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An Incremental Reseeding Strategy for Clustering

Xavier Bresson∗ Huiyi Hu† Thomas Laurent‡ Arthur Szlam§

James von Brecht¶

Abstract

In this work we propose a simple and easily parallelizable algorithm for multiway graph par-
titioning. The algorithm alternates between three basic components: diffusing seed vertices over
the graph, thresholding the diffused seeds, and then randomly reseeding the thresholded clus-
ters. We demonstrate experimentally that the proper combination of these ingredients leads to
an algorithm that achieves state-of-the-art performance in terms of cluster purity on standard
benchmarks datasets. Moreover, the algorithm runs an order of magnitude faster than the other
algorithms that achieve comparable results in terms of accuracy [1]. We also describe a coarsen,
cluster and refine approach similar to [2, 3] that removes an additional order of magnitude from
the runtime of our algorithm while still maintaining competitive accuracy.

1 Introduction

One of the most basic unsupervised learning tasks is to automatically partition data into clusters
based on similarity. A standard scenario is that the data is represented as a weighted graph, whose
data points correspond to vertices on the graph and whose edges encode the similarity between data
points. Many of the most popular and widely used clustering algorithms, such as spectral clustering,
fall into this category. Despite the vast literature on graph-based clustering, the field remains an
active area for both theoretical and practical research.

In this work, we propose a resampling-based spectral algorithm for multiway graph partitioning
that achieves a good combination of accuracy and efficiency on graphs that contain reasonably well-
balanced clusters of medium scale. The algorithm is simple, intuitive, and easy-to-implement. It
also parallelizes trivially, and can therefore scale gracefully to large numbers of clusters as well as
large numbers of graph vertices. We demonstrate experimentally that the algorithm achieves state-
of-the-art performance in terms of cluster purity on standard benchmarks, while running an order
of magnitude faster than the other highly accurate clustering methods, e.g. [1]. The appeal of our
algorithm arises from the combination of simplicity, accuracy, and efficiency that it provides.

The straightforward implementation of our algorithm (in serial) runs two orders of magnitude
slower than popular multiscale coarsen-and-refine algorithms, such as [2, 3]. We show experimentally
that a similar combination of coarsening and refinement can remove an order of magnitude from the
runtime of our algorithm while maintaining a level of accuracy between state-of-the-art (but expen-
sive) direct approaches [1] and heavily optimized multigrid ones [2, 3].
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Figure 1: Illustration of the Incremental Reseeding (INCRES) algorithm for R = 3 clusters. The
colors red, blue, and green are used to identify the clusters. Figure (a): At this stage of the algorithm,
m = 2 seeds are randomly planted in the clusters computed from the previous iteration. Figure (b):
The seeds grow with the random walk operator. Figure (c): A new partition of the graph is obtained
and it will be used to plant m+ ∆m seeds into these clusters at the next iteration.

2 Description of the Algorithm

A main idea behind our algorithm arises from a well-known (and widely used) property of the random
walk on a graph. Specifically, a random walker started in a low conductance cluster is unlikely to leave
the cluster quickly. This fact provides the basis for transductive methods such as [4], as well as for
“local” clustering methods such as [5]. Each of these works require an initial guess for the location of
clusters. In the transductive case, this location information comes in the form of class labels provided
by an oracle. In the case of [5], the “label” information comes in the form of an a-priori assumption
of smallness or locality (i.e. a small random-walk extent) for the cluster that contains a specified seed
vertex. A partitioning of the whole graph is then obtained from these local clusterings via a sequential
extraction of small clusters with random choices for the single “label” or seed vertex [5].

Our algorithm combines ideas from these approaches. Assume that the graph has R well-defined
clusters of comparable size and low conductance. If we could assign to each cluster an initial vertex,
then we might expect good results from a transductive label propagation by using these initial as-
signments as labels. In an unsupervised context we cannot, of course, place a seed in each cluster as
we do not know the clusters themselves beforehand. To overcome this, we instead place a handful of
seeds at random. We then perform a few steps of a random walk using the selected vertices as initial
positions. We obtain a temporary clustering by assigning each node on the graph to its nearest seed,
and then reseed the labels from these temporary clusters. If the clusters improve then the seeds will
likely improve, and vice-versa. This incites a feed-back loop and we get a virtuous cycle. We can
then excite the speed and improve the quality of this cycle by gradually drawing more and more seeds
throughout the process. We refer to this idea as an incremental reseeding strategy, and we depict this
cyclic process graphically in figure 1.

