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Introduction 

 Modern students of mathematics take for granted the comparative ease with which 

difficult concepts, definitions, and theorems are related to them in university courses. Prior to the 

relatively recent call for the standardization of mathematical language, different symbols and 

words for the same idea abounded, making it nearly impossible for mathematicians from 

different regions to communicate effectively and slowing the growth of mathematics. The field 

of analysis is a newer subject in mathematics, as it only came into existence in the last 400 years. 

With a new field comes new notation, and in the era of universalism, analysis becomes key to 

understanding how centuries of mathematics were unified into a finite set of symbols, precise 

definitions, and rigorous proofs that would allow for the rapid development of modern 

mathematics. This paper will trace the introduction of subjects and the development of new 

notations in mathematics from the seventeenth to the nineteenth century that allowed analysis to 

flourish. 

Beginning in the seventeenth century with the introduction of analytic geometry by René 

Descartes, and independently Pierre de Fermat, notations and concepts that would allow for the 

development of calculus, and then analysis, came into being. Descartes was the first 

mathematician to use numerical superscripts to denote higher powers, a key development that 

simplified products and later allowed for Isaac Newton and Gottfried Wilhelm Leibniz to 

preform calculus concisely.  Fermat also helped make calculus analysis conceivable through his 

developments in maxima, minima, tangents, infinitesimals, and limits. From the work of these 

predecessors, Newton and Leibniz, were able to develop calculus in the late seventeenth century. 

Newton likely developed calculus first, but his notations for “fluxions and fluents” were less 

approachable than Leibniz’s later symbols ∫ and d for integrals and derivatives. Thus, despite an 
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international argument to determine whose work was done first, Leibniz came out on top because 

of the legibility and adaptability of his symbols in a difficult subject. 

The eighteenth century arguably witnessed the first instances of true analysis. Leonhard 

Euler developed the symbol f(x) to denote a function and first used Σ for summations, notations 

that made equations easier to work with; he also helped standardize notations through his prolific 

work, which was read internationally. Building on the notations that came before him, Augustin-

Louis Cauchy developed the concepts of limits (denoted by “lim.”) and continuity that would 

allow him to introduce rigor into analysis and allow the subject to grow in the nineteenth 

century. Karl Weierstrass was then able to make Cauchy’s development more rigorous by 

introducing his ε-δ language, and Richard Dedekind later constructed the real number line 

through the method of “Dedekind cuts,” also giving us the notation for the set of real numbers, 

ℜ, later to be displaced by ℝ. In addition, Dedekind introduced the term “irrational numbers.” 

 In the twentieth century, an attempt was made to standardize notations in analysis, a well-

defined field, through the efforts of Nicolas Bourbaki. In their mission to “redo” mathematics 

and ground it in set theory, the Bourbaki group called for precision, rigor, and a unification of 

symbols that would make mathematical language universal. Thus, they standardized much of the 

earlier developments in analysis and also developed new symbols that would help advance the 

field, namely ∉ (not an element of), ∅ (the empty set), ⇒ (implication), and ⇔ (equivalence); 

they also introduced the term “bijection.” 

 By tracing the mathematical developments that led to analysis, one can see the effect 

notations have on modern mathematics. Understanding which symbols failed and which endured, 

and how mathematical language was standardized to increase communication and developments 

among mathematicians from different geographical regions, modern students can recognize how 
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the achievements of the past have allowed for the rapid growth of, and the comparative ease of 

learning, mathematical analysis.  

 

The Early History of Modern Analysis 

 The modern foundations of mathematical analysis were established in seventeenth 

century Europe when René Descartes and Pierre de Fermat independently developed analytic 

geometry. By analyzing the developments made and the notation used by each mathematician, 

undergraduate students can begin to recognize the trends that led to calculus and then to analysis. 

Furthermore, by gaining an understanding of the history and presentation of mathematics prior to 

the advent of analysis, modern students might realize how much easier it is to understand the 

difficult concepts introduced, as standardized notation permits simpler communication of the 

ideas. The understanding of analysis, as preceded by analytic geometry and calculus, “is easily 

enhanced through an ingenious interpretation of [Descartes’] statements in terms of later 

symbolisms and concepts, thus implying a specious modernity of viewpoint” (Boyer 458). With 

Descartes’ and Fermat’s developments, it became clear how heavily analytic geometry and 

calculus rely “upon a felicitous choice of notations” and how the “repeated use such notations 

have come to be associated implicitly with the ideas which they are now intended to represent” 

(Boyer 458). Thus, by uncovering how Descartes and Fermat developed and presented analytic 

geometry, one can see how calculus began and how notation became essential to mathematical 

communication and development. 

 Analytic geometry is essentially the application of algebra to geometry; it is concerned 

with defining and representing geometrical shapes in a numerical way. It appears that, before the 

seventeenth century, there was no conception “that in general an arbitrary given equation 
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involving two unknown quantities can be regarded as a determining per se, with respect to a 

coordinate system, a plane curve,” and the recognition of this “together with its fabrication into a 

formalized algorithmic procedure, constituted the decisive contribution of Fermat and Descartes” 

(Boyer 462). Since neither mathematician published his findings early on in their development, 

“both men were in independent possession of their methods well before [their publication] time–

–about 1619 for Descartes and 1629 for Fermat” (Boyer 462). Yet, since Descartes had a series 

of dreams that first led him to the Cartesian plane, “November 10, 1619, then, is the official 

birthday of analytic geometry and therefore also of modern mathematics” (Bell 40). 

 Thus, in a sense, it was Descartes’ Geometry that “made possible the other great 

mathematical breakthrough of the [seventeenth] century,” namely calculus (Fauvel 337). As E. 

