruence cjdj ≡ rl(j) mod sj for dj where 0 ≤ dj < sj. If any of the congruences
fail to yield a solution, then m 6∈ Λ.

(6) Define n = m(1) − d1ρ1. Then m = n+
∑i

j=1 djρj. If n 6∈ N, then m 6∈ Λ. If n ∈ Λ,
then we have a decomposition of the desired form.

Once we have a test for whether a rational number is in the value monoid, we need to
be able to determine one of its preimages under the valuation. The following algorithm
accomplishes this task.

Algorithm 6.5. Letm ∈ Λ. This algorithm constructs p(x, y) ∈ k[x, y] such that LEz(p(x, y)) =
m.
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(1) Using Algorithm 6.4, write m = n+
∑i

j=1 djρj.

(2) For each 1 ≤ j ≤ i, use Proposition 4.2 to compute pj(x, y), the minimal polynomial

of
∑l(i)−1

j=1 cjx
ej over k(x, y).

(3) Define p(x, y) = xn
∏i

j=1 pj(x, y)
dj . By Lemma 4.4, LEz(p(x, y)) = m.

The following algorithm describes how to perform division in k[x, y] relative to LEz.

Algorithm 6.6. Let f, g ∈ k[x]. This algorithm constructs h ∈ k[x, y] such that LEz(f −
gh) < LEz(f) provided that such an h exists.

(1) Compute m = LEz(f)− LEz(g).
(2) Use Algorithm 6.4 to determine whether m ∈ Λ. If m 6∈ Λ, then h does not exist.
(2) Using Algorithm 6.5, find p(x, y) ∈ k[x, y] such that LEz(p) = m.
(3) Define h(x, y) = (LCz(f)/LCz(gp))p(x, y). Then LCz(f) = LCz(gh), and since

LEz(f) = LEz(gh), it follows that LEz(f − gh) < LEz(f).

To compute syzygy families, we first need the following lemma.

Lemma 6.7. Let M be a monoid such that Z ⊂ M ⊂ Q, and let q be an element of
the quotient group of M (i.e., the set of differences of elements of M). Then for n � 0,
q + n ∈M .

We now prove that the intersection of principal ideals in Λ, both generated by elements
of Ωi, must be finitely generated by elements of Ωi.

Lemma 6.8. Given f, g ∈ k[x]∗ such that LEz(f),LEz(g) ∈ Ωi, there exists a finite subset
of Ωi that generates 〈LEz(f)〉 ∩ 〈LEz(g)〉.
Proof. By Lemma 6.7, for each element σ of Ωi, there exists a minimal ησ ∈ Z such that
σ−LEz(f)+ησ, σ−LEz(g)+ησ ∈ Λ; that is, σ+nσ ∈ 〈LEz(f)〉∩〈LEz(g)〉. Define Υi to be
the finite collection {σ+ ησ | σ ∈ Ωi}. We will show that Υi generates 〈LEz(f)〉∩ 〈LEz(g)〉.

Let m ∈ 〈LEz(f)〉 ∩ 〈LEz(g)〉. By Theorem 5.8, Λ =
⋃∞

j=0 Ωj, and so for some index

I, there exist αf , αg ∈ ΩI such that m = LEz(f) + αf = LEz(g) + αg. Write αf as

α′f +
∑I

j=i+1 djρj and αg as α′g +
∑I

j=i+1 d
′
jρj where α′f , α

′
g ∈ Ωi and 0 ≤ dj, d

′
j < sj. By

Corollary 6.3, LEz(f)+α′f ,LEz(g)+α′g ∈ Ωi. By the uniqueness of representation promised

by Theorem 5.8, since m = (LEz(f) + α′f ) +
∑I

j=i+1 djρj = (LEz(g) + α′g) +
∑I

j=i+1 d
′
jρj,

we have dj = d′j for i + 1 ≤ j ≤ I. Thus LEz(f) + α′f = LEz(g) + α′g. So by Theorem 5.8,

m′ := LEz(f) + α′f = LEz(g) + α′g = n +
∑i

j=1 δjρj, where n ∈ N and 0 ≤ δj < sj. Define

σ =
∑i

j=1 δjρj, and let nσ be the smallest nσ ∈ Z such that σ + nσ ∈ 〈LEz(f)〉 ∩ 〈LEz(g)〉.
Since m′ = σ + n ∈ 〈LEz(f)〉 ∩ 〈LEz(g)〉, it follows that n ≥ nσ. Thus m′ = (n − nσ) +

(σ + nσ) ∈ N + Υi, and so m = m′ +
∑I

j=i+1 djρj = (n − nσ) + (σ + nσ) +
∑I

j=i+1 djρj ∈
N + Υi + Λ = Υi + Λ. �

The following algorithm uses the lemma above to produce a syzygy family for a pair of
polynomials.