2.1 Implementation Details and Practical Improvements

To formalize these ideas, let G = (V,W ) denote a weighted, undirected graph on N vertices V =
{v1, . . . , vN} with symmetric edge weights W = {wij}Ni,j=1 that encode a measure of similarity between
each pair (i, j) of vertices. Let D denote the diagonal matrix of (weighted) vertex degrees. We
propose the following randomized, iterative algorithm for partitioning such a graph into R classes.
First, generate an initial partition P0 = (C01 , . . . , C0R) of the graph V = C01 ∪ . . . ∪ C0R into R disjoint
clusters C0r by assigning each vertex vi to one of the R classes uniformly at random. Let m = 1 denote
the initial number of seeds. At each of the successive iteration, we update the current partition
Pk = (Ck1 , . . . , CkR) according to the steps outlined in algorithm 1 below. We refer to algorithm 1 as
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the Incremental Reseeding algorithm (INCRES).

Algorithm 1 INCRES Algorithm

Input: Similarity matrix W , seed increment ∆m, number of clusters R.
Initialization: m = 1, random partition P = (C1, . . . , CR)
repeat

F = PLANT(P,m)
F ← GROW(F,W )
P ← HARVEST(F )
m← m+ ∆m

until P converges
Output: P

A variety of different possibilities exist for the choices of the PLANT, GROW, and HARVEST
subroutines used in this basic framework. We discuss the basic choices we use in our experiments,
as well as a few variants that we have found prove useful in certain special circumstances. The first
routine, PLANT, implements the basic reseeding strategy:

function PLANT(P,m)
Initialize F as an N -by-R sparse matrix of zeros.
for r = 1 to R do

Select a subset Vr of Cr with m vertices by sampling uniformly without replacement.
Set the rth column of F equal to the indicator function 1Vr of Vr.

end for
return F .

end function

We use this outline as the basis of our implementation of the PLANT routine used in our exper-
iments. If the number of seeds m happens to exceed the size of one of the clusters Cr at any given
iteration, we simply reinitialize m as the size of the smallest cluster Cr at that iteration. We then
return this value from PLANT and increment m← m+∆m as before. The overall computational cost
of the PLANT function proves modest. The main computational burden lies identifying the clusters
and in generating the random sample.

The simplest choices for the GROW and HARVEST functions appear below. We use this particular
implementation of the GROW routine in all of our experiments, although we have experimented with
a number of different choices as well. In particular, we have found that replacing the random walk
step F ← WD−1 with a diffusion step F ← D−1W will give similar results in many circumstances.
Occasionally, we have found that utilizing a “personalized Page-Rank” step

F ← αWD−1F + (1− α)F0

function GROW(F,W )
while mini minr Fi,r = 0 do

F ←
(
WD−1

)
F

end while
return F .

end function

function HARVEST(F )
for r = 1 to R do
Cr = {i : Fi,r ≥ Fi,s∀s 6= r}

end for
return P = (C1, . . . , CR)

end function
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can give better performance on small data sets that contain a large (relative to the size of the data
set) number of clusters. Here 0 < α < 1 denotes the random walk extent (usually set to α =
.85) and F0 denotes the indicator matrix that initializes the GROW routine. A step of this form
amounts to measuring similarity between vertices in the same manner used in either [6] or [1], up
to replacing D−1W with D−1/2WD−1/2 in the latter case. By-and-large the INCRES algorithm
proves robust to the particular implementation of GROW, so long as it realizes the basic idea of label
propagation in one form or another. In any case, the main computational burden of the algorithm
arises from the GROW routine. The procedure will terminate once the labels produced by PLANT
have propagated throughout the entire graph. This requires a connected graph and a computational
cost of O(REdiam(G)) in the worst case, where E denotes the number of edges in the graph and
diam(G) denotes its diameter. We can, however, introduce an “economy” version of GROW that
allows us to handle datasets with a large number of clusters R without having to store a full matrix F
of indicators for each cluster. We also use this implementation of HARVEST for all of our experiments,
and we have yet to run across a situation in which modifying it would prove useful. Its cost provides
only a negligible contribution to the overall cost of each step of the algorithm. As our experiments
will show, this simple combination of ingredients (and in particular the PLANT function) turns the
heuristic outlined above into a reliable clustering algorithm.