T. Bell puts it, the invention of analytic geometry allowed “algebra and analysis … to be our 

pilots to the unchartered seas of ‘space’ and its ‘geometry’” (Bell 54). Furthermore, Descartes’ 

algebraic contribution to mathematics aided “in the formation of generalizations which were to 

culminate in the formal algorithms of the calculus invented by Isaac Newton and Wilhelm 

Leibniz” (Fauvel 337). It is important to remember that Fermat’s work also allowed for the 

development of calculus, as “each of them, entirely independently of the other, invented analytic 

geometry” (Bell 56). Descartes and Fermat did correspond “on the subject but this does not 

affect the preceding assertion” that each invented analytic geometry on his own (Bell 56). We 

will see that their correspondence actually allowed Fermat to add more to the field and come 

within a hair’s breadth of calculus. 

Aside from the overall invention of analytic geometry, some of the most important 

developments contributed to analysis by Descartes and Fermat were notational. Descartes had 

some developments that were better than others, as we will see through the rejection of his 
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symbol for equality. However, we have Descartes to thank for the notation of higher powers that 

is universally recognized in modern mathematics. François Viète, Descartes’ mathematical 

predecessor, was known for refining many notations used in algebra and giving mathematicians 

some symbols still used today. Like Viète, “Descartes advocated using letters and formal 

manipulations with symbols to analyse geometrical problems, but his algebraic analysis was both 

literally and conceptually easier to use” (Fauvel 336).  Perhaps this improvement came about 

because a limitation of earlier algebra was “the lack of notation for higher powers of multiple 

simultaneous unknowns (rather than a single one),” a limitation Descartes’ geometric and 

algebraic analysis required him to overcome (Manders 189). Thus, Descartes followed Viète’s 

notation in that he “clearly displayed the powers of the unknowns as … products of the repeated 

multiplication of the unknown by itself,” but he improved and simplified it by introducing 

numerical superscripts (Mahoney 43). Descartes’ notation for higher powers was adopted by 

Newton and Leibniz, and it allowed them to integrate and differentiate more concisely, 

essentially making calculus legible. 

Despite introducing the modern notation for higher powers, Descartes’ sign for equality 

was rejected by both Newton and Leibniz in their calculus works. Robert Recorde invented =, 

the symbol for equality used today, and “the fact that both Newton and Leibniz used Recorde’s 

symbol led to its general adoption” (Cajori I: 306). If Leibniz had “favored Descartes’ , then 

Germany and the rest of Europe would probably have joined France and the Netherlands in the 

use of it,” and England would have adopted it when they finally converted from Newton’s to 

Leibniz’s calculus (Cajori I: 306). Although Descartes developed many new notations, only the 

ones favored by Leibniz lived on, and “the final victory of = over  seems mainly due to the 
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influence of Leibniz during the critical period at the close of the seventeenth century” (Cajori I: 

307).  

 Fermat’s improvements in analytic geometry were the direct consequence of a slight feud 

between the mathematicians, and offered more important ideas (rather than important notations) 

to Newton and Leibniz. Fermat criticized Descartes’ work, unaware that he was contributing to a 

conspiracy by some of his peers to destroy Descartes’ composition. Specifically, he “corrected 

Descartes in an essential point (that of the classification of curves by their degree),” which 

allowed Fermat to apply analytic geometry to three dimensions while “Descartes contented 

himself with two dimensions” (Bell 63-4). This lead to a debate between the two men, but 

“Descartes learned nothing from it, even though he was in error; Fermat, even though he was 

correct, gained new mathematical insights that led him to revise his methods and sharpen his 

tools” (Mahoney 171). In particular, the debate with Descartes was the “integral part of the 

history of Fermat’s methods of maxima and minima and of tangents,” which were central to the 

invention of calculus (Mahoney 171). For example, by finding the slope of the required tangent 

line at a point on a curve, Fermat found a limiting value for a limiting position (Bell 60). 

Furthermore, Fermat discovered that, at maxima and minima, this limiting value is zero, another 

important contribution to calculus (Bell 62). In fact, in a letter he sent, “Newton says explicitly 

that he got the hint of the method of the differential calculus from Fermat’s method of drawing 

tangents” (Bell 64). Thus, “Fermat conceived and applied the leading idea of the differential 

calculus thirteen years before Newton was born and seventeen before Leibniz was born” (Bell 

56). However, he did not invent calculus because “one cannot say with any degree of fairness or 

objectivity that Fermat’s work in analysis of curves was … pointed toward the concept that 

underlies the calculus as its fundamental theorem” (Mahoney 282). In fact, his “analyses are 
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often incomplete, stopping at a problem to which he assumes the reader knows the solution” 

(Mahoney 47). Overall, if Fermat was not looking for a particular answer, he would not find it; 

rather, he would focus on the problem he wanted a solution for and solve it. Thus, he lent much 

to analysis when he “began to operate with infinitesimals and limit procedures,” but it would be 

up to mathematicians like Newton and Cauchy to synthesize that knowledge (Mahoney 47). 

 The invention of analytic geometry was a turning point for mathematicians, who 

suddenly found their aspirations and interests directed toward analysis. Without Descartes’ initial 

idea for and development of the notation for higher powers, Newton and Leibniz would not have 

been able to concisely represent calculus. Furthermore, they would not have had all of the tools 

necessary to invent calculus at the ready without Fermat’s developments in maxima, minima, 

tangents, infinitesimals, and limits. By beginning the trend of standardizing mathematical 

symbolism and by inventing the field of analytic geometry, Descartes and Fermat became the 

founders of analysis without realizing the full impact their works would have on modern 

mathematics. 

