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Curtis Bennett and Edward Mosteig
Department of Mathematics
Loyola Marymount University

Los Angeles, CA 90045
USA

cbennett@lmu.edu

emosteig@lmu.edu

Abstract

We analyze congruence classes of S(n, k), the Stirling numbers of the second kind,
modulo powers of 2. This analysis provides insight into a conjecture posed by Amde-
berhan, Manna and Moll, which those authors established for k at most 5. We provide
a framework that can be used to justify the conjecture by computational means, which
we then complete for values of k between 5 and 20.

1 Introduction

The Stirling numbers of the second kind were originally defined to aid in the computation
of the sum of the kth powers of the first n positive integers. They gained importance in
mathematics as they arose in myriad contexts ranging from elementary combinatorics to
topology. For computational purposes, the Stirling numbers of the second kind can be
described by the following recurrence relation where n ≥ 0 and k ≥ 1:

S(n+ 1, k) = k · S(n, k) + S(n, k − 1)

with initial conditions

S(n, 0) =

{

1, if n = 0 and k = 0;

0, if n ≥ 1 or n < k.

Much like the binomial coefficients, this recurrence leads to interesting divisibility prop-
erties. Indeed, if one codes the odd Stirling numbers with a black box and the even numbers
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Figure 1: The parity of S(n, k).

with a white box, we obtain a Sierpinski-like triangle (see Figure 1). Here the top row
corresponds to n = 0.

More recently, a deeper study of the behavior of the Stirling numbers with respect to
primes has taken place. Kwong [6] shows that for any prime p and fixed k, the sequence
{S(n, k)}∞n=1 is periodic modulo p once n is sufficiently large. Lengyel [7] then formulates
(and proves several special cases of) the conjecture that the 2-adic valuation of the Stirling
number S(2n, k) is one less than the number of occurrences of the digit 1 in the binary
expansion of k. Later in 2005, De Wannemaker [3] proves this result in general.

Amdeberhan, Manna, and Moll [1] make a general study of the 2-adic valuation of the
Stirling numbers S(n, k), noting that for fixed k, the sequence of 2-adic valuations of S(n, k)
appears to satisfy interesting fractal-like properties. Their paper proves a special result for
the case k ≤ 5, and then makes a general conjecture (which we call AMM) about the 2-adic
valuations of these sequences in general. The proof provided by Amdeberhan, Manna, and
Moll [1] of the case k = 5 appears complicated, and while one might see a way to generalize
this proof for the case k = 6, it appears that larger values of k would not fall easily to similar
arguments.

The goal of the present paper is to provide a general technique for proving the AMM
conjecture (see Section 2 for details) for fixed k, and to provide a deterministic method for
carrying out this technique. This method allows us to prove the AMM conjecture for all
k ≤ 20 on our desktop computer. Further, we believe that optimizing our code would allow
us to obtain results for larger values of k; however, there are significant limitations since the
complexity of our algorithms is exponential. This method further allows us to expose some
of the difficulties in the general case by contrasting the behaviors of sequences of the form
{S(n, k)} for different values of k.
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2 Background

Given k, n ∈ N such that n ≥ k, the Stirling number of the second kind, S(n, k), can
be defined combinatorially as the number of ways to partition a set of n elements into k
nonempty subsets. Throughout this paper, we fix k and anaylze the behavior of S(n, k) for
different values of n. To this end, we define the function Stk : {k, k + 1, k + 2, . . . } → N by

Stk(n) := S(n, k).

A classical formula for Stirling numbers of the second kind [5] is given by

Stk(n) =
1

k!

k−1
∑

t=0

(

k

t

)

(k − t)n(−1)t, (1)

which can be rewritten as

k!Stk(n) = (−1)k
k
∑

t=1

(−1)t
(

k

t

)

tn. (2)

Our primary objective is to examine the powers of 2 that divide Stk(n) for a fixed value
of k. With this in mind, we define the 2-adic valuation as the function ν2 : Z

+ → N given by

ν2(z) = max{i ∈ N : 2i | z}.

