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Abstract
Background: Geometric morphometric methods of capturing information about curves or
outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA)
to assign specimens to groups or populations based on their shapes. This methodological paper
examines approaches to optimizing the classification of specimens based on their outlines. This
study examines the performance of four approaches to the mathematical representation of outlines
and two different approaches to curve measurement as applied to a collection of feather outlines.
A new approach to the dimension reduction necessary to carry out a CVA on this type of outline
data with modest sample sizes is also presented, and its performance is compared to two other
approaches to dimension reduction.

Results: Two semi-landmark-based methods, bending energy alignment and perpendicular
projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier
methods and the extended eigenshape method of outline measurement. Rates of classification were
not highly dependent on the number of points used to represent a curve or the manner in which
those points were acquired. The new approach to dimensionality reduction, which utilizes a
variable number of principal component (PC) axes, produced higher cross-validation assignment
rates than either the standard approach of using a fixed number of PC axes or a partial least squares
method.

Conclusion: Classification of specimens based on feather shape was not highly dependent of the
details of the method used to capture shape information. The choice of dimensionality reduction
approach was more of a factor, and the cross validation rate of assignment may be optimized using
the variable number of PC axes method presented herein.

Background
Quantitative morphometric methods have long been used
to classify organisms. Discriminant function analysis

(DFA) or canonical variates analysis (CVA) are often used
to support the identification of distinct species, particu-
larly in fossil lineages [1-4] and alternative statistical
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approaches to the classification of specimens based on
maximum likelihood methods have also been developed
[5]. The explicit assumption is that a low rate of misclassi-
fication of individuals from two populations provides evi-
dence for genetic differences [6].

Traditional quantitative morphometrics have made use of
a variety of lengths, widths, angles, and ratios to capture
information about shape. Geometric morphometric
approaches to shape have focused on complete, uniform
measurement of shape, retaining all geometric informa-
tion throughout the analysis. Within this context, meas-
urement of curves or outlines poses some challenges,
since mathematically curves are infinite sets of points. The
use of multivariate statistical methods (specifically canon-
ical variates analysis, CVA, a multiple group form of dis-
criminant analysis) to classify specimens into groups
requires that the curves or outlines on the specimens be
represented by a limited number of measured variables.
The linear CVA requires a matrix inversion of the pooled
covariance matrix requiring more specimens than the sum
of the number of groups and measurements per specimen.
Classification of specimens based on outlines thus poses
a challenge, in that accurate representation of a curve
requires many measurements accurately, but this increase
in parameters dramatically increases the sample sizes nec-
essary to carry out the CVA.

A variety of geometric morphometric approaches to
curves have been used, but comprehensive assessment of
their performance in a CVA has been limited. Curves have
been represented by mathematical functions [3,7-11] or
by a limited number of discrete points [12-15]. One of the
newer innovations is the class of semi-landmark methods
that incorporate information about curves into the land-
mark-based formalism [14-18]. This approach allows for
the combination of information about discrete homolo-
gous points (i.e., the landmarks) with information about
curves into a single analysis. There have been studies com-
paring the effectiveness of outline-based methods to tradi-
tional measurements [3] or outlines to landmark-based
methods [19], and there have been comparisons among
semi-landmark-based methods [4] but apparently no
direct comparison of different outline-based methods.

Applying DFA or CVA to outline data requires first digitiz-
ing the structure, then aligning the structures to compen-
sate for any arbitrary decision in the digitizing process,
and finally extracting a discriminant function or a set of
canonical variate axes from the data. The impact of alter-
native approaches to digitizing and aligning the structure
on the detection of differences in mean shape or discrim-
ination among groups has not been established. Among
the methods for digitizing the curves are (1) template- or
fan-based methods, in which a set of points is defined a

priori by some rule (i.e., equal angles between all radii of
a circle, with the points to be digitized being located at the
intersection of the radii and the outline curve); (2) man-
ual tracing of curves, in which points are selected by eye as
the curve is traced; and (3) automated curve tracing, in
which software is used to detect differences in color or
brightness to delimit the curve. Additionally, semi-land-
mark methods (bending energy minimization or perpen-
dicular projection), elliptical Fourier analysis, and
extended eigenshape analysis approach the alignment
process differently. The interaction between digitization
and alignment may affect the ability to discriminate
among shapes.

Once the data are collected and aligned, yet another
potential methodological question must be addressed
because methods like CVA and DFA require that there be
more specimens than variables. The linear CVA requires a
matrix inversion of the pooled within-group variance-cov-
ariance matrix, requiring that it be of full rank, which in
turn requires more measured specimens than the sum of
measurements per specimen and groups. If this condition
is not met, there are more degrees of freedom in the meas-
urements than in the specimens. The quadratic form of
CVA requires independently estimated covariance matri-
ces for each group and thus places even greater demands
on the data. Fortunately, the linear method is quite robust
and often outperforms the quadratic method even when
the covariance matrices are unequal [20,21].