2.2 Relation with Other Work

As we previously discussed, our method relies upon and incorporates number of ideas from transduc-
tive learning. In particular, we leverage the notion of label propagation [4]. In the standard label
propagation framework, an oracle provides a set of labeled points or vertices. These labeled points
form either nonzero initial conditions or heat sources for a discrete heat equation on the graph. The
second step of the algorithm outlined above (which we term GROW below) precisely corresponds
with a label propagation of the random labels returned from the first step of the algorithm (which
we term PLANT below). The NIBBLE algorithm and its relatives [7, 8, 6, 5] use a similar idea
to get an unsupervised clustering method from label propagation by planting random seeds. These
works cluster the entire graph in a sequential manner, and each cluster in the sequence is obtained
from a localized cluster around a single random vertex. We perform multiway partitioning directly,
instead of recursively, and utilize a significantly different random seeding strategy. Our algorithm also
alternates between label propagation (in step 2) and thresholding (in step 3). The idea of iteratively
alternating between a few steps of label propagation and subsequent thresholding has also appeared in
a transductive learning context [9], although the presence of labelled information results in a different
implementation of the propagation step. The non-negative matrix factorization method [1] also in-
corporates random walk information in a manner that resembles step 2, but otherwise the underlying
principles of the algorithms differ.

The algorithms GRACLUS [2] and METIS [3] directly inspired the multigrid version of our algo-
rithm. We use the same coarsening algorithm, but rely upon a different clustering on the coarsest
scale (algorithm 1 vs. kernelized k-means or pure spectral clustering) and we use a different refinement
technique. Algorithm 1 relates to the kernelized k-means procedure used in GRACLUS even in the
single level case: we can essentially interpret the GROW function (step 2) as the “maximization” step
in an alternating minimization for a kernelized k-means. Here the kernel is a power of the normalized
weights and the power may depend on the cluster, so it is not exactly the same. The “expectation”
step in our algorithm is replaced by sampling, and instead of having a single representative for a class,
the number of representatives increases as the algorithm progresses. Using power iterations of the
weight matrix W directly for clustering has appeared in [10, 11]. These works utilize the power iter-
ations to generate an embedding of the vertices of the graph, which is then clustered using k-means.
These methods can also be considered as kernelized k-means methods, with a power of the weights
providing the kernel.

Because the GROW function we use iterates the random walk on the graph, our algorithm is
a form of spectral clustering. However, our main contribution to the clustering problem, and the
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primary novelty in our algorithm, is the incremental reseeding process. This process is not specific
to the GROW function presented here— it seems to be quite universal and can be adapted to other
clustering methods. However, combining reseeding with the random walk method offers an excellent
combination of accuracy, speed, and robustness.

2.3 A Multigrid Speedup

As we just discussed, the main computational cost in algorithm 1 stems from the multiplication of F
by the random walk matrix. Much of this multiplication is wasted if the graph has a large number
of vertices and a relatively small number of high quality clusters; a typical random walker would take
a long time to reach the boundary of the cluster in which it starts. A standard approach for dealing
with this difficulty is to coarsen the graph, solve the clustering problem on a coarsened graph and
then successively refine the clustering to transfer back to the original graph [2, 3].

We follow the same coarsening procedure [2, 3] in our multilevel approach. We begin with each
vertex in the graph unmarked. We then pass through the vertices and associate each vertex to its
most similar neighbor, then mark the current vertex and its neighbors. If a vertex has no unmarked
neighbors then it remains a singleton. The coarsened weights are just the sum of all the weights in
each mini-cluster. That is, if the new vertex vk = {vk1

, vk2
} then

W kj = Wk1j1 +Wk1j2 +Wk2j1 +Wk2j2 .

Our experiments also show that we can obtain accuracies competitive with [2, 3] on benchmarks like
20NEWS and MNIST with even a trivial refinement procedure: we assign each element in a coarsened
node the class label of its parent. However, we can achieve higher accuracy with a more careful
refinement: to get from each scale to the next finer scale, we run a slightly modified version algorithm
1 initialized from the clustering at the coarser scale. This modification allows the random walk to
cover the graph much faster than starting from one seed per cluster.