In the future, we will compute 2-adic valuations of Stirling numbers indexed according to
congruence classes modulo powers of 2.

For n, t ∈ N, we define the congruence class

[n]t = {j ∈ N : j ≥ max{n, t} and j ≡ n (mod t)}. (3)

For each class of the form [n]2m , we refer to m as the level of the class. Note that each class
of level m can “almost” be written as a disjoint union of two classes of level m+ 1:

[n]2m ∩ {j ∈ N : j ≥ 2m+1} = [n]2m+1 ∪ [n+ 2m]2m+1 . (4)

We refer to [n]2m+1 and [n+ 2m]2m+1 as the children of [n]2m .
Throughout this paper, whenever f is a function and S is a subset of the domain of f ,

we adopt the notation
f(S) = {f(s) : s ∈ S},

and we say that f is constant on S if and only if f(S) a singleton.
Our paper focuses on the following conjecture, posed by Amdeberhan, Manna and Moll,

which we refer to as the AMM conjecture [1].

Conjecture 1. For each k ∈ N, there exist non-negative integers Mk and µk such that for
any m ≥ Mk, the following two statements hold.

(a) There are µk classes of the form [n]2m on which ν2 ◦ Stk is non-constant.
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(b) If ν2 ◦ Stk is non-constant on the class [n]2m , then ν2 ◦ Stk is non-constant on exactly
one of the children of [n]2m .

Amdeberhan, Manna and Moll [1] demonstrate when k = 5 that at each level m ≥ 1,
there are exactly two classes on which ν2 ◦ St5 is non-constant. In addition, the authors
demonstrate that for each such class, ν2 ◦ St5 is non-constant on exactly one of the children.

The proof provided by Amdeberhan, Manna and Moll for the case k = 5 could be adapted
for the case k = 6 with some additional effort. However, when k = 7, the situation is much
more complex, and so a different approach is necessary. In this paper, we produce a general
framework that can be used to verify the conjecture for many different values of k, which we
have completed for all non-negative integers from k = 5 to k = 20. In Section 6, we use this
framework to demonstrate different behaviors exhibited for different values of k.

In order to justify the conjecture, we first determine the classes on which ν2 ◦ Stk is
constant for some initial values of m. To this end, we formulate the definition below.

Definition 2. For any positive integers k,m, we define Nk,m by

Nk,m = {n ∈ N : k ≤ n < k + 2m and ν2 ◦ Stk is non-constant on [n]2m}. (5)

We can compute the number of non-constant classes for small, fixed values of k and m,
as described in the table below.

k\m 1 2 3 4 5 6 7 8 9 10
5 2 2 2 2 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2 2 2
7 2 2 2 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2 2 2 2
9 2 4 4 4 4 4 4 4 4 4
10 2 4 4 4 4 4 4 4 4 4
11 2 4 4 4 4 4 4 4 4 4
12 2 4 4 4 4 4 4 4 4 4
13 2 4 5 4 4 4 4 4 4 4
14 2 4 6 6 6 6 6 6 6 6

Table 1: The cardinality of Nk,m.

Note that for each fixed value of k, the sequence

#Nk,1,#Nk,2,#Nk,3, . . .

appears to stabilize. From empirical evidence, we conjecture that this, indeed, is the case;
in addition, it appears that if we define

nk = lim
m→∞

#Nk,m,
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then n1, n2, n3, . . . is a non-decreasing sequence. In future studies, we plan to investigate the
validity of this conjecture as well as determine for each k, the smallest index ik such that
#Nk,i = #Nk,ik for all i ≥ ik.

Before revealing our results, we introduce some terminology and make a few additional
definitions. Our arguments heavily rely on the result established by Kwong [6] that if k and
m are positive integers such that k ≥ 5, then for sufficiently large n,

Stk(n) ≡ Stk(n+ 2m) (mod 2m−⌈log2(k)⌉+2). (6)

Since the expression ⌈log2(k)⌉−2 appears frequently enough throughout this paper, we make
the following definition.

Definition 3. Given k ≥ 5, define

bk = ⌈log2(k)⌉ − 2.

Before proceeding, we must adopt some additional terminology.