The use of outline methods thus poses difficulties for
CVA, both due to the large number of semi-landmarks
needed per specimen to describe outlines and due to the
representation of semi-landmark points by two coordi-
nates (x- and y-) when there is only one degree of freedom
per point. While points along the curve are originally
measured as a pair of Cartesian coordinates, only one
degree of freedom remains after the semi-landmark align-
ment procedure is used. Principal components analysis
(PCA) may be used to reduce the dimensionality of the
data by analyzing a limited number of PC scores of the
specimens instead of the original data. This reduction
poses a need for an objective criterion to determine the
number of PC scores used. The simplest approach is to use
as many PC axes as possible, given the degrees of freedom
in the data, i.e., retaining all PC axes with non-zero eigen-
values.

In many studies, including ours, the rate of correct classi-
fication of specimens is a primary concern. Thus, we
would suggest that optimization of the classification rate
of the subsequent CVA be the objective criterion for deter-
mining the number of PC scores used in dimensionality
reduction. There are two approaches to estimating the rate
of correct assignments: resubstitution and cross-valida-
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tion. The resubstitution estimator (the rate of correct
assignments of specimens used to form the CVA axes) is
known to be biased upwards [6], since this estimate of the
success rate is based on the same data that is used to form
the discriminant function. A better estimate of the classi-
fication rate may be obtained through cross-validation, in
which one or more specimens are left out of the "training
set" used to form the discriminant function [6]. The spec-
imens left out of the training set can then be assigned to
groups based on the discriminant function, with less
upward bias than in the resubstitution rate. The use of
large numbers of PC axes in the CVA may yield high rates
of correct assignments based on the resubstitution estima-
tor but substantially lower cross-validation rates due to
overfitting the discriminant axes to the data, with a subse-
quent loss in generality (see discussion of overfitting in
[22]). Reducing the number of PC axes used in the analy-
sis may result in lower resubstitution rates, but higher
cross-validation rates.

In addition to methods of dimensionality reduction based
on PCA, a method based on a partial least square regres-
sion technique has also been proposed [23]. In this
method, the covariance matrix between the measure-
ments and a matrix of classification codes (with one col-
umn per group or class) is calculated. This covariance
matrix is then decomposed using a singular value decom-
position (SVD), which yields SVD axes that are linear
combinations of the original measurements that show the
greatest covariation with the classification variables. In the
approach used by Kemsley [23], there is one SVD axis gen-
erated per class in the CVA. One then carries out the CVA
on the scores of the specimens along these SVD axes.
Kemsley reported that this method produced higher rates
of correct classification (both resubstitution and cross-val-
idation) than PCA-based dimension reduction.

Since the statistic of interest in many studies is the rate of
correct assignments based on cross-validation, an alterna-
tive approach is to choose the number of PC axes that
result in the highest cross-validation rate of correct assign-
ments. This may be done by calculating cross-validation
rates for a wide range of differing numbers of PC axes and
using the number of PC axes that optimizes the cross val-
idation assignment rates. The bootstrapping approach
outlined by Solow [6] is then used to determine a confi-
dence interval on the cross-validation assignment rate, by
resampling the data (with replacement) and then carrying
out the entire CVA analysis, including the determination
of the number of PC axes to use, on the bootstrapped data
set. The distribution of optimal cross-validation assign-
ment rates over the bootstrap sets can then be used to
determine confidence intervals on the cross-validation
rate of classification. Our approach differs from others
proposed to date [24,25] in using the cross-validation rate

of assignment as the objective criteria for the number of
dimensions to use. These methods determine the number
of PC axes to use in carrying out the CVA based on exam-
ination of the properties of the pooled covariance matri-
ces themselves, rather than the end results [24,25].

The goal of this study is methodological, focusing on the
performance of different measurement and data acquisi-
tion procedures in classifying specimens based on out-
lines using canonical variates analysis. In this study, we
compare the performance of two semi-landmark align-
ment methods (perpendicular projection [PP] and bend-
ing energy minimization [BEM]), elliptical Fourier
analysis (EFA) and the extended eigenshape method to
classify specimens. Additionally, we compare several
approaches to data acquisition, manual curve tracing,
template-based digitization, and automatic edge detec-
tion, as well as assessing the dependence of these methods
on the number of points used in the analysis. We used as
a test case the rectrices (tail feathers) of a single species of
bird, the ovenbird (Seiurus aurocapilla), belonging to dif-
ferent age categories. Age-related differences in feather
shape are common in many species and provide a good
data set for a methodological study because there is a
known, but subtle, difference in tail shapes between birds
that are under a year old and birds that are more than a
year old. In the field, experienced bird banders are often
able to discriminate between age categories of birds by vis-
ual inspection of rectrix (tail feather) tip shape (e.g., [26-
29]). Traditional morphometric measurements – rectrix
tip angle [30-32] and width of rectrices [33]– also have
been used to distinguish between birds in their first year
and older birds. Among ovenbirds, rectrix tip shape has
been documented to be more truncate among adult birds
than young birds [32,34]. Additionally, in this study, the
age of specimens could be determined independently of
feather shape based on dissection of these previously col-
lected specimens. Moreover, feathers present a challenge
to digitization, in that the edge of the feather is occasion-
ally difficult to distinguish. Ontogenetic differences in
ovenbird feathers thus present a system with a known var-
iation in shape, but with some challenges to successful
discrimination of shape.