 

The Development of Calculus 

 In the field of analysis, three men from “among the seventeenth-century mathematicians 

active in the development of modern notations [played] a prominent rôle––… Descartes, Leibniz, 

and Newton” (Cajori II: 180). We have already discussed Descartes’ contribution through his 

development of analytic geometry. His advancements unlocked the door to calculus, which 

Fermat pushed open, and which Newton and Leibniz stepped through together after a little 

pushing and shoving. Since neither Newton nor Leibniz published his work early on in its 

development, it is unclear who actually invented calculus first, but we could speculate that 
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Newton would have had the idea first. However, it was Leibniz that “invented the notation of 

calculus and allowed [for] its further development” (Bardi 180). For example, by the end of the 

seventeenth century, Leibniz’s “calculus was successful in various applications used by others 

with Leibniz’s blessing, and the fact that it continued to be developed was strong testimony to 

Leibniz’s methods” (Bardi 180). Yet, Newton’s methods were not so widespread, and he 

“seemed less interested in promoting his fluxions and fluents than in securing the rights of their 

invention for himself; moreover, his notation was inferior to Leibniz’s” (Bardi 180). In order to 

understand why the invention of calculus was so widely contested and how Leibniz ended up 

“winning,” the notations of each man must be studied. 

 Newton was undoubtedly a revolutionary genius and prolific in his mathematical 

advancements. However, he was less interested in distributing his work to other mathematicians, 

focusing instead on creating it. Thus, it came as no surprise when,  

in his ‘Account,’ Newton attacked and devalued one of Leibniz’s greatest contribution[s] 

to mathematics: his invention of the symbols of calculus, which had greatly enhanced the 

ability of mathematicians to learn and apply the methods of calculus that are still in use 

today (Bardi 215).  

Newton believed his work was superior because he did “not confine himself to symbols” (Bardi 

215). While such an argument could be relevant in modern mathematics, where creativity may be 

confined by the over-standardization of symbology with the rise of machine language, Newton’s 

argument would not have held up in the seventeenth century. This is because mathematicians 

desperately needed to confine their publications to a universal language equipped for distribution 

to the growing, as most mathematicians were inventing new symbols with every publication 

regardless of whether or not a symbol had been assigned to an idea. 



Venezia 9 

Newton’s greatest achievement for calculus was in his method, especially “his emphasis 

on the tangent as the instantaneous direction of motion along the curve; and his discovery of a 

pattern in the results which yielded him an algorithm,” thoughts which allowed his use of infinite 

series to surpass Descartes’ (Fauvel 380). Not long after this discovery, Newton realized the 

Fundamental Theorem of Calculus: “that quadrature problems were inverse to tangency 

problems, and he was then in possession of what can be called the Newtonian calculus” (Fauvel 

380). More specifically, “Newton called his discovery the Method of Fluxions and described it in 

terms of geometry” (Schrader 509). At this point, we reach Newton’s failure in calculus: 

notation. Florian Cajori explains how Newton denoted his fluxions and fluents and why they 

failed: 

he gave , each of these terms being the fluxion of the one preceding, and the 

fluent of the one that follows. The  and  are fluent notations. His notation for the 

fluxions of fractions and radicals did not meet with much favor because of the 

typographical difficulties (II: 197-8) 

Unfortunately, upon comparison, Newton’s notation was not the only thing separating his work 

from Leibniz’s. Newton “approached the idea of the variation in a function in terms of bodies in 

motion and the concepts of speed and acceleration, [whereas] Leibniz used the idea of 

mathematical infinitesimals in his approach,” making his work more comprehensive than 

Newton’s calculus (Aczel, Wilderness 125). Yet, there is some irony in this, given the 

controversy about the difficulties and contradictions in differentials, as criticized later by George 

Berkeley, in both Newton and Leibniz’s works (Berlinghoff 46). 

 Thus, we advance toward Leibniz’s calculus. We have already noted that the notation 

Leibniz had invented was the more useful and superior notation which allowed for Johann 
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Bernoulli and other European mathematicians to advance calculus throughout the seventeenth 

century (Bardi 144). But why was this so? For Leibniz, a key ingredient in the invention of 

calculus “was his interest in logic and language, for it led him to think deeply about the basic 

processes involved and to devise a notation which, by capturing an underlying unity, made his 

discoveries easy to use” (Fauvel 424). He “made a prolonged study of matters of notation … 

[and] experimented with different symbols, corresponded with mathematicians on the subject, 

and endeavored to ascertain their preferences” (Cajori II: 180-1). He correctly supposed that his 

notation would make for the easy development of calculus, an idea proven by the fact that his 

symbols from 1675 are found in every modern calculus textbook (Bardi 244). Leibniz’ “way of 

calculating with symbols––truly, a calculus––and its scope and power is illustrated by the range 

of problems Leibniz tackled with it” (Fauvel 424). 

 The symbols that Leibniz invented for differential and integral calculus first appeared on 

October 29, 1675 when he thought of the integral sign. Leibniz saw integration as “summation, 

which is why he gave it his symbol, ‘∫,’ which is a fancy S that he invented” (Bardi 86). The 

symbol “provided a general way to treat infinitesimal problems of calculus” and was one of the 

reasons Leibniz’s work spread (Bardi 86). However, despite becoming a master mathematician 

through his creation of a clear, compact language for calculus, Leibniz did not publish his work 

for nearly a decade, keeping it from wide use longer than necessary (Bardi 87). 