Definition 4. Given a set S, if there exists a constant c such that all the elements of S are
congruent to c modulo M , then we write S ≡ c (mod M), and we say that S is constant
modulo M ; otherwise, we say that S is not constant modulo M . Regardless of whether S is
constant modulo M , if there exists s ∈ S such that s 6≡ c (mod M), then we write S 6≡ c
(mod M).

We are now in a position to state our main result, which provides a step toward verifying
the AMM conjecture for specific values of k. In addition, the theorem provide a way to
determine µk, the number of classes at level k on which ν2 ◦ Stk is non-constant. It also
provides an upper bound on Mk, the level at which the number of such classes stabilizes.

Theorem 5. Let k,M be non-negative integers such that k ≥ 5, M ≥ bk and 2M ≥ M−bk+
ν2(k!). For each j ∈ Nk,M , let ℓj be a non-negative integer. Suppose further that for every
integer n ≥ k such that n ≡ j (mod 2M) for some j ∈ Nk,M , the following two conditions
hold for all m ≥ M .

(i) Stk([n]2m) is not constant modulo 2m−bk+ℓj+1.

(ii) Stk([n]2m) is constant modulo 2m−bk+ℓj .

Then the AMM conjecture holds with µk = #Nk,M and Mk ≤ M .

If it were possible to determine when Stk([n]2m) is constant modulo powers of 2, then
Theorem 5 would provide a concrete approach to proving the AMM conjecture. Fortunately,
Proposition 13 provides conditions that are equivalent to the statement that Stk([n]2m) is
constant modulo 2m−bk+ℓ. We will consider these conditions when replacing ℓ by the param-
eter ℓj (and ℓj + 1) found in Theorem 5. More specifically, through the use of an auxiliary
function fk defined in Lemma 12, we will see that these conditions can be reduced to a
finite check using Proposition 13, thus making verification of the AMM conjecture possible.
We implement the algorithms that perform these checks using Mathematica, and produce
examples for different values of k in Section 6.
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3 Preliminary results

To investigate the AMM conjecture and prove our main result, we first produce a few prelim-
inary results concerning modular arithmetic, which we explore in this section. Since equation
(2) will play a critical role in our analysis, we must first analyze the behavior of powers of
the form tn that appear in the summation. We begin by quoting the following result, which
can be attributed to Gauss [4].

Lemma 6. For any integer m ≥ 1 and any odd positive integer t,

t2
m

≡ 1 (mod 2m+2).

Using this lemma as a basis, we demonstrate how to produce the binary representation
of t2

m

modulo powers of 2.

Proposition 7. For any odd positive integer t and non-negative integer s, there exists a
sequence c0, . . . , cs, where ci ∈ {0, 1}, such that for m ≥ s+ 1,

t2
m

≡ 1 +
s
∑

i=0

ci2
m+2+i (mod 2m+s+3).

The sequence c0, . . . , cs is comprised of the first s + 1 digits of the binary representation of
the integer (t2

s+1

− 1)/2s+3.

Before proceeding with the proof, we provide an example. Note that if s = 2 and t = 7,
then the base 10 and base 2 representations of (t2

s+1

− 1)/2s+3 are given by

(78 − 1)/32 = (180150)10 = (101011111110110110)2.

Therefore, c0 = 0, c1 = 1, c2 = 2, . . . , and so for m ≥ 3,

72
m

≡ 1 + 2m+3 + 2m+4 (mod 2m+5).

Repeated applications of this proposition will permit us to reduce some specific expressions
modulo powers of 2, which we first encounter in Lemma 12.

Proof. We proceed by induction on m. We begin with the base case m = s+ 1. By Lemma
6, t2

s+1

− 1 is divisible by 2s+3. Define the integer a = (t2
s+1

− 1)/2s+3, and write its binary
representation as a =

∑∞
i=0 ci2

i, where ci = 0 for i ≫ 0. Then a ≡
∑s

i=0 ci2
i (mod 2s+1),

and so a · 2s+3 ≡
∑s

i=0 ci2
s+3+i (mod 22s+4). Since a = (t2

s+1

− 1)/2s+3, it follows that

t2
s+1

= 1 + a · 2s+3, and so

t2
s+1

≡ 1 +
s
∑

i=0

ci2
s+3+i (mod 22s+4).