Results
Automatic curve tracing did not work well with the speci-
mens in this study. Since the automated curve tracing
actually required manually tracing the feather outline for
our data set to get reliable detection of the outline edge,
due to the irregular edges of the feathers, and did not
appear to offer higher repeatability (Table 1), we did not
attempt to carry out automated curve tracing on the
remaining specimens. When bending energy minimiza-
tion (BEM) was used with data acquired using a fan, there
was a lower variation within repeated measures than
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when the data was acquired using curve tracing (Table 1).
In contrast, perpendicular projection (PP) alignment
yielded very similar estimates of variation in data acquired
using fans and curve tracing. The ratio of the variation in
repeated measurements of a single specimen to the total
population variance using curve tracing was 0.077 for
BEM and 0.020 for PP, while this ratio was 0.164 for BEM
of fan-digitized data and 0.035 for PP of fan-digitized
data. Manual curve tracing also took less time than the
fan-based method to digitize feathers. The average digitiz-
ing time using curve tracing was approximately 4 minutes,
whereas the same operation using a fan averaged roughly
6.5 minutes.

When a fixed number of PC axes (40, to allow for slightly
more specimens than variables when carrying out cross
validation calculations) were used to reduce the dimen-
sions of the data prior to the CVA, there was strong evi-
dence of over-fitting (Table 2). The resubstitution rate of
correct assignments was 100% for all methods using 40
PC axes. The cross validation rate of correct assignment
varied from 58.7% to 78.3% for 40 PCA axes. The PLS
method produced lower resubstitution rates (76.1% to
89.1%) but typically slightly higher cross validation rates
(54.4 to 82.6%). The variable PCA method introduced
here produced intermediate resubstitution rates (82.6%

to 93.5%) but consistently high cross-validation rates
(69.6 to 89.1%) and the difference between resubstitution
and cross validation rates was greatly reduced.

The ability to correctly discriminate among specimens
from the two age groups did not depend on the approach
to digitization or on the alignment method (Table 2). The
optimal rate of cross-validation assignment was remarka-
bly consistent for the different approaches to semi-land-
marks. The differences in cross-validation assignment
rates (± 2.2 %) observed among the semi-landmark meth-
ods amounted to assignment of a single specimen. The
cross-validation rate for EFA data was not as high,
although the confidence interval for the EFA-based assign-
ment rate was very similar to that derived from the semi-
landmark methods. The estimated cross-validation rate
for the eigenshape data was lower still. However, the boot-
strap-derived estimate of the 95% confidence interval on
the cross-validation rate for eigenshape data indicated
that the observed rate was at the lower edge of the confi-
dence interval (Table 3). The confidence interval itself was
virtually identical to that obtained using the other meth-
ods.

The number of points included in the analysis had little
impact on the results, although we should note that we

Table 2: Classification rates produced by a CVA after each of the three dimensionality reducing approaches considered

40 PC axes PLS Variable PC axes

Data acquisition Data processing RS rate CV rate RS rate CV rate # of axes used RS rate CV rate

Curve Tracing Bending energy 100 69.6 76.1 73.9 9 82.6 87.0
Curve Tracing Perpendicular projection 100 69.6 87.0 73.9 13 89.1 84.8
Curve Tracing Elliptical Fourier analysis 100 58.7 87.0 65.2 12 87.0 73.9
Curve Tracing Eigenshape analysis 100 65.2 82.6 54.4 24 93.5 69.6
Fan Bending energy 100 65.2 89.1 82.6 7 89.1 89.1
Fan Perpendicular projection 100 78.3 89.1 82.6 7 93.5 89.1

In each case, the canonical variate axes were significant using a Wilk's lambda test at p < 0.005 or better. Resubstitution (RS) were higher than 
cross-validation (CV) rates for the fixed number of principal component (PC) axes and partial least squares (PLS) methods, and closer to equal for 
the variable PC axes method. All rates are listed as percentages.