 A key development in Leibniz’s calculus aside his notation was the realization that 

integration and differentiation “‘are each other’s converse’” (Bardi 123). In fact, 

once it was proved that differentiation and summation were reciprocal operations, 

Leibniz allowed himself to consider d and ∫ as fully-fledged assemblers, just as were sum 

and difference, product and quotient, and also powers and roots. In supplement to the six 
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operations of Descartes’ algebra, Leibniz thus considered that he himself added a new 

pair of reciprocal ones, thus constituting a calculation framework of his own, with eight 

operations, exceeding and encompassing the ancient scheme (Serfati 84). 

It is helpful to note that, although these discoveries and his notations were published in his 1684 

and 1686 papers, “the term integral was first used in a paper by one of the Bernoulli brothers in 

1690 and ‘integral calculus’ first appeared as a term in a paper written by Johann Bernoulli with 

Leibniz in 1698” (Bardi 123). Now that we know both Newton and Leibniz’s methods and 

symbols, a side by side comparison of their work, as presented by Dorothy V. Schrader, reveals 

much about the two: 

Instead of the flowing quantities and velocities of Newton, Leibniz worked with infinitely 

small differences and sums. He used the now familiar !"
!#

 instead of Newton’s dotted 

letters for the derivate symbol; he used ∫ for his integration symbol while Newton used 

either words or a rectangle enclosing the function. Newton himself asserted that his 

‘prickt’ letters were equivalent to Leibniz’s !"
!#

 and that by $$
%&#

 he meant the same thing 

that Leibniz meant by $$
%&#

. Leibniz was more interested in developing a notation for his 

new method than was Newton (510). 

Here, we see how closely the two were related, proving that each did have a way of doing 

calculus. Furthermore, we see the ease and simplicity of Leibniz’s notation, which is more 

useable and expandable than Newton’s. 

 Though the two mathematicians, their colleagues, and their countries fought considerably 

over who invented calculus first and whose method was better, “there is no evidence that Newton 

borrowed from Leibniz; there is little evidence that Leibniz borrowed from Newton” (Schrader 

516). We may suppose that Newton invented fluxions at least ten years before Leibniz developed 



Venezia 12 

the calculus,” but both men are honored equally as two independent inventors today (Schrader 

516). As for the development of analysis, “England seems to have been the loser” (Schrader 

519). As the world of mathematics progressed following the seventeenth century invention of 

calculus, “German and French mathematicians established reputations for themselves and their 

countries, while England remained insular and isolated,” stuck in Newton’s limited calculus if 

only for their reverence for their genius mathematician (Schrader 519). The delay in British 

mathematics prompted the publication of G. H. Hardy’s A Mathematician’s Apology, in which he 

lamented that the Newton-Leibniz controversy separated the British from continental European 

work. The international preference for Leibniz’s symbols became apparent when L’Hospital 

published the first calculus textbook in 1696, as he used Leibniz’s notation and cemented the 

prolonged use of ∫ and !"
!#

 in mathematics. Ultimately, “both Leibniz and Newton are equally 

credited with independently developing the modern theory of calculus based on the work of 

Eudoxus, Archimedes, Fermat, Descartes, and other mathematicians,” and the work of both 

mathematicians were key to the beginnings of modern analysis (Aczel, Wilderness 125). 

 

The Beginning of Analysis 

While “the seventeenth century brought immense advances in mathematics, which took 

the pioneering work of the ancient Greeks and catapulted it into the modern age, culminating in 

the birth of the calculus,” it was in the eighteenth century that “calculus was taken to higher 

levels of understanding, application, and abstraction, and mathematical analysis as we know it 

today was born” (Aczel, Wilderness 137). The first step in developing this modern analysis was 

applying it widely, a feat achieved through the abundant publications of Leonhard Euler. 

Furthermore, a new field needs new notations, another area in which Euler was able to lead other 
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mathematicians, as seen through his development of the symbol f(x) to denote a function and Σ 

for summations. However, it is through Augustin-Louis Cauchy that analysis really sets itself 

apart from other mathematics, as he developed the concepts of limits and continuity that would 

allow the subject to grow. In their work, both Euler and Cauchy were able to refine calculus and 

introduce analysis to the mathematical world. 

Developing a new field in mathematics is no easy feat, especially when publications are 

not widely disseminated and notations differ from one mathematician to another. Thus, the 

proliferation of Euler’s work provided the ideal, and only possible, way to introduce analysis to 

the wider world; had any other mathematician attempted to reach a wide audience and make his 

notations conventional, he would have failed. In other words, symbols develop slowly, often 

depending on the success of the mathematician who presents them: “if his or her work is widely 

read and the symbol is appealing, other authors adopt it,” if not, the symbol is lost (Stallings 

232).  Since Euler was “the most prolific writer ever to have written about mathematics [he] may 

have introduced more of the symbols used today than any other mathematician” (Stallings 235).  

Since seventeenth century mathematicians laid the foundation for uniform mathematical 

symbology, Euler was able to introduce many notions in the eighteenth century, including his 

most famous symbols: f(x), Σ, π, e, and i. Only f(x) and Σ will be discussed here given their 

relevance to modern calculus and analysis. The fact that Euler developed so many notations 

besides the ones discussed here is extremely impressive, as, “excepting Leibniz and Euler, no 

mathematician has invented more than two ideographs which are universally adopted in modern 

mathematics” (Cajori II: 337). 