For the inductive step, we assume

t2
m

≡ 1 +
s
∑

i=0

ci2
m+2+i (mod 2m+s+3),
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in which case t2
m

= 1+A+B · 2m+s+3, where A =
∑s

i=0 ci2
m+2+i and B is an integer. Since

t2
m+1

=
(

t2
m)2

, we can write

t2
m+1

=
(

1 + A+B · 2m+s+3
)2

= 1 + 2A+ A2 + 2(1 + A) ·B · 2m+s+3 +
(

B · 2m+s+3
)2

= 1 + 2A+ A2 + (1 + A) ·B · 2m+s+4 +
(

B · 2m+s+3
)2

.

It follows immediately that t2
m+1

≡ 1 + 2A + A2 (mod 2m+s+4), and so working modulo
2m+s+4, we have

t2
m+1

≡ 1 + 2 ·
s
∑

i=0

ci2
m+2+i +

(

s
∑

i=0

ci2
m+2+i

)2

≡ 1 +
s
∑

i=0

ci2
m+3+i + 22(m+2)

(

s
∑

i=0

ci2
i

)2

.

Since m ≥ s+ 1, it follows that 22(m+2) ≡ 0 (mod 2m+s+4), and so

t2
m+1

≡ 1 +
s
∑

i=0

ci2
m+3+i (mod 2m+s+4),

as desired.

Next, we reformulate and reprove (6) while adding specificity to the requirement that n
be sufficiently large.

Proposition 8. For non-negative integers k,m, n such that n ≥ k ≥ 5, m ≥ bk and 2m ≥
m− bk + ν2(k!),

Stk([n]2m) is constant modulo 2m−bk .

Again, before proceeding with the proof, we provide an example. If k = 5, then bk = 1.
The conditions m ≥ bk and 2m ≥ m − bk + ν2(k!) hold precisely when m ≥ 3. Reducing
multiple expressions of the form Stk(n + j · 2m) modulo 2m−bk where j is a positive integer
provides evidence of the following modular equivalences, all of which can be justified by the
proposition:

Stk([1]23) ≡ 3;

Stk([2]23) ≡ 1;

Stk([3]23) ≡ 2;

Stk([4]23) ≡ 0;

Stk([5]23) ≡ 1;

Stk([6]23) ≡ 3;

Stk([7]23) ≡ 0;

Stk([8]23) ≡ 2.
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Proof. First, we note that since each term of [n]2m is at least 2m, we may assume without
loss of generality that n ≥ 2m. Since 2m ≥ m− bk + ν2(k!), it follows that

n ≥ m− bk + ν2(k!).

Now, for any given value of n,

Stk(n+ 2m) ≡ Stk(n) (mod 2m−bk)

if and only if
k!Stk(n+ 2m)− k!Stk(n) ≡ 0 (mod 2m−bk+ν2(k!)).

Using (2), we can write k!Stk(n+ 2m)− k!Stk(n) as

(−1)k
k
∑

t=1

(−1)t
(

k

t

)

tn
(

t2
m

− 1
)

.

For n ≥ m− bk+ν2(k!), we have that t
n ≡ 0 (mod 2m−bk+ν2(k!)) whenever t is even, in which

case
h(n) ≡ k!Stk(n+ 2m)− k!Stk(n) (mod 2m−bk+ν2(k!)) (7)

where

h(n) = (−1)k
⌈k/2⌉
∑

s=1

(−1)2s−1

(

k

2s− 1

)

(2s− 1)n
(

(2s− 1)2
m

− 1
)

= (−1)k−1

⌈k/2⌉
∑

s=1

(

k

2s− 1

)

(2s− 1)n
(

(2s− 1)2
m

− 1
)

For any positive integer s, the sequence {(2s−1)n}∞n=1 is periodic modulo 2m−bk+ν2(k!). (More
specifically, by Lemma 6, the the period of this sequence reduced modulo 2m−bk+ν2(k!) divides
2m−bk+ν2(k!)−2.) Consequently, {h(n)}∞n=1 must be periodic modulo 2m−bk+ν2(k!). By (7), it
follows that the sequence

{k!Stk(n+ 2m)− k!Stk(n)}
∞
n=m−bk+ν2(k!)

is periodic modulo 2m−bk+ν2(k!), and so

{Stk(n+ 2m)− Stk(n)}
∞
n=m−bk+ν2(k!)