Table 1: Repeated measures variance under different measurement protocols using a single feather

Data acquisition Data processing Variance 95% confidence interval for variance

Automated Bending energy 0.000594 0.000287 – 0.000780
Curve tracing Bending energy 0.000213 0.000107 – 0.000295
Fan Bending energy 0.000114 0.000057 – 0.000144
Automated Perpendicular projection 0.000046 0.000027 – 0.000053
Curve tracing Perpendicular projection 0.000011 0.000008 – 0.000011
Fan Perpendicular projection 0.000009 0.000007 – 0.000009

Each protocol used 82 points around the periphery of the feather. A single feather was digitized 10 times. The confidence interval was determined 
using bootstrap resampling with replacement. The bending energy minimization always produced higher variance estimates than the perpendicular 
projection method.
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could not readily vary the number of points using fan-
based digitization. The error in the estimated length of the
curve based on a reduced number of points seemed to be
quite low over the range of points used in this study
(Table 4). The ability to discriminate similarly showed
very little dependence on the number of semi-landmarks
used (Table 5), with the only differences appearing at 20
and 30 semi-landmarks when using curve tracing and the
BEM.

An experienced bird bander correctly classified 38 (82.6%,
n = 46) of all individual rectrices, similar to the percentage
correctly assigned by the geometric morphometric meth-
ods. When the class of indeterminate feathers was
removed, the proportion correctly classified increased to
90.3% (28 of 31). The more traditional method of using
all tail feathers resulted in a classification rate of 93.5%
(43 of 46), which increased to 97.4% (37 of 38) without
indeterminate specimens.

Discussion
Discrimination between age classes based on shape is
robust to changes in data acquisition methods, semi-land-
mark alignment criteria, and method of shape analysis
(semi-landmarks, EFA, and eigenshape). We find no evi-
dence for the superiority of curve-tracing or fan-based
methods of data acquisition for semi-landmark alignment
for the specific example of feather outlines. However, the
average time to digitize feathers was lower for curve trac-
ing than fan-based methods, and curve tracing also
allowed for easy variation in the number of points used in
the final analysis. Based on these results, we would recom-
mend curve tracing over the use of fans or templates.

Methods of semi-landmark alignment can be directly
compared with respect to repeatability, whereas it does
not seem legitimate to directly compare numerical results
of partial Procrustes distances or summed squared dis-
tances based on BEM with those based on PP. Although
the specimens may be in the same linear tangent space,
they were not projected into that space in exactly the same
manner. Since a single curve projects into different loca-
tions under the two alignment schemes, the difference in
the two methods is not linear with respect to distances
measured in the two groups. Thus, rather than using raw
variance measures, ratios of variance of repeated measures
of a single specimen to the whole population variance
were used to compare BEM and PP. BEM produced a
larger ratio of variation in repeated measures of a single
specimen to the variation in the entire sample than PP
whether using a fan or curve tracing. Curve tracing pro-
duced a lower ratio than fan-based digitization. Since the
total variance in the sample is the sum of biological vari-
ance and measurement error, it appears that the BEM
results in higher variation in measurements than PP for
this data set.

Table 3: Bootstrap estimates of the cross-validation rates of CVA assignments : Variable number of PC axes method

Cross-validation assignment rate (%)

Data acquisition Data processing # of PC axes Observed 95% confidence interval (derived from bootstrap)

Curve tracing Bending energy 9 87.0 69.6 – 95.7
Fan Bending energy 7 89.1 76.1 – 95.7
Curve tracing Perpendicular projection 13 84.8 76.1 – 97.8
Fan Perpendicular projection 7 89.1 78.3 – 97.8
Curve tracing Elliptical Fourier analysis 12 73.9 63.0 – 93.5
Curve tracing Eigenshape analysis 24 69.6 67.4 – 95.7

Each method of outline processing shown used 82 points around the periphery of the feather. Rates of cross-validation assignment based on 
canonical variates analysis (CVA) were similar for all methods, given the overlapping 95% confidence intervals. The number of principal component 
(PC) axes used to optimize the cross-validation assignment rate varied slightly over the different methods.

Table 4: Error in the length of the curve as a function of the 
number of points used

# of Points Mean error Largest observed error

120 0.67% 1.14%
82 0.86% 1.54%
60 1.02% 1.67%
41 1.46% 2.43%
30 1.87% 2.95%
20 2.46% 3.55%