 Many of the notations we use today rely on the symbology that Euler introduced in the 

eighteenth century. The first use of f(x) can be seen in a pre-calculus textbook that Euler 
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published, in which he “emphasized the idea of a function,” and many of the conventions and 

notations we still use were introduced in his other books (Berlinghoff 45). For example, the 

development of the modern notion of an integral is linked to the evolution of the function, which 

Euler “conceived of the notion [for] in a fairly general way” by working with curves and finding 

that y = f(x) (Bourbaki, Elements History 219).  This notation for a function is still present in 

analysis, as is Euler’s use of Σ to denote a summation.  This notation can be seen in his work on 

the infinite series, such as those for sin(x) and cos(x) (Struik 120).  Without Euler’s notations of 

f(x) and Σ, integrals and infinite series would be much more difficult to compute, and Cauchy’s 

work on limits and continuity would have been much more difficult to publish, if he could have 

done it at all. Thus, it is fitting that Euler’s “contemporaries called him ‘analysis incarnate,’” as 

without his work in, and devotion to, the field, it may not have developed as quickly as it did 

(Aczel, Wilderness 142). 

 With the foundation for analysis laid and the notation for analysis offered by Euler, 

Cauchy was able to begin his innovative work that would mark analysis as a necessary field. In 

fact, one of the major interests that modern mathematics is indebted to Cauchy for is “the 

introduction of rigor into mathematical analysis,” something that was missing in previous work 

(Bell 271). He also led mathematicians toward the “‘arithmetization’ of analysis which later 

became the core of Weierstrass’ investigations” (Struik 152). Cauchy wanted to ground his work 

in absolute certainty, and thus the definitions and proofs that mark the beginning of analysis are 

among the most thorough of any new field. In fact, it was Cauchy’s goal to 

‘do calculus right.’ For the first time, there were definitions of the derivative and the 

integral. For the first time, the Fundamental Theorem of Calculus was highlighted as 

indeed fundamental. And, much as we do today, Cauchy emphasized the algebraic side of 
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calculus, preferring computations to diagrams and formulas to geometric intuitions 

(Berlinghoff 49). 

In terms of “doing calculus right,” Cauchy contributed much to the standardization of the field 

by using notations that had been used before. For example, if we look at Cauchy’s “published 

lessons of 1823 on the infinitesimal calculus, and his lessons of 1829 on the differential calculus, 

we find that he availed himself of the Leibnizian dx, dy, !"
!#

 and also of the Lagrangian Fʹ′ and yʹ′ 

for the first derivatives” (Cajori II: 217). By employing symbols that were already recognizable, 

he set a standard which has prevailed widely down to our own day (in that mathematicians build 

upon what has already been given). 

 Aside from improving calculus, Cauchy also introduced new concepts hinted at by Euler 

that would come to define analysis. One development of Cauchy’s was the limit. Cauchy defined 

the limit as follows:  

When the values successively attributed to the same variable approach a fixed value 

indefinitely, in such a way as to end up by differing from it as little as one could wish, 

this last value is called the limit of all the others. So, for example, an irrational number is 

the limit of the various fractions which provide values that approximate it more and more 

closely (Fauvel 566). 

In addition to defining the limit, Cauchy also provided mathematicians with the notation still 

used today. Florian Cajori traces Cauchy’s use of the limit and the development of the notation, 

which has only been adjusted slightly for ease: 

A. L. Cauchy wrote ‘lim.’ and pointed out that ‘lim. (sin. x)’ has a unique value 0, while 

‘lim. ((	
  (
#
	
  ))’ admits of two values and ‘lim. ((sin. (

#
	
  ))’ of an infinity of values, the double 

parentheses being used to designate all the values that the [enclosed] function may take, 
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as x approaches zero. … The period in ‘lim.’ was gradually dropped, and ‘lim’ came to 

be the recognized form (II: 255). 

In 1823, Cauchy used his notation and that developed by Euler to define the derivative of f(x) as 

the limit of the quotient of differences )(+,-)/)(+)	
  
0

 as h goes to zero, when the limit exists. He also 

used limits to enhance the understanding of integrals by defining the integral as the limit of 

sums, through which “Cauchy made a good first approximation of a real proof of the 

Fundamental Theorem of Calculus;” it was also Cauchy who “not only raised the question, but 

gave the first proof, of the existence of a solution to a differential equation” (Grabiner 616-7). In 

short, Cauchy was able to enhance calculus and also advance analysis through the development 

of the limit. 

 Perhaps Cauchy’s greatest contributions to analysis are his convergence proofs for 

infinite series, many of which are named after him, as in them we find the modern concept of 

continuity. As before, it is helpful to see his definition of the continuity of a function y = f(x), 

which he gave as: “an infinitesimal change α of the independent variable x always produces an 

infinitesimal change f (x + α) − f (x) of the dependent variable y” (Borovik 246). Weierstrass 

would later reconstruct this infinitesimal definition in terms of epsilon and delta, yet “many 

historians have sought to interpret Cauchy’s definition as a proto-Weierstrassian definition of 

continuity in terms of limits” (Borovik 246). However, it is helpful to not that “Cauchy did not at 

any time work with ‘continuity at a point’, it is always continuity ‘between two limits’, i.e. on an 

interval,” a hole which would affect the discoveries of Dedekind concerning continuity (Borovik 

264). 

 The transition from calculus to limits of sequences and functions marked a major 

watershed in analysis and allowed for the work of Cauchy, and later Weierstrass and Dedekind, 
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to make significant advancements in mathematics. In a sense, “Cauchy offered at last a 

beginning of an answer to that series of problems and paradoxes which had haunted mathematics 

since the days of Zeno, and he did this not by denying or ignoring them, but by creating a 

mathematical technique with which it was possible to do them justice” (Struik 152). Thus, it is 

because of Euler and Cauchy that modern analysis is so far advanced and easily communicated. 

Without the notational developments of f(x) and lim, for example, further studies in analysis 

would have been an uphill battle; luckily, Cauchy paved the way for other mathematicians to 

study continuity. 