Our refinement procedure proceeds as follows. Let Nsm denote the size of the coarsest graph
returned by the coarsening procedure and let L denote the corresponding number of levels in the
hierarchy. We initialize our refinement procedure by first computing a base clustering of the coarsest
graph by performing the INCRES algorithm at the coarsest level for a fixed number ksm of iterations.
This procedure returns a number msm of seeds upon termination. We then let

αseed :=

(
N

Nsm

) 1
L−1

αiter :=

(
ksm
2

) 1
L−1

denote the amount by which we will increase the number of seeds and decrease the number of iterations
at each level, respectively. In other words, if level l = 1 denotes the coarsest level we let m1 = msm

and k1 = ksm initially. For levels 2 ≤ l ≤ L we draw ml := αseedml−1 seeds at each PLANT step and
perform a total of kl := kl−1/αiter iterations of the INCRES algorithm. Note that with these choices
we have

mL

N
=

m1

Nsm
and kL = 2.

In other words, at each PLANT step we draw approximately the same proportion of seeds at every
level in the hierarchy. We also geometrically decrease the total number of multiplications required
at each level. In this way, the parameters ksm and Nsm of the initial clustering at the coarsest level
completely determine the dynamics of the refinement procedure.

3 Experiments

We compare our method against four clustering algorithms that rely on variety of different principles.
We select algorithms that, like our algorithm, partition the graph in a direct, non-recursive manner.
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The NCut algorithm [12] is a widely used spectral algorithm that relies on a post-processing of the
eigenvectors of the graph Laplacian to optimize the normalized cut energy. The NMFR algorithm [1]
uses non-negative matrix factorization and graph-based random walk principles in order to factorize
and regularize the original input similarity matrix. The LSD algorithm [13] provides another non-
negative matrix factorization algorithm. It aims at finding a left-stochastic decomposition of the
similarity matrix. The MTV algorithm from [14] provides a total-variation based algorithm that
attempts to find an optimal multiway Cheeger cut of the graph by using `1 optimization techniques.
The last three algorithms (NMFR, LSD and MTV) all use NCut in order to obtain an initial partition.
By contrast, we initialize our algorithm with a random partition. We use the code available from [12]
for NCut, the code available from [1] to test the two non-negative matrix factorization algorithms
(NMFR and LSD) and the code available from [14] for the MTV algorithm.

The Seed Increment Parameter ∆m: Recall that ∆m denotes the amount by which we increase
the number of seeds m sampled from each class during an iteration of the algorithm. A larger value of
∆m will quickly increase the seed number m and the algorithm therefore converges more quickly. On
the other hand, a small value of ∆m will allow the algorithm to progress more slowly and allow the
algorithm more freedom in its random exploration of the possible partitions of the graph. This often
results in higher-quality clusterings. The choice of ∆m should therefore reflect a good compromise
between speed and quality. In practice, we generally select

∆m = speed× 10−4 × N

R

with a proportionality constant speed between 1 and 10. In the experiments we show results for
speed = 5 (the default setting of our algorithm) and speed = 1 (for a slower but more accurate
algorithm).

The Datasets: We provide experimental results on five text datasets (20NEWS, CADE, RCV1,
WEBKB4, CITESEER) and four handwritten digits image datasets (MNIST, PENDIGITS, USPS,
OPTDIGITS). We processed the text data sets by removing a list of stop words as well as by removing
all words with fewer than twenty occurrences (for 20NEWS) and fewer than five occurrences (for all
others) across the corpus. We then construct a 5-NN graph based on the cosine similarity between
tf-idf features. For variety, we include some weighted graphs (RCV1 and CITESEER) as well as some
unweighted graphs (20NEWS, CADE and WEBKB4). For MNIST, PENDIGITS and OPTDIGITS
we use the similarity matrices constructed by [1], where the authors first extract scattering features
[15] for images before calculating an unweighted 10-NN graph. For USPS we constructed a weighted
10-NN graph from the raw data without any preprocessing. We provide the source for these data sets
and more details on their construction in the appendix.

LSD NMFR MTV INCRES INCRES
(speed 1) (speed 5)

20NEWS – time to reach 60% purity – 469s – 62.8s 16.7s
MNIST – time to reach 95% purity – 566s 458s 10.3s 8.8s

Table 1: Speed/accuracy trade-off: computational time required for each algorithm to reach 60%
purity on 20NEWS and 95% purity MNIST. A dash indicates that the algorithm never arrived to the
target purity.