(8)

is periodic modulo 2m−bk . However, by (6), for n sufficiently large (n ≫ 0),

Stk(n+ 2m)− Stk(n) ≡ 0 (mod 2m−bk). (9)

Combining this with (8), we see that (9) holds whenever n ≥ m−bk+ν2(k!), and so Stk([n]2m)
is constant modulo 2m−bk .

Using Proposition 8, we demonstrate that our search for classes [n]2m on which ν2 ◦ Stk
is non-constant can be restricted to those such that Stk(n) ≡ 0 (mod 2m−bk).
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Proposition 9. Let k,m, n be non-negative integers such that n ≥ k ≥ 5, m ≥ bk and
2m ≥ m− bk + ν2(k!). If ν2 ◦ Stk is non-constant on [n]2m, then

Stk([n]2m) ≡ 0 (mod 2m−bk).

Proof. We demonstrate the contrapositive. By Proposition 8, Stk([n]2m) is constant modulo
2m−bk , and so there exists s ∈ N with s < 2m−bk such that

Stk([n]2m) ≡ s (mod 2m−bk). (10)

Since we are assuming that Stk([n]2m) 6≡ 0 (mod 2m−bk), it follows that s 6= 0. Consequently,
the 2-adic valuation of every element of S([n]2m+bk , k) is ν2(s).

The next two sections examine when the converse of Proposition 9 holds.

4 General framework

Proposition 9 gives us a sufficient condition for ν2 ◦Stk to be constant on a congruence class.
In the cases that k ∈ {5, 6}, as we shall see, it turns out that this condition is also necessary.
Numerically, we suspect that there are infinitely many values of k for which the congruence
condition is necessary; however, for k chosen at random, the probability appears to be small.
Our goal in this section is to focus on the relationship between congruence classes and their
children regarding whether or not ν2 ◦ Stk is constant.

We begin by stating the following simple lemma without proof.

Lemma 10. Let k,m, n be non-negative integers such that n ≥ k. If ν2 ◦ Stk is constant on
[n]2m, then it is constant on both of its children.

If ν2 ◦ Stk is not constant on a given congruence class, then describing the behavior of
ν2 ◦Stk on the children of the congruence class is more subtle. Below we produce a sufficient
result for ν2 ◦ Stk to be non-constant on the children of a given congruence class.

Lemma 11. Let k, ℓ,M, n be non-negative integers such that n ≥ k ≥ 5, M ≥ bk and
2M ≥ M − bk + ν2(k!). Suppose the following four conditions hold for all m ≥ M .

(i) Stk([n]2m) is not constant modulo 2m−bk+ℓ+1.

(ii) Stk([n]2m) is constant modulo 2m−bk+ℓ.

(iii) Stk([n]2m+1) is constant modulo 2m−bk+ℓ+1.

(iv) Stk([n+ 2m]2m+1) is constant modulo 2m−bk+ℓ+1.

Then for all m ≥ M , if ν2 ◦ Stk is non-constant on [n]2m, then it is non-constant on exactly
one of its children.

9



Before proceeding with the proof, we provide an example. For k = 6, we have bk = 5,
and we will see in Section 6.1 that for m ≥ 3 and any non-negative integer n,

St5([n]2m) is constant modulo 2m−1

and
St5([n]2m) is not constant modulo 2m.

By selecting ℓ = 0, conditions (i) through (iv) all immediately follow. Consequently, the
AMM conjecture immediately follows from the lemma. For k = 7, the scenario is much more
complex. In fact, the conditions above do not hold for all values of n. Fortunately, however,
these conditions do appear to hold at least for the values of n when ν2 ◦ Stk is non-constant
on [n]2m . Details are provided in Section 6.2.