 

Approaching the Real Numbers 

 Following Cauchy, analysis became much wider, allowing for improvements in earlier 

work as well as for new developments during the nineteenth century. Karl Weierstrass was 

famous for his rigorous approach to mathematics, and through his work, Cauchy’s definition of 

continuity was greatly improved by the epsilon-delta techniques. Furthermore, Richard Dedekind 

offered new work in continuity by constructing the real number line without any holes, a 

problem that had been unsolved since the Greeks rejected the idea of real numbers. He did this 

through the method of Dedekind cuts, in which each real number is proven to be on the number 

line through a widely applicable method. Through their developments in analysis, Weierstrass 

and Dedekind were able to introduce new notations that would become widely recognized and 

used in modern mathematics. 

 Anyone familiar with Weierstrassian rigor knows “the expressions ‘ε method of proof’ 

and ‘ε-definition,’ Weierstrass having begun in his early papers to use ε in his arithmetized 

treatment of limits” (Cajori II: 256). While Weierstrass was the first to popularize ε-δ proofs, 
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“the epsilon was similarly used by Cauchy in 1821 and later, but sometimes he wrote δ instead, 

[so] Cauchy’s δ is sometimes associated with Weierstrass’ ε in phrases like ‘ε and δ methods’ of 

demonstration” (Cajori II: 256). The use of epsilon and delta was innovative and allowed 

Weierstrass to use algebraic inequalities rather than words in his theorems for analysis (Grabiner 

617). In fact, he used his “own clear distinction between pointwise and uniform convergence 

along with Cauchy’s delta-epsilon techniques to present a systematic and thoroughly rigorous 

treatment of the calculus” in his lectures (Grabiner 617). Thus, a great achievement of 

Weierstrass was his complete transformation of the basis of calculus. His “clear, precise 

definitions removed any trace of mystery or geometric intuition from calculus, putting it all on a 

logical foundation that depended only on algebra and arithmetic” (Berlinghoff 49). However, 

Weierstrass’ approach wasn’t easy “as students who have had to learn his ‘epsilon-delta’ 

approach to limits will still testify” (Berlinghoff 49). 

 One place where it is easy to see the achievement of Weierstrass’ ε-δ language is in the 

revised definition of continuity. As we saw previously, Cauchy defined continuity as “an 

infinitesimal change α of the independent variable x always produces an infinitesimal change f (x 

+ α) − f (x) of the dependent variable y” for a function y = f(x) (Borovik 246). About 50 years 

later, “Weierstrass reconstructed Cauchy’s infinitesimal definition in the following terms: for 

every ε > 0 there exists a δ > 0 such that for every real α, if |α| < δ then |f(x+α) − f(x)| < ε” 

(Borovik 246). Instead of relying on words to define continuity, Weierstrass assigned epsilon and 

delta to algebraic inequalities, allowing for a more rigorous definition that reflected the ideals of 

analysis. 

 In the nineteenth century, mathematicians like Weierstrass “were in the final stages of 

tightening up the logical underpinnings of calculus, a process that had been going on for almost 
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200 years” (Berlinghoff 185). As such, they came “to a much deeper understanding of the real 

numbers, the numbers that can be used to label all the points on a coordinate axis” (Berlinghoff 

185). Central to this work on real numbers and the number line was Richard Dedekind. Due to 

his modesty, “he did not publish his construction of the real numbers for fourteen years after he 

discovered it, but nonetheless it was an important event” (Fauvel 572). His modesty likely came 

from his position as a professor at the Technische Hochschule in Brunswick (which was 

equivalent to teaching at a modern high school, humbler than a research position at university), 

but he nevertheless constructed the rigorous theory of the irrational (Struik 162). In his papers on 

continuity, Dedekind was able to repair “the largest single omission in Cauchy’s work, and 

sketched how it was now possible for the first time to give a rigorous account of the basic 

theorems about continuous functions” (Fauvel 572). His unique approach to solving this problem 

“was to use the fact that the rational numbers are ordered to create sets of rationals which define 

new numbers, the real numbers … it is rather like using families of parallel lines to define points 

at infinity in the projective plane” (Fauvel 572). This method was called the “Dedekind cut.” 

Furthermore, the Dedekind cut method of defining irrational numbers is very similar to Eudoxus 

theory as presented in the fifth book of Euclid’s Elements, showing how long it took to prove 

that the real number line is continuous even though the solution was hinted at in previous works 

(Struik 162). 

 Dedekind’s theory relied greatly on rational numbers, which he used to define the 

irrational numbers, essentially filling the holes in the real number line. Specifically, he extended 

the rationals to define “new numbers by use of sets of the ‘old’ rational numbers,” but instead of 

using convergent sequences like Cauchy, “he talked of partitions of the set of all rationals into 

two sets” (Jones 670). The central aspect of this theory of irrational numbers was the concept of 
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the “cut” or “schnitt,” where “a cut separates all rational numbers into two classes, so that each 

number in the first class is less than each number in the second class; every such cut which does 

not ‘correspond’ to a rational number ‘defines’ an irrational number” (Bell 520). Thus, every 

such cut, “by definition was identified with a real number” (Jones 670). Through the method of 

Dedekind cuts, Dedekind was able to construct the real number line without any holes, creating 

the branch from analysis to real analysis and setting the stage for Cantor’s work with infinite 

sets. 

 Most notable here about Dedekind cuts is the notation developed with them. Rational 

numbers were already recognized in mathematics, but since Dedekind was dealing with numbers 

that were not rational, he “went on to call such cuts irrational numbers [emphasis added],” the 

first use of the term which has become common in modern mathematics (Fauvel 576). 

Furthermore, “the set of all cuts he called the real numbers,” which was denoted by ℜ, which 

later became the ℝ we recognize today as the set of all real numbers (Fauvel 576). Thus, 

Dedekind gave us the terminology for irrational numbers and the symbol for the set of real 

numbers. 