Speed and Accuracy Comparisons: In figure 2 we report the performance of the selected
algorithms LSD, NMFR, MTV and INCRES (with parameter “speed” set to either 1 or 5) algorithms
on the 20NEWS and MNIST data sets. We quantify performance in terms of both accuracy and
speed. We use cluster purity to quantify the accuracy of a calculated partition, defined according to
the relation: Purity = #number of “successes”

N = 1
N

∑R
r=1 max1<i<R nr,i. Here nr,i denotes the number

of data points in the rth cluster that belong to the ith ground-truth class. In other words, given
a computed cluster we count a data point as a success if it belongs to the ground truth class that
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(a) 20NEWS (first 3mn) (b) 20NEWS (first 20mn)

(c) MNIST (first 3mn) (d) MNIST (first 20mn)

Figure 2: Purity curves for the four algorithms considered on two classical data sets (20NEWS and
MNIST). We plot purity against time for each algorithm over two different time windows.

best represents the cluster. Each algorithm was run until convergence. Both INCRES and MTV are
randomized algorithms, so we obtain their corresponding purity curves by averaging the results over
120 runs. In order to give an indication of the speed/accuracy trade-off for each algorithm, in table
3 we record the time it took for each algorithm to reach 60% purity on 20NEWS and 95% purity on
MNIST.

Overall, the simple INCRES algorithm provides accuracy comparable to the state-of-the-art NMF
algorithm [1] yet runs an order of magnitude faster. Both algorithms utilize a random walk strategy,
which helps to smooth irregular graphs such as the similarity matrices obtained from text data sets.
This strategy contributes to the robustness of these algorithms and to their solid performance on a
range of datasets. Due to the similarity of their results, we provide a more exhaustive comparison
between these two algorithms in the appendix.

Accuracy Comparisons: Table 3 reports the cluster purity obtained by each algorithm on all of
the test data sets. We allowed each iterative algorithm a total of 10,000 iterations. For the randomized
algorithms (INCRES and MTV) we report the average purity achieved over 120 different runs. The
second column indicates the size of each of the data sets (N) and the number of classes (R). The
fourth column provides a base-line purity for reference, i.e. the purity obtained by assigning each data
point to a class from 1 to R uniformly at random.

Once again, these experiments show that the INCRES algorithm provides accuracy comparable to

7



Data N/R RND NCUT LSD NMFR MTV INCRES INCRES
(speed 1) (speed 5)

20NEWS 20K/20 6.3% 26.6% 34.3% 60.7% 35.8% 61.1% 60.7%
CADE 21K/3 15.5% 41.0% 41.3% 52.0% 44.2% 52.9% 52.1%
RCV1 9.6K/4 30.3% 38.2% 38.1% 42.7 % 42.8% 54.6% 51.1%
WEBKB4 4.2K/4 39.1% 39.8% 45.8% 58.06% 45.2% 57.0% 56.8%
CITESEER 3.3K/6 21.8% 23.4% 53.4% 62.6 % 42.6% 61.9% 62.2%
MNIST 70K/10 11.3% 76.9% 75.5% 97.1% 95.5% 96.5% 96.23%
PENDIG. 11K/10 11.6% 80.2% 86.1% 86.8% 86.5% 88.8% 85.54%
USPS 9.3K/10 16.7% 71.5% 70.4% 86.4% 85.3% 87.43% 86.7%
OPTDIG. 5.6K/10 12.0% 90.8% 91% 98.0% 95.2% 97.2% 95.0%

Table 2: Algorithmic comparison via cluster purity. Boldface indicates the highest purity score for
each data set.

the NMFR algorithm [1]. The timing results for these data sets are consistent with those obtained for
20NEWS and MNIST (c.f. figure 2 and table 3), in the sense that INCRES typically runs one order
of magnitude faster than NMFR on these data sets as well.

3.1 Robustness to perturbation

We took the PENDIGITS matrix from [1] and uniformly at random added noise edges. The original
graph had e = 149, 652 edges; in the experiment, we add .5e, e, and 2e noise edges. The results are in
Table 3.1. We average results over 16 trials. Each iterative algorithm was run for 10,000 iterations.