Initial digitization involved recording >200 arbitrarily space points 
along the periphery of the feather. Reduction of these points to a 
fixed number of equally spaced points (20 to 120) along the outline 
inevitably produced error. This error is expressed as a percentage of 
the total original length of the outline. The mean error is the average 
over all specimens in the study; the largest observed error is the 
largest over all specimens. Error increases as the number of points 
used to approximate the curve decreases.
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The method of shape analysis–specifically whether the
analysis was based on semi-landmark methods, EFA, or
extended eigenshape analysis–had very little effect on the
results. The different methods produced very similar rates
of successful discrimination, based on the bootstrap esti-
mates of the 95% confidence interval of the cross-valida-
tion rate of correct assignments. The semi-landmark
methods did provide slightly higher observed cross-vali-
dation rates, perhaps due to the semi-landmark alignment
or to the use of centroid size rather than outline length as
a measure of size. It should be noted that the semi-land-
mark methods do incorporate "sliding" of semi-landmark
points along the estimated curves, and thus the semi-land-
mark processing methods are not related to one another,
or to the Fourier and eigenshape methods, by a simple lin-
ear transformation of variables. It is reassuring to note
that the method of capturing the outline did not strongly
affect the results of the analysis, indicating that any of the
methods could be reasonably used to study outlines.
However, the semi-landmark methods do allow ready
incorporation of landmark data points not along a curve
into the same analysis as outline data, which may prove
advantageous in studies where interior structure is of
importance. While this study did not incorporate land-
mark data in the CVA, an earlier ontogenetic study [35]
indicated that the information carried by semi-landmarks
and semi-landmarks are comparable.

The approach to dimensionality reduction presented here
yielded higher rates of cross-validation assignment than

the simple approach of using a number of PC axes equal
to the degrees of freedom in the system, or the PLS
method. In the original discussion of the randomization
test to determine the range of classification probabilities,
Solow [6] made use of backward variable selection to
determine which variables to include in the discriminant
function. This type of automatic variable selection will
probably reduce the types of over-fitting of the discrimi-
nant function that we have observed (our CVA algorithm
did not include such a variable reduction feature). We
directly maximized the cross-validation assignment rate,
rather than applying indirect approaches such as back-
wards or forwards variable selection, or determination of
the number of axes to use based on the characteristics of
the pooled variance-covariance matrix employed. Varia-
ble selection might produce further optimization of these
rates; however, cross-validation rates approach the resub-
stitution rates for our data, indicating a balance between
generality and precision. The Curse of Dimensionality
[36] also appears in genetic data [37,38], which suffers
from the same difficulty of sample size relative to the
number of variables as appears in semi-landmark data, so
perhaps these approaches will prove useful in other con-
texts.

Conclusion
While a clear statement of the superiority of one method
of outline analysis over the others would make for a
resounding conclusion, this was not the case for this
study. The general consistency of our results and the char-

Table 5: CVA results using variable number of semi-landmark points used.

Cross-validation assignment rate (%)

Data acquisition Data processing # of points used # of PC axes Observed 95% confidence interval

Curve tracing Bending energy 20 18 67.4 67.4 – 93.5
Curve tracing Bending energy 30 18 78.3 67.4 – 93.5
Curve tracing Bending energy 41 10 84.8 73.9 – 95.7
Curve tracing Bending energy 60 10 84.8 69.6 – 95.7
Curve tracing Bending energy 82 9 87.0 69.6 – 95.7
Curve tracing Bending energy 120 9 87.0 67.4 – 95.7
Curve tracing Perpendicular projection 20 18 84.8 76.1 – 97.8
Curve tracing Perpendicular projection 30 10 82.6 76.1 – 95.7
Curve tracing Perpendicular projection 41 11 84.8 71.7 – 95.7
Curve tracing Perpendicular projection 60 13 87.0 73.9 – 97.8
Curve tracing Perpendicular projection 82 13 84.8 76.1 – 97.8
Curve tracing Perpendicular projection 120 12 84.8 76.1 – 95.7
Curve tracing Elliptical Fourier analysis 41 10 84.8 65.2 – 93.5
Curve tracing Elliptical Fourier analysis 82 12 73.9 63.0 – 93.5
Fan Bending energy 41 6 89.1 73.9 – 95.7
Fan Bending energy 82 7 89.1 76.1 – 95.7
Fan Perpendicular projection 41 9 87.0 73.9 – 97.8
Fan Perpendicular projection 82 7 89.1 78.3 – 97.8

The rate of correct cross validation assignment based on the canonical variates analysis (CVA) was not highly dependent on the number of points 
used to represent the curve. The number of principal component (PC) axes used to optimize the cross-validation assignment rate varied with the 
data acquisition and processing methods and the number of points on the outline.
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acteristics of CVA indicate the promise offered by semi-
landmark methods of integrating information about out-
lines or curves with landmark points. Semi-landmark
methods were as effective in capturing the outlines of the
feathers as the more established Fourier and eigenshape
approaches. The variable number of PC axes method of
dimensionality reduction does serve to optimize the
cross-validation rates of correct assignment when used in
conjunction with outline data. Furthermore, this method
produces higher cross validation rates than either a fixed,
maximal number of PC axes, or the partial least squares
method. Manual curve tracing was the preferred method
of digitization, in that it was as reproducible as other
methods, offered flexibility in the number of semi-land-
marks used, and proved to be slightly faster than tem-
plate-based digitization.