 Weierstrass and Dedekind were able to take the initial work done by Cauchy in analysis 

and make it more rigorous, allowing ε-δ proofs to become typical in the field and for real 

numbers to be employed in new ways. From the initial work of Descartes and Fermat, the 

calculus of Newton and Leibniz, and the beginning of analysis introduced by Euler and Cauchy, 

Weierstrass and Dedekind were able to expand analysis and make it one of the dominant fields in 

modern mathematics. But most importantly, they developed notations (namely ε, δ, ℜ, and the 

term “irrational”) that would continue to thrive as analysis was taken deeper by later 

mathematicians. 
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Standardization of Notation 

With all of the developments in analysis in the nineteenth century, mathematics was 

beginning to be overcrowded with differences once more. Thus, the twentieth century offered an 

opportunity to standardize mathematics and help students learn the same foundational material, 

no matter which universities they attended and professors they had. Such unification would also 

help standardize notation, which had developed many new symbols since the seventeenth 

century when Descartes first pointed mathematicians toward analysis. Thus, Nicolas Bourbaki 

was born, and “his” sole purpose was to revolutionize mathematics by creating a textbook, called 

the Elements of Mathematics, containing all of the fundamental details of the subject. 

In the late 1930s, a group of young French mathematicians came together to revolutionize 

the subject, as “they felt that new ideas had not been sufficiently internalized by the 

mathematical community, especially in France” (Berlinghoff 55). Six brilliant mathematical men 

promoted their goals by collectively writing a multivolume textbook, which they called the 

Elements of Mathematics “with a nod toward Euclid” (Berlinghoff 55). Since the textbook was 

written collectively, they adopted a pseudonym: Nicolas Bourbaki. Bourbaki was meant to be 

viewed as a single entity. With their work, the Bourbaki group “had a serious common purpose: 

to overthrow the stagnant educational regime of the time” (Aczel, Wilderness 244). Their 

ambitious goal was to use the Elements of Mathematics to “redo” all of mathematics and prompt 

the abandonment of the old textbooks, which continued to create differences among 

mathematicians (Aczel, Wilderness 244). 

Aside from their purpose to standardize mathematics and encourage university professors 

to teach students the same material despite their geographical differences, Bourbaki had many 

rules for their collective publications. For example, 
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The founders of Bourbaki believed that creative mathematics is primarily a young 

person’s sport, so they agreed to retire from the society before the age of fifty and elect 

younger colleagues to replace them. Thus, Nicolas Bourbaki [became] a renowned but 

mysterious international scholar, always at the peak of his professional productivity, 

supplying the scientific world with a continuing series of modern, clear, accurate 

expositions in all fields of contemporary mathematics (Berlinghoff 56). 

Furthermore, in order to remain a secret society and produce high-quality publications, the group 

“held regular meetings in French resort towns” (Aczel, Wilderness 244). After a chapter was 

written by one member, the entire group would convene and argue every detail to ensure the 

work would be universally adopted, allowing for precise definitions, concise theorems, and 

preeminent notations. Once the group perfected their first chapter, “Nicolas Bourbaki began 

publishing mathematical papers and textbooks” that would replace the old and ineffectual ones 

(Aczel, Wilderness 244). 

 Bourbaki’s influence on mathematics was “mostly felt through the Elements [of 

Mathematics, but, since] these took many years to write, their impact came around mid-century 

or later” (Berlinghoff 56). Overall, the books take an abstract point of view which is typically 

rejected in modern mathematics, but nevertheless “give a precise and reliable account of each of 

the fields they cover,” leading to their twentieth-century adoption (Berlinghoff 56). Bourbaki’s 

“volumes were meant to bring together, formalize, and make precise large chunks of 

mathematics, and this they did (mostly) successfully,” as mathematicians saw the need to 

standardize the subject, and Bourbaki’s work provided an ideal starting point (Berlinghoff 56). 

  In order to produce the effects of “‘a profound faith in the unity of mathematics, and 

wishing to be ‘universal mathematicians’, Bourbaki undertook to derive the whole of the 
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mathematical universe from a single starting point.’ That staring point was the theory of sets,” 

which had been introduced by Georg Cantor a few decades earlier (Aczel, Artist 99). The set 

theory book became the first full text written by the group, and “it set the stage for the 

development of all of mathematics based on the notions of a set, set membership, inclusion, and 

the elementary set operations of union, intersection, and symmetric difference” (Aczel, Artist 

106). Bourbaki decided to ignore the inconsistencies in the structure of set theory, and based “all 

of mathematics as practiced by its members, and inherent in its writings, on the foundation of the 

theory of sets” (Aczel, Artist 106). 

 Bourbaki also included many other topics in their books, but they specifically sought to 

discuss the “classical topics of analysis such as analytic functions, Fourier series, differential 

equations, and integration, almost all of which were included in the existing textbooks” in order 

to modernize the discussion of these topics (Mashaal 50). Along with their modern discussion 

came modern notations, new as well as old (which became the norm after their publication in 

Bourbaki’s wide-read works). In fact, Bourbaki can “be considered the mathematician who had 

the greatest influence on the training, working methods, and writing style of the majority of 

today’s mathematicians” (Bolondi 125). Their goal to use  

the most rigorous and simple language possible led them to develop numerous new terms. 

For example, they invented the word ‘bijection,’ which refers to a correspondance 

between two sets that associates each element of the first set to an element of the second 

set and vice versa. In addition to terminology, Bourbaki invented new notation. The most 

famous example is the symbol ∅, which represents the empty set (that is, the set with no 

elements). This symbol was invented by [André] Weil, the only Bourbaki to be familiar 

with the Norwegian alphabet (Mashaal 56). 
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Some of their terms were more successful than others, but many were adopted by 

mathematicians around the world, including ∉, ∅, ⇒, and ⇔.  