Dataset NCUT NMFR MTV INCRES INCRES
(speed 1) (speed 5)

PENDIGITS .5 70.3% 84.6% 44.6% 84.7% 77.8%
PENDIGITS 1 64.5% 78.7% 27.8% 83.2% 76.2%
PENDIGITS 2 50.7% 68.1% 16.6% 80.5% 71.0%

Table 3: Robustness to perturbation; PENDIGITS α has fraction α noise edges.

3.2 LFR benchmark

Lancichinetti, Fortunato, and Radicchi have introduced [16] a well-known class of synthetic benchmark
graphs (the LFR benchmarks) to provide a testbed for community-detection algorithms. Each node
in the graph shares a fraction 1 − µ of its edges with nodes in its own community and a fraction µ
of its edges with nodes in other communities. The quantity µ is called the mixing parameter, and it
provides a measure of how well-defined the communities are in the graph. If µ > 0.5 then each node
shares more than half of its edges with nodes in other communities, and so the communities become
increasingly hard to detect past this point. The code used to generate the LFR data is publicly
available provided by the authors in [16]. In our experiments, we consider a graph with 10,000 nodes,
divided in 10 communities of equal sizes. The degree of the nodes are set to 16. We study the behavior
of the various algorithms as the mixing parameter varies from 0.45 to 0.65. The table is shows results
averaged over 16 constructions of the data for each mixing parameter.

4 Multigrid Experiments

Table 4 shows the accuracies and run times of the coarsen and refine algorithms. Note that the
rightmost column, INCRES with no refinement, uses the same algorithm for coarsening as METIS
and GRACLUS and only the trivial “refinement” to get back to the original graph. Since the coarsened
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mixing parameter NCUT NMFR MTV INCRES INCRES
(speed 1) (speed 5)

0.45 100% 100% 45.3% 100% 100%
0.50 99.9% 100% 28.5% 100% 100 %
0.55 96.5% 99.9% 20.1% 99.4% 99.8%
0.60 35.9% 86.7% 15.3% 88.7% 55.7%
0.65 14.8% 14.7% 13.3% 13.1% 13.2%

Table 4: Purity on LFR benchmark datasets for various mixing parameters

Data size METIS GRACLUS INCRES INCRES INCRES
Nsm = 500 Nsm = 1500 no refinement
ksm = 250 ksm = 125

20NEWS 20K 42.4% 42.4% (0.05s) 57.5% (1.5s) 54.4% (1.1s) 36.5% (0.5s)
CADE 21K 29.3% 43.5% (0.1s) 41.8% (0.9s) 45.1% (1.1s) 40.6% (0.4s)
RCV1 9.6K 34.1% 42.4 (0.01s) 44.0% (0.3s) 45.2%(0.3s) 42.4% (0.1s)
WEBKB4 4.2K 37.9% 49.0%(0.01s) 51.0%(0.2s) 52.6%(0.2s) 46.7% (0.1s)
CITESEER 3.3K 45.2% 53.5%(0.01s) 60.2%(0.3s) 61.6%(0.2s) 54.3% (0.2s)
MNIST 70K 86.0% 96.9% (0.17s) 96.2%(3s) 92.7%(3.2s) 89% (0.7s)
PENDIG. 11K 67.3% 84.7% (0.02s) 87.8% (0.9s) 83.4% (1.1s) 86% (0.3s)
USPS 9.3K 75.1% 86.9% (0.02s) 86.5%(0.7s) 86.2%(0.7s) 83.9% (0.3s)
OPTIDIG. 5.6K 83.0% 94.2% (0.01s) 93.0% (0.6s) 91.1% (0.5s) 92.4% (0.3s)

Table 5: Accuracy comparison for multilevel algorithms. All results are averages over 500 trials

graph is quite small, the only difference in timing between the methods is the implementation of the
coarsening.

We have found that the coarsen and refine procedure can be very sensitive to inpure neighborhoods.
In particular, these algorithms do very poorly on the benchmarks in Section 3.1 and 3.2.