Proof. Let m ≥ M . First, we note that since each term of [n]2m is at least 2m, we may
assume without loss of generality that n ≥ 2m, and since ν2(k!) ≥ bk for all k,

n ≥ 2m−M · 2M ≥ 2m−M(M − bk + ν2(k!)) ≥ 2m−M ·M − bk + ν2(k!).

A simple exercise reveals that 2m−M ·M ≥ m, which yields the inequality

n ≥ m− bk + ν2(k!).

Note that by condition (ii) Stk([n]2m) is constant modulo 2m−bk+ℓ; it then necessarily follows
that

Stk([n]2m) is constant modulo 2m−bk+j (11)

for all 0 ≤ j ≤ ℓ. Using this, we will inductively demonstrate that

Stk([n]2m) ≡ 0 (mod 2m−bk+j) (12)

for 0 ≤ j ≤ ℓ.
Assuming ν2 ◦Stk is non-constant on [n]2m , we know by Proposition 9 that Stk([n]2m) ≡ 0

(mod 2m−bk), thus justifying (12) when j = 0. We proceed by induction, demonstrating that
if (12) holds for a particular value of j such that 0 ≤ j ≤ ℓ − 1, then it must also hold for
j + 1.

Since 1 ≤ j + 1 ≤ ℓ, it follows from (11) that Stk([n]2m) is constant modulo 2m−bk+j+1.
Since we are assuming Stk([n]2m) ≡ 0 (mod 2m−bk+j), it follows that every element of
Stk([n]2m) is congruent to either 0 or 2m−bk+j modulo 2m−bk+j+1. Since Stk([n]2m) is constant
modulo 2m−bk+j+1, it follows that either Stk([n]2m) ≡ 0 (mod 2m−bk+j+1) or Stk([n]2m) ≡
2m−bk+j (mod 2m−bk+j+1). If the latter holds, then ν2(Stk([n]2m)) = {m − bk + j}, contra-
dicting the assumption that ν2 is non-constant on Stk([n]2m). Consequently, Stk([n]2m) ≡ 0
(mod 2m−bk+j+1), and so (12) holds for j + 1, as desired.

We have just demonstrated that (12) holds for 0 ≤ j ≤ ℓ, and so, in particular,

Stk([n]2m) ≡ 0 (mod 2m−bk+ℓ).

Therefore, each element of Stk([n]2m) is congruent to either 0 or 2m−bk+ℓ modulo 2m−bk+ℓ+1.
Moreover, by conditions (iii) and (iv), we know that Stk([n]2m+1) and Stk([n + 2m]2m+1) are

10



both constant modulo 2m−bk+ℓ+1. Since by condition (i), Stk([n]2m) is not constant modulo 2m−bk+ℓ+1,
it follows that either

Stk([n]2m+1) ≡ 0 (mod 2m−bk+ℓ+1) (13)

and
Stk([n+ 2m]2m+1) ≡ 2m−bk+ℓ (mod 2m−bk+ℓ+1) (14)

both hold, or
Stk([n]2m+1) ≡ 2m−bk+ℓ (mod 2m−bk+ℓ+1) (15)

and
Stk([n+ 2m]2m+1) ≡ 0 (mod 2m−bk+ℓ+1) (16)

both hold. Suppose conditions (13) and (14) hold. By (14), we see that ν2 is constant on
Stk([n+2m]2m+1). Since ν2 is not constant on Stk([n]2m), it follows that ν2 cannot be constant
on both Stk([n]2m+1) and Stk([n+ 2m]2m+1). Therefore, ν2 is not constant on Stk([n]2m+1).

Similarly, if conditions (15) and (16) hold, then it can be shown that ν2 is constant on
Stk([n]2m+1) but is not constant on Stk([n+ 2m]2m+1).

Using this lemma, we are now in a position to prove Theorem 5.