All of the above notations became widespread in analysis, especially in the discussion of 

sets. Bourbaki defined ∉  by “the relation ‘not (T ∈ U)’ is written T ∉ U” (Bourbaki, Elements 

Mathematics II.1, translation Dr. Berg). More importantly, the empty set notation was introduced 

through the Elements of Mathematics, which stated that “the assertion τ	
  #((∀x)(x ∉ X)) [the set 

with no elements] corresponds to the … functional symbol ∅, which we refer to as the empty set; 

the relation (∀x)(x ∉ X), which is equivalent to X = ∅, reads: ‘the set X is empty’” (Bourbaki, 

Elements Mathematics II. 6, translation Dr. Berg). Bourbaki also gave modern mathematicians 

the implication symbol, claiming that “the combination ∨ ¬ is represented by ⇒,”  meaning that 

P ⇒ Q is equivalent to P ∨ (¬ Q) (Bourbaki, Elements Mathematics I.15, translation Dr. Berg). 

Finally, the group introduced the equivalence symbol through set theory, asserting: “Let A and B 

be assertions. The assertion (A ⇒ B) and (B ⇒ A) is represented by A ⇔ B” (Boubaki I.30, 

translation Dr. Berg). 

Bourbaki was able to combine these new notations to make older notions easier to read, 

as seen by relations, which are still represented by the Bourbaki method. In the discussion of set 

theory in the Elements of Mathematics, they denote relations as follows: 

 Let R be a relation, and let x and y be letters. The relations 

  (∀x)( ∀y)R ⇔ (∀y)( ∀x)R 

  (∃x)( ∃y)R ⇔ (∃y)( ∃x)R 

  (∃x)( ∀y)R ⇒ (∀y)( ∃x)R 

are theorems of T  , 
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where T    is a theory (Bourbaki, Elements Mathematics I.35, translation Dr. Berg). Thus, one can 

see the lasting impact of Bourbaki’s work in mathematics, especially in modern notation. 

 Unfortunately, not all of Bourbaki’s work was as enduring as these notations. In fact, in 

their effort to standardize mathematics, they may have been “overly formal, too abstract, and 

much more rigorous than necessary, thus making it unnecessarily difficult to read and understand 

mathematics, and to use it in a meaningful way” (Aczel, Artist 121). Such a criticism is 

somewhat valid, since “Bourbaki’s main aim had been to improve and deepen the the 

understanding of mathematical concepts, not to make them more obscure” (Aczel, Artist 121). 

Furthermore, as modern mathematics continued to develop, it became clear that “‘the unity of 

mathematics is not based on a single root, on set theory, as Bourbaki advocated, but rather on the 

fact that the various branches of mathematics communicate among each other,’” reducing the 

reputation of Elements of Mathematics (Mashaal 151). 

 Despite their absence from modern mathematical teaching, Bourbaki led the charge for 

standardizing what students learned in school, which has led to the general acceptance that 

students of mathematics gain the same knowledge of the subject.  Furthermore, their structure 

and call for strict proofs helped “to make mathematics more rigorous, more precise, and more 

proof-based,” another sign that Bourbaki did affect the teaching of mathematics (Aczel, 

Wilderness 245). Also, as previously mentioned, the notations developed by Bourbaki (namely 

∉, ∅, ⇒, and ⇔) have become standardized, marking another success in their mission to 

improve mathematics. By recalling the mathematical community to the “goals of axiomatizing 

mathematics, stressing structure, and promoting rigor in a discipline,” the Bourbaki group made 

themselves nearly obsolete and began their “decline after the end of the 1960s precisely because 
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[they] had achieved [their] goal so marvelously” (Aczel, Artist 204). With the rigor, precision, 

and notations of Bourbaki, mathematics became the standardized subject we recognize today. 

 

Conclusion 

 As mathematics progresses, so does the language used to communicate the 

advancements. The notations discussed above have allowed mathematicians to work globally 

rather than locally, to achieve the precision necessary in their subject, and to produce rigorous 

proofs. The standardization of these symbols has brought clarity to a difficult field, especially for 

students. The twenty-first century will likely become central to determining the success of this 

standardization. Perhaps mathematicians will discover that, excepting new developments, the 

notations we possess cover all necessary items. Perhaps the increase in machine language will 

show that mathematical language can be contained in even more symbols. The texts produced 

today will determine which makes math more legible and will likely impact the publication of 

mathematical papers in the future. 

By following the development of analysis from the seventeenth to the twentieth century, 

students of mathematics gain a better understanding of how modern mathematics came to be and 

the struggles that earlier mathematicians faced in order to improve the subject. Modern students 

likely take for granted the ease of Descartes’ higher powers, Fermat’s maxima and minima, 

Newton’s fluxions and fluents, Leibniz’s ∫ and d, Euler’s Σ and f(x), Cauchy’s lim., Weierstrass’ 

ε-δ proofs, Dedekind’s “cuts” and ℜ, and Bourbaki’s ∉,  ∅, ⇒, and ⇔. Any mathematics 

student could explain what these symbols mean, but most do not know where the notations come 

from. By missing these key historical facts, young mathematicians are unaware of the work that 

came before them and the developments that allowed them to master difficult subjects in a matter 
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of years rather than decades. Notations allow mathematics to advance by conveying clear, 

concise meanings that are universally understood, knocking down language barriers that plague 

other fields. Through the standardization of mathematical writing, mathematicians have created a 

truly universal subject that will continue to unify the world one notation at a time.  
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