Methods
Study specimens and human assessment
Forty-six known age ovenbird specimens from the Cani-
sius College Vertebrate Collections were utilized in this
study. Age determination of each specimen occurred by
dissection and examination of skull pneumatization.
Incomplete skull pneumatization indicates a young
(hatch-year) bird, while adults have a fully pneumatized
skull. In addition, a bird bander with extensive experience
with ovenbirds (SRM) assigned each individual to an age
category using two different criteria. The first characteriza-
tion involved examination of the right, fifth rectrix, the
feather that was digitized for this study. Typically, bird
banders designate each individual as young, adult, or
indeterminate. Indeterminate feathers normally would
not have been assigned an age category in the field, but in
this study were further subdivided into either adult or
young categories to match the two categories used by the
CVA. Additionally, the bander examined all the feathers of
the tail, which is what is typically done in the field, using
the same initial classifications of young, adult, or indeter-
minate (subsequently subdivided into young and adult).
The right fifth rectrix was removed from each specimen,
and the upper surface was scanned using a flat-bed scan-
ner. Prior to scanning, the barbs and barbules of each
feather were arranged in the typical interlocking manner,
producing intact vanes. A blue background provided con-
trast and a ruler provided scaling information in each
scanned image.

Data acquisition and approaches to digitizing curves
Three different approaches to the digitization of points
along curves were examined during this study. The sim-
plest approach was to measure points spaced on the curve
in an arbitrary manner, obtaining a dense sampling of
points around the curve, and then use interpolation meth-
ods to reduce this set of points to some desired, fixed
number of equally-spaced points [3,8,9,12]. We refer to

this approach as manual curve tracing. The second
approach was to use a template (hereafter referred to as a
fan) on the digital image that provided guidelines to
delineate equally linearly-spaced, or equally angularly-
spaced, points along the curve [35,39]. The final approach
was to use an automated approach to digitization, in
which a computer is used to detect changes in an image
(color or contrast levels), which indicates the edge of the
specimen [11,40]. After the automated detection and trac-
ing of the edge, the number of points used was then
reduced in the same manner as in the manual curve-trac-
ing approach.

Using the tpsDig program [41] for manual curve tracing
(using the "draw curves" mode), we digitized at least 200
closely spaced points around the periphery of the feathers
(Fig. 1). Each tracing began at the most proximal point
where the barbs of the leading edge of the feather met the
rachis and ended at the analogous point on the trailing
edge of the feather. This set of points was then used to gen-
erate data sets of a chosen number of points (from 20 to
120) around the periphery of the feather. Linear interpo-
lation was used to obtain equally spaced points from the
originally measured, irregularly spaced points. To deter-
mine the number of points necessary to describe the
curve, we followed MacLeod's [12] suggestion of using the
error in the length of the curve. This error was calculated
as the percentage change in the curve length caused by the
interpolation. The points obtained this way were then
analyzed using semi-landmark methods, Fourier meth-
ods, and extended eigenshape methods.

We used a software tool, MakeFan6 [42], to plot fans on
the image of each feather, digitizing points at the intersec-
tion of the curve and the lines of the fan. When construct-
ing the fan, we anchored the ends of the fan at the tip of
the feather and at the proximal end of the feather vane
where it met the rachis (Fig. 1). A variety of different fans
or "combs" allow for either equal linear or equal angular
spacing to be used, with anchoring based on two to four
landmark points. The fan used in our measurement pro-
tocol had 82 total points, 16 of which were in a semi-cir-
cular pattern near the tip with equal angular spacing, and
the remaining 66 were evenly linearly-spaced along the
length of the feather. We also reduced this original set of
82 points to a 41-point data set by omitting every other
point in the fan. Points obtained using the fan method
were analyzed only as semi-landmarks because the une-
qual point spacing of the fan makes these points inappro-
priate for use with Fourier and eigenshape methods.

Using the automatic edge detection option in tpsDig, we
automated the digitization. The uneven edges of the
feather limited the effectiveness of automatic edge detec-
tion, making it necessary to trace the outline of the feather
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using the pen tool in tpsDig prior to automatic edge detec-
tion. This additional manual procedure removed many of
the advantages of the automatic edge detection method,
leaving little practical difference in the operation of the
edge detection method and the manual curve-tracing
method. These feather data thus did not provide a good
test set for the comparison of automatic versus manual
curve tracing, except to the extent that other features of
interest may similarly require considerable image
enhancement.

