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 We see the potential value of this proof as twofold. First, it appears cleaner and
 shorter than what is found in most texts. And our constant, ln(8), is modest com-
 pared to Sierpinski's 4 [7], Apostol's 6 [1], or the 32 ln(2) offered in earlier editions of
 Niven and Zuckerman [6]. LeVeque [5], Hardy and Wright [4], and the latest edition
 of Niven and Zuckerman [6] give no particular constant, merely proving that one ex-
 ists. Chebychev [3] achieved a much smaller constant than ours, but with considerably
 more effort. We hope that our short proof will be found to have pedagogical value.
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 Odd as it may sound, when n exams are randomly returned to n students, the probabil-
 ity that no student receives his or her own exam is almost exactly 1/e (approximately
 0.368), for all n > 4. We call a permutation with no fixed points, a derangement, and

 we let D(n) denote the number of derangements of n elements. For n > 1, it can be
 shown that D(n) = -_,(-1)kn!/k!, and hence the odds that a random permutation
 of n elements has no fixed points is D(n)/n!, which is within 1/(n + 1)! of 1/e [1].

 Permutations come in two varieties: even and odd. A permutation is even if it can
 be achieved by making an even number of swaps; otherwise it is odd. Thus, one might
 even be interested to know that if we let E (n) and O (n) respectively denote the number
 of even and odd derangements of n elements, then (oddly enough),

 D(n) + (n - 1)(-1)n-1
 E (n) =  2
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 and

 D(n) - (n - 1)(-1)n-1
 O (n) =

 2

 The above formulas are an immediate consequence of the equation E (n) + O (n) =
 D(n), which is obvious, and the following theorem, which is the focus of this note.

 THEOREM. For n > 1,

 E(n) - O(n) = (-1)n"-(n - 1). (1)

 Proof 1: Determining a Determinant The fastest way to derive equation (1), as is
 done in [3], is to compute a determinant. Recall that an n-by-n matrix A = [aij]nj=l
 has determinant

 det(A) = 7rESn alr(I)a27z(2) ...a (n) sgn(n), (2)

 where Sn is the set of all permutations of 1, ..., n}, sgn(r) = 1 when 7r is even, and
 sgn(7r) = -1 when 7r is odd. Let An denote the n-by-n matrix whose nondiagonal
 entries are aij = 1 (for i 0 j), with zeroes on the diagonal. For example, when n = 4,

 a
 By (2), every permutation that is not a derangement will contribute 0 to the sum
 (since it uses at least one of the diagonal entries), every even derangement will con-
 tribute 1 to the sum, and every odd derangement will contribute -1 I to the sum. Conse-
 quently, det(An) = E(n) - O(n). To see that det(An) = (-1)"-'(n - 1), observe that
 A, = Jn - In, where Jn is the matrix of all ones and In is the identity matrix. Since Jn
 has rank one, zero is an eigenvalue of J,, with multiplicity n - 1, and its other eigen-
 value is n (with an eigenvector of all is). Apply Jn - In to the eigenvectors of J, to
 find the eigenvalues of An: -1 with multiplicity n - 1 and n - 1 with multiplicity 1.
 Multiplying the eigenvalues gives us det(An) = (-1)n-1 (n - 1), as desired. 0

 A 1996 Note in the MAGAZINE [2] gave even odder ways to determine the deter-
 minant of An .

 Although the proof by determinants is quick, the form of (1) suggests that there
 should also exist an almost one-to-one correspondence between the set of even de-
 rangements and the set of odd derangements.

 Proof 2: Involving an Involution Let D, denote the set of derangements of
 {1,..., n}, and let X, be a set of n - 1 exceptional derangements (that we spec-
 ify later), each with sign (-1)"-1. We exhibit a sign reversing involution on Dn - X,.
 That is, letting T, = D, - X,, we find an invertible function f : T, --+ T, such that
 for ,r in T,, r and f (r) have opposite signs, and f(f (r)) = xr. In other words, ex-
 cept for the n - 1 exceptional derangements, every even derangement "holds hands"
 with an odd derangement, and vice versa. From this, it immediately follows that
 BN
 Before describing f, we establish some notation. We express each r in D, as the
 product of k disjoint cycles C1, ..., Ck with respective lengths mi, ..., mk for some
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 k > 1. We follow the convention that each cycle begins with its smallest element,
 and the cycles are listed from left to right in increasing order of the first element. In

 particular, C1 = (1 a2 ... aml) and, if k > 2, C2 begins with the smallest element that
 does not appear in C1. Since ir is a derangement on n elements, we must have mi > 2

 for all i, and Lk, mi = n. Finally, since a cycle of length m has sign (-1)m-1, it

 follows that r has sign (-1)i=, (mi 1) - (-1)n~k
 Let 7r be a derangement in Dn with first cycle C1 = (1 a2 ... am) for some

 m > 2. We say that 7r has extraction point e > 2 if e is the smallest number in the set

 {2, ...,n} - {a2} for which C1 does not end with the numbers of {2,..., e} - {a2}
 written in decreasing order. Note that 7r will have extraction point e = 2 unless the
 number 2 appears as the second term or last term of C1. We illustrate this definition
 with some pairs of examples from D9. Notice that in each pair below, the number of

 cycles of 7 and 7r' differ by one, and the extraction point e occurs in the first cycle of
 7r and is the leading element of the second cycle of 7'.

 r = (1 9 7 2 8)(3 6)(4 5) and 7r' = (19 7)(2 8)(3 6)(4 5) have e = 2.
 7r = (1297385)(46) and r' = (1297)(385)(46) have e = 3.