Appendix

The table above provides a more exhaustive comparison between the INCRES and NMFR algorithms. We
selected the twenty largest data sets used in the original NMFR paper [1]. We excluded the ADS dataset
because the similarity matrix contained negative entries and no algorithm performed better than random on
this data set. The similarity matrices were downloaded from http://users.ics.aalto.fi/rozyang/nmfr/

index.shtml. The similarity matrices for the text data sets 20NEWS, RCV1 and WEBKB4 are different than
the one presented in the main body of our paper. The authors of the original NMFR paper used the 10,000
words with maximum information gain to construct the similarity matrices associated to these text datasets.
We have preferred to simply use the words appearing more than a certain number of times to construct our
similarity matrices (in order to avoid using ground truth information in the construction of the similarity
matrices). For the NMFR algorithm the results included in the above table are the one reported in [1].

On most of these datasets INCRES and NMFR obtain clustering of similar quality. NMFR tend to be a
little more accurate and consistent, but at the cost of being one order of magnitude slower.

Datasets

• 20NEWS (unweighted similarity matrix): The word count from the raw documents was computed using
the Rainbow library [17] with a default list of stop words. Words appearing less than 20 times were
also removed. The similarity matrix was then obtained by 5 nearest neighbors using cosine similarity
between tf-idf features. Source: http://www.cs.cmu.edu/~mccallum/bow/rainbow/

• CADE (unweighted similarity matrix): The documents in the Cade12 data set correspond to a subset
of web pages extracted from the CAD Web Directory, which points to Brazilian web pages classified by
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Dataset size RAND NMFR INCRES
(speed 1)

YEAST 1.5K 32% 55% 54%
SEMEION 1.6K 13% 94% 93%
FAULTS 1.9K 34% 39% 41%

SEG 2.3K 16% 73% 59%
CORA 2.7K 30% 47% 46%
MIREX 3.1K 13% 43% 45%

CITESEER 3.3K 21% 44% 47%
WEBKB4 4.2K 39% 63% 60%

7SECTORS 4.6K 24% 34% 32%
SPAM 4.6K 60% 69% 69%

CURETGREY 5.6K 5% 28% 16%
OPTDIGITS 5.6K 12% 98% 98%

GISETTE 7.0K 50% 94% 94%
REUTERS 8.3K 45% 77% 74%

RCV1 9.6K 30% 54% 56%
PENDIGITS 11K 12% 87% 89%
PROTEIN 18K 46% 50% 46%
20NEWS 20K 6% 63% 63%
MNIST 70K 11% 97% 96%

SEISMIC 99K 50% 59% 56%

Table 6: Algorithmic comparison via cluster purity. Boldface indicates the highest purity score for
each data set.

human experts. We only kept the three largest classes. The word count from the raw documents was
computed with the Rainbow library [17] as before. Words appearing less than 5 times were removed.
The similarity matrix was then obtained by 5 nearest neighbors using cosine similarity between tf-idf
features.
Source: http://web.ist.utl.pt/%7Eacardoso/datasets/.

• RCV1 (weighted similarity matrix): This dataset was obtained in preprocessed format from http://www.

cad.zju.edu.cn/home/dengcai/Data/TextData.html with the tf-idf features were already computed.
We then simply used cosine similarity and 5-NN.

• WEBKB4 (unweighted similarity matrix): The word count from the raw documents was done with the
Rainbow library [17]. A list of stop word was removed. Words appearing less than 5 times were removed.
The similarity matrix was then obtained by 5 nearest neighbors using cosine similarity between tf-idf
features. Source: http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

• CITESEER (weighted similarity matrix): This dataset was obtained in preprocessed format from http:

//linqs.cs.umd.edu/projects//projects/lbc/index.html where each publication in the dataset is
described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from
the dictionary. We then simply used cosine similarity and 5-NN.

• MNIST, PENDIGITS, OPTDIGITS (unweighted similarity matrix): The similarity matrices were ob-
tained from [1], where the authors first extracted scattering features using [18] for images before calcu-
lating the 10-NN graph. Source: http://users.ics.aalto.fi/rozyang/nmfr/index.shtml

• USPS (weighted similarity matrix): We computed a 10-NN graph using standard Euclidean distance
between the raw images. Each edge in the 10-NN graph was given the weight

wij = e
−
‖xi−xj‖

2

2σ2

where each xi denotes a vector containing the raw pixel data. The parameter σ was chosen as the
mean distance between each vertex and its 10th nearest neighbor. Source: http://www.cad.zju.edu.

cn/home/dengcai/Data/MLData.html
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