Semi-landmark processing
Once a set of points around the curve was digitized, these
semi-landmarks were processed using one of two align-
ment algorithms intended to reduce effects of the arbitrary
selection of a limited number of points to represent the
entire outline. Two different approaches, bending energy
minimization (BEM; see [15,17]) and perpendicular pro-
jection (PP; similar to that used by [14]), were used to
align the semi-landmarks along the curves. The initial
stages of semi-landmark alignment were the same for the

Digitization using a fan template (A) and manual curve tracing (B) of the same featherFigure 1
Digitization using a fan template (A) and manual curve tracing (B) of the same feather. When using a fan tem-
plate, points were placed at the intersection of the fan and the feather margin. Manual curve tracing involved placing t 200 
points around the periphery to capture the outline.

A 

B 
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two methods: the landmarks and semi-landmarks were
first submitted to a generalized Procrustes analysis (GPA).
This standard landmark-based morphometric method
removes all differences between the specimens that can be
attributed to the location of the specimen, to differences
in orientation (or rotation), and to scale. In this study, a
partial Procrustes superimposition [43,44] was used,
which fixes the centroid size (the square root of the
summed squared distances of landmarks about the cen-
troid) at 1. The GPA iteratively estimated a mean form and
aligned all specimens on it.

After initial estimation of the mean shape of the speci-
mens (Fig. 2), semi-landmark alignment was used to
select a set of points used to represent the information
contained in the homologous curves. Both methods
started by estimating the tangent to the curve at each
measured semi-landmark point. The landmarks were then
moved along the tangent either to produce the smoothest
possible deformation from the reference form (BEM; [15-
17,45]) or to remove all variation tangent to the curve
(PP; see [14]).

BEM alignment was carried out using the tpsRelwarp pro-
gram (version 1.39, [41]). The positions of the semi-land-
marks (along contours) of each feather were allowed to
slide along the direction parallel to the contours to mini-
mize the bending energy necessary to produce the change
in the contour relative to the reference form (the GPA-esti-
mated mean form). This method is equivalent to the con-

servative assumption that the contour of a particular
specimen is the result of the smoothest possible deforma-
tion of the reference form [15]. The reference form was
then re-estimated after sliding the semi-landmarks of each
specimen. This procedure was iterated until a stable mean
form was obtained. As N. MacLeod (personal communi-
cation) notes, this procedure may result in a geometric
construction (the GPA reference form) having substantial
influence on the analysis, an effect which might be
checked by using a fixed biological specimen as the refer-
ence form, rather than utilizing an iterated GPA mean
shape. We used a GPA mean reference because other
choices of reference can pose other, potentially more seri-
ous, problems [46].

Semi-landmark alignment based on the PP method was
carried out using the SemiLand6 program [42]. The com-
ponents of the differences in semi-landmark positions
between the reference form and the target form that are
tangent to the curve were mathematically removed. This
procedure resulted in an alignment of the semi-landmarks
on the target form along lines perpendicular to the curve
passing through corresponding semi-landmarks on the
reference form (see [14]). As long as the contours lack
abrupt curvature changes relative to semi-landmark spac-
ing, this criterion minimizes the distance between the
semi-landmarks on the target and the reference.

Once the semi-landmarks were aligned under one of the
two criteria, they were treated as points in a landmark-

Mean shapes under different semi-landmark methodsFigure 2
Mean shapes under different semi-landmark methods. The mean of young specimens is shown is represented by the 
blue outline, and the mean of adults is represented by the red outline, each used 82 points. (A) Bending energy alignment using 
curve tracing, (B) perpendicular projection using curve tracing, (C) bending energy alignment using a fan, and (D) perpendicular 
projection using a fan.

B 

D 

A 

C 
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based analysis carried out in the linear tangent space to
the underlying curved shape space [44,47]. Statistical pro-
cedures, however, must account for the reduction of one
degree of freedom per semi-landmark lost in the semi-
landmark alignment procedure.

Elliptical Fourier analysis
Data gathered using the manual curve-tracing approach
was analyzed using elliptical Fourier analysis (EFA), a
fairly standard approach to outline data [3,8,11,48]. In
this particular implementation of EFA, a set of equally lin-
early-spaced points around the outline was formed from
the curve-traced data and the centroid position was set to
the origin. The Fourier transforms of the x- and y- coordi-
nates of these points were obtained. To standardize speci-
men size and orientation, the length of the ellipse formed
by the first harmonic was scaled to one, and this ellipse
was oriented along the x-axis.