 7r= (197385 2)(46) and 7' = (1972)(385)(46) have e = 3.
 7r= (1948532)(67) and 7r' = (1932)(485)(67) have e = 4.
 7r = (1495832)(67) and 7r' = (14932)(58)(67) have e = 5.
 7r= (138697542) and r'= (138542)(697) have e = 6.

 Observe that every derangement r in Dn contains an extraction point unless r
 consists of a single cycle of the form 7 = (1 a2 Z), where Z is the ordered set
 {2, 3, ...., n - 1, n} - {a2}, written in decreasing order. For example, the 9-element
 derangement (1 5 9 8 7 6 4 3 2) has no extraction point. Since a2 can be any element
 of {2, ... , n}, there are exactly n - 1 derangements of this type, all of which have
 sign (-1)n-1. We let X, denote the set of derangements of this form. Our problem
 reduces to finding a sign reversing involution f over T, = D, - X,.

 Suppose nr in Tn has extraction point e. Then the first cycle C1 of r ends with the

 (possibly empty) ordered subset Z consisting of the elements of {2, .. , e - 11 - {a2}
 written in decreasing order. Our sign reversing involution f : Tn -> Tn can then be
 succinctly described as follows:

 f
 (1 a2 X e Y Z)a (1 a2 X Z)(e Y)a, (3)

 where X and Y are ordered subsets, Y is nonempty, and a is the rest of the derange-
 ment r.

 Notice that since the number of cycles of 7r and f(7r) differ by one, they must
 be of opposite signs. The derangements on the left side of (3) are those for which the

 extraction point e is in the first cycle. In this case, Y must be nonempty, since otherwise
 "e Z" would be a longer decreasing sequence and e would not be the extraction point.
 The derangements on the right side of (3) are those for which the extraction point e is
 not in the first cycle (and must therefore be the leading element of the second cycle).
 In this case, Y is nonempty since iv is a derangement. Thus for any derangement i,
 the derangement f (i) is also written in standard form, with the same extraction point
 e and with the same associated ordered subset Z. Another way to see that n and f (i)
 have opposite signs is to notice that f(iv) = (xy)i (multiplying from left to right),
 where x is the last element of X (x = a2 when X is empty), and y is the last element
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 of Y. Either way, f (f (r)) = 7r, and f is a well-defined, sign-reversing involution, as

 desired. I

 In summary, we have shown combinatorially that for all values of n, there are almost

 as many even derangements as odd derangements of n elements. Or to put it another
 way, when randomly choosing a derangement with at least five elements, the odds of
 having an even derangement are nearly even.

 Acknowledgment. We are indebted to Don Rawlings for bringing this problem to our attention and we thank
 Magnhild Lien, Will Murray, and the referees for many helpful ideas.
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 Diamonds, cylinders, squares, stars, and balls. These geometric figures are familiar to
 undergraduate students, but what could they possibly have in common? One answer is:
 They are generalized balls. The standard Euclidean ball can be distorted into a variety
 of strange-shaped balls by linear and nonlinear transformations. The purpose of this
 note is to give a unified formula for computing the volumes of generalized unit balls
 in n-dimensional spaces.

 A generalized unit ball in Rn is described by the set

 BPI (1)

 where pl > 0, P2 > 0,..., Pn > 0.
 When the numbers pi1 ...., pn are all greater than or equal to 1, the unit ball B
 is convex. Since IxlP is not concave on [-1, 1] for 0 < p < 1, BP,...Pn is not neces-
 sarily convex anymore when n > 1. When p1 = P2 = ...= Pn, = p > 1, we obtain
 the usual 1, ball. The 12 ball is denoted by B. By choosing different numbers pi, we
 can alter the appearance of the generalized balls greatly, as shown in FIGURE 1 with
 examples in R3
 Motivated by an article by Folland [5], I derived a unified formula for calculating
 the volume of these balls. Although the volume formulas for the standard Euclidean
 ball TB and simplex have been known for a long time [4, pp. 208, 220], the unified
 formula is (relatively) new. It is surprising that no matter how strange the balls look,
 the volume of any ball can be computed by a single formula, as follows:

 THEOREM. Assume pi, ..., pn > O. The volume of the unit ball Bp
 is equal to
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