Algorithm 6.9. Let f, g ∈ k[x, y]. This algorithm will produce m1, . . . ,m` ∈ Λ such that
〈LEz(f)〉 ∩ 〈LEz(g)〉 = 〈m1, . . . ,m`〉. In addition aj, bj ∈ k[x] will be produced such that
LEz(ajf − bjg) < mj for each 1 ≤ j ≤ `.
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(1) Using Algorithm 6.4, write LEz(f) = n +
∑i

j=1 djρj and LEz(g) = n′ +
∑i

j=1 d
′
jρj

where n, n′ ∈ N and 0 ≤ dj, d
′
j < sj.

(2) Let σ1, . . . , σ` be the elements of {
∑i

j=1 djρj | 0 ≤ dj < sj}. For each 1 ≤ t ≤ `, find

a minimal ηt such that σt −LEz(f) + ηt, σt −LEz(g) + ηt ∈ Λ. To accomplish this,
begin with η = 0 and keep incrementing ηt until σt−LEz(f)+ηt, σt−LEz(g)+ηt ∈ Λ
by Algorithm 6.4.

(3) For each t, define mt = ηt + nt. By Lemma 6.8, {m1, . . . ,m`} generates 〈LEz(f)〉 ∩
〈LEz(g)〉.

Below is an example of a generalized Gröbner basis with respect to a valuation that is not
a Gröbner basis with respect to any monomial order.

Example 6.10. Let k be a field that is not of characteristic two. Define f1 = y2 − x and
f2 = xy. Then one can check that the set B = {f1, f2} is a Gröbner basis for the ideal
I = 〈f1, f2〉 with respect to the valuation induced by z = t1/2 + t1/4 + t1/8 + t1/16 + · · · using
Algorithm 1.7.

We now demonstrate that B is not a Gröbner basis with respect to any monomial order.
Suppose, for contradiction, that B is a Gröbner basis with respect to some monomial order
‘<’. Note that x2, y3 ∈ I since x2 = yf2 − xf1 and y3 = yf1 + f2. We consider two cases,
depending on whether x > y2 or x < y2. If x < y2, then lt(f1) = y2 and lt(f2) = xy. However,
x2 ∈ I, and so if B were a Gröbner basis with respect to ‘<’, then either y2 | x2 or xy | x2,
a contradiction. Now suppose x > y2, in which case lt(f1) = x and lt(f2) = xy. However,
y3 ∈ I, and so if B were a Gröbner basis, then either x | y3 or xy | y3, a contradiction.

Lastly, we note by example that some ideals do not have finite Gröbner bases with respect
to a given valuation. We first prove a short lemma.

Lemma 6.11. The sequence ρ0, ρ1, ρ2, . . . is increasing.

Proof. Since sj > 1 for each index j, by Lemma 3.5, ρi =
∑i−1

j=1(sj − 1)ρj + el(i) >
∑i−1

j=1 ρj +
el(i) > ρi−1. �

Example 6.12. Consider the ideal 〈x, y〉 of k[x, y], and let G be a Gröbner basis with respect
to the series z ∈ k〈〈tQ〉〉. For each ρi, let pi(x, y) ∈ k[x, y] such that LEz(pi) = ρi. Since
G is a Gröbner basis, there exists gi ∈ G such that LEz(gi) | LEz(pi). That is, for some
hi ∈ k[x, y], LEz(gihi) = ρi. Since G ∩ k = ∅, LEz(gi) > 0, and so LEz(hi) < ρi. Suppose,
for contradiction, LEz(gi) 6= ρi. Then LEz(gi) < ρi, and so by Theorem 5.8 and Lemma 6.11,

LEz(gi) = n+
∑i−1

j=1 djρj and LEz(hi) = n′+
∑i−1

j=1 d
′
jρj. Thus, ρi = LEz(gihi) ∈ (1/rl(i−1))Z,

which contradicts Lemma 3.6. Therefore, LEz(gi) = ρi, and thus G is infinite.
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