Standard eigenshape analysis
The standard eigenshape analysis of shape [12,13] started
with a series of equally linearly-spaced points around the
closed outline, starting at a fixed landmark. This set of
Cartesian coordinate points was then converted into the I
shape function, which is the net angular deviation
between the chords connecting adjacent landmark points
around the outline. The I shape function may be thought
of as a series of turning angles that specifies the directional
changes necessary to move around the outline from one
point to the next, resulting in one angular value per point
around the outline. Given the spacing between the points
around the outline, it was possible to use this set of angles
to calculate the relative Cartesian coordinates of the
points on the outline. It is common to convert I to a nor-
malized form I* by subtracting the net angular change
expected for a circle of the same size. This approach to
shape measurement removed differences attributable to
translation and rotation by measuring all angles relative
to the orientation of the adjacent chord between points
on the outline, so there is no information remaining
about absolute orientation or starting location in I*.
Eigenshape analysis removes the effects of size by spacing
outline points equally around the outline, rather than
standardizing centroid size.

A singular value decomposition of the variance-covari-
ance matrix of the I* values [49,50] was used to produce
a set of axes that summarize the greatest variation along
an ordered number of axes, as in a conventional PCA. The
set of scores for specimens along these axes was then sub-
mitted to further analysis. The use of the term eigenshape
data for this specific type of I*-based outline data was in
keeping with established literature [12,49], although we
note that eigenvector decompositions are common in
many other contexts, including PCA.

Variation in repeated measurements of a single specimen
To estimate digitizing error, a single image of a single
specimen was digitized ten times by a single operator.
Each of the ten images was then analyzed using each of
the three measurement methods and subjected to both
methods of semi-landmark alignment. The summed-
squared partial Procrustes distances about the mean shape
divided by the number of specimens minus one was used
as a measure of the variation in the measurements. Resa-
mpling with replacement was used to estimate a confi-
dence interval for this variation. Data aligned by BEM and
data aligned by PP were not directly compared to one
another because of the difference in semi-landmark align-
ment criteria. Instead of direct comparisons of variation,
we compared the ratio of the variation in repeated meas-
ures of a single specimen to the variation in the entire
sample (all adult and young).

Discriminating between two groups based on shape
To discriminate between age-classes by shape, we used
CVA. For the semi-landmark data, partial warp and uni-
form component scores based on the thin-plate spline
decomposition were used [43,51,52]. Partial warps are a
linear transformation of the original coordinates and thus
will not affect the performance of the linear canonical var-
iates axes. The EFA and eigenshape data were submitted to
the CVA without additional processing. CVA requires a
matrix inversion of the pooled within-group variance-cov-
ariance matrix. PCA was used to produce the necessary
degree of dimensionality reduction. To determine the
number of PC axes to retain, we calculated the cross-vali-
dation rate achieved using from 1 to df (the number of
degrees of freedom in the system) PC axes and used the
number of axes that produced the highest cross-validation
rate.

A simple cross-validation protocol was used throughout
the study. The cross validation assignment rate was deter-
mined by sequentially selecting a single specimen at a
time as the test data. The CVA was carried out on the train-
ing set and the resulting CV axis was used to classify the
test data. The success rate over all specimens forms the
estimate of the cross validation rate. Each of 46 specimens
was used sequentially as the cross validation specimen.
Thus, there were 45 specimens in the training set and 1
specimen in the test set at time, producing a total of 46
possible cross-validation sets available under this proto-
col, More complex methods of forming test sets in cross
validation are available, but the simple approach used
here appears to yield reasonable and consistent results.
The bootstrapping approach outlined by Solow [6] was
then used to determine a confidence interval on the cross-
validation assignment rate by resampling with replace-
ment and repeating the entire CVA analysis, including the
determination of the number of PC axes. The subroutines
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to determine the optimal numbers of PC axes and esti-
mate this confidence interval are included in the program
CVAGen6n [42].

Dimensionality reduction using partial least squares
In this approach developed by Kemsley [23], the covari-
ance matrix between the measurements for each specimen
and an N × S classification matrix is first calculated. The N
× S classification matrix has N rows, one for each speci-
men, and S columns, where there are S groups. Following
Kemsley's approach, a specimen receives a score of (N-ni)/
N in the ith column of the classification if it is a member
of the ith class, and a score of -ni/N in that column if it is
not, so that the columns all have a mean of zero. This
form of "dummy coding" is often used in multiple regres-
sion analysis. A singular value decomposition (as dis-
cussed in [53]) of the covariance matrix of the
measurements and this classification matrix yields S axes
that summarize the greatest pattern of covariance of the
measurements with the classification variables, analogous
to the way PC axes summarize the patterns of variance.

The scores of the specimens along these SVD axes are then
used as variables in the CVA analysis. This approach as a
whole is very similar to a multiple regression analysis.
Kemsley [23] notes that in fact S-1 columns in the classi-
fication matrix would be sufficient to specify the group
membership of all individuals (since if a specimen is not
in the first S-1 groups, it must be in the last group S). How-
ever, Kemsley advocates use of S columns and S SVD axes,
which we found to produce higher classification rates
than the use of S-1 axes.
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