Proof. First, we note by Definition 2, there are #Nk,m congruence classes at level m on
which ν2 ◦ Stk is non-constant. Therefore, ν2 ◦ Stk is constant on the remaining congruence
classes at level m. By Lemma 10, ν2 ◦Stk is constant on each of the children of those classes.

Therefore, if we can demonstrate that for each congruence class at level m ≥ M on
which ν2 ◦ Stk is non-constant, the function ν2 ◦ Stk is non-constant on exactly one of its
children, then we will have demonstrated both parts (a) and (b) of the AMM conjecture
with µk = #Nk,m and Mk ≤ M .

Suppose m,n are integers such that m ≥ M and n ≥ k where ν2 ◦ Stk is non-constant
on [n]2m . Since ν2 ◦ Stk is non-constant on [n]2m , it follows that ν2 ◦ Stk is non-constant on
[n]2M , and so there exists an integer j ∈ Nk,M such that n ≡ j (mod 2M). By assumption,
we have conditions (i) and (ii) above:

Stk([n]2m) is not constant modulo 2m−bk+ℓj+1 (17)

and
Stk([n]2m) is constant modulo 2m−bk+ℓj . (18)

Moreover, since (18) actually holds for any value of m ≥ M , replacing m by m + 1 reveals
that

Stk([n]2m+1) is constant modulo 2m−bk+ℓj+1. (19)

Since m ≥ M , we have that n + 2m ≡ j (mod 2M), and so we can replace n by n + 2m to
obtain

Stk([n+ 2m]2m+1) is constant modulo 2m−bk+ℓj+1. (20)

Since (17), (18), (19), and (20) represent conditions (i), (ii), (iii), and (iv), respectively,
of Lemma 11, it follows that ν2 ◦ Stk is non-constant on exactly one of [n]2m+1 and [n +
2m]2m+1 .
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5 Computational framework

In this section, we provide a method for determining when sets of the form Stk([n]2m) are
constant modulo specific powers of 2. We then use this method in Section 6 to perform finite
checks that verify the AMM conjecture via Theorem 5. We begin with the following lemma,
which translates the condition that Stk([n]2m) is constant modulo 2m−bk+ℓ into a statement
about an auxiliary function fk(n).

Lemma 12. Let k, ℓ, n be positive integers such that k ≥ 5, and define s = ν2(k!)+ℓ−bk−3.
Define fk : N → N by

fk(n) =

⌈k/2⌉
∑

i=1

(

k

ti

)

ti
n(ti

2s+1

− 1) (21)

where ti = 2i − 1. Suppose m is an integer such that m ≥ s + 1 and 2m − m ≥ s + 3. If
n ≥ 2m, then

Stk(n+ 2m) ≡ Stk(n) (mod 2m−bk+ℓ)

if and only if
fk(n) ≡ 0 (mod 22s+4).

Proof. By (2), we can rewrite the condition

Stk(n+ 2m) ≡ Stk(n) (mod 2m−bk+ℓ)

as
k
∑

t=1

(−1)t
(

k

t

)

tn+2m ≡
k
∑

t=1

(−1)t
(

k

t

)

tn (mod 2m+s+3),

which, in turn, can be rewritten as

k
∑

t=1

(−1)t
(

k

t

)

tn(t2
m

− 1) ≡ 0 (mod 2m+s+3). (22)

Since we are assuming that n ≥ 2m and 2m−m ≥ s+3, it follows that n ≥ m+ s+3. Thus,
tn ≡ 0 (mod 2m+s+3) whenever t is even, and so (22) can be expressed as

⌈k/2⌉
∑

i=1

(

k

ti

)

ti
n(t2

m

i − 1) ≡ 0 (mod 2m+s+3), (23)

where ti = 2i − 1. Since s = ν2(k!) + ℓ − bk − 3, we know by Proposition 7 that for all
m ≥ s+ 1,

ti
2m − 1 ≡

s
∑

j=0

ci,j2
m+2+j (mod 2m+s+3), (24)

where ci,0, ci,1 . . . , ci,s is comprised of the first s + 1 digits of the binary representation of
the integer (ti

2s+1

− 1)/2s+3. Substituting this into (23), we obtain the following equivalent
statement:

⌈k/2⌉
∑

i=1

(

k

ti

)

ti
n

(

s
∑

j=0

ci,j2
m+2+j

)

≡ 0 (mod 2m+s+3).
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Multiplying both sides by 2s−m+1, we obtain

⌈k/2⌉
∑

i=1

(

k

ti

)

ti
n

(

s
∑

j=0

ci,j2
s+3+j

)

≡ 0 (mod 22s+4). (25)

Since (24) holds whenever m ≥ s+ 1, we can replace m by s+ 1 to obtain

ti
2s+1

− 1 ≡
s
∑

j=0

ci,j2
s+3+j (mod 22s+4),

and so by substituting this expression into (25) produces

⌈k/2⌉
∑

i=1

(

k

ti

)

ti
n
(

ti
2s+1

− 1
)

≡ 0 (mod 22s+4), (26)

which is simply the statement that fk(n) ≡ 0 (mod 22s+4).

We are now in a position to determine when Stk([n]2m) is constant modulo 2m−bk+ℓ given
appropriate choices of n, m, and ℓ. Using Lemma 12, we reduce this problem to a finite
check.

Proposition 13. Let k, ℓ be positive integers such that k ≥ 5, and define s = ν2(k!)+ℓ−bk−3.
Let fk : N → N be the function described in (21) where ti = 2i− 1. Then for all n ≥ k, the
following three statements are equivalent.

(i) fk(n) ≡ 0 (mod 22s+4).

(ii) Stk([n]2m) is constant modulo 2m−bk+ℓ for all integers m ≥ s+1 such that 2m−m ≥ s+3.

(iii) Stk([n]2m) is constant modulo 2m−bk+ℓ for some integer m ≥ s+ 1 such that 2m −m ≥
s+ 3.

Proof. We will prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Before proceeding, we argue that we can
assume without loss of generality that n ≥ 2m. Indeed, if m is an integer such that m ≥ s+1
and 2m −m ≥ s+ 3, we have that 2m ≥ 2s+ 4. Consequently, by using Lemma 6, it can be
shown that fk(n) ≡ fk(n+2m) (mod 22s+4), and so when considering part (i), it is sufficient
to consider the case that n ≥ 2m. Moreover, for parts (ii) and (iii), the congruence class
[n]2m solely consists of integers greater than 2m, in which case it is also sufficient to consider
the case where n ≥ 2m.

Now, suppose (i) holds for a fixed integer n ≥ k, and let m be an integer such that
m ≥ s + 1 and 2m − m ≥ s + 3, in which case 2m ≥ 2s + 4. Consequently, by Lemma 6,
we have t2

m

i ≡ 1 (mod 22s+4), and so fk(n) ≡ fk(n + 2m) (mod 22s+4). In fact, multiple
applications of Lemma 6 reveal that fk(n) ≡ fk(n+ j · 2m) (mod 22s+4) for all j ∈ N, and so
fk([n]2m) ≡ 0 (mod 22s+4). Therefore, by Lemma 12, Stk([n]2m) is constant modulo 2m−bk+ℓ,
and so (ii) holds.

The fact that (ii) ⇒ (iii) follows trivially. Now, assuming (iii), we have that Stk([n]2m) is
constant modulo 2m−bk+ℓ for some integer m ≥ s+ 1 such that 2m −m ≥ s+ 3. Therefore,
by Lemma 12, fk(n) ≡ 0 (mod 22s+4), which is precisely statement (i).
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We also need a method for determining when ν2◦Stk is constant on individual congruence
classes of the form [n]2m , which is easily described in the following proposition.

Proposition 14. Let k and m be non-negative integers such that n ≥ k ≥ 5, m ≥ bk and
2m ≥ m− bk + ν2(k!). Let r ∈ [n]2m , and define c = (ν2 ◦ Stk)(r).

(a) If m > c+ bk, then ν2 ◦ Stk is constant on [n]2m.

(b) If m ≤ c + bk, then ν2 ◦ Stk is constant on [n]2m if and only if for all j ∈ N such that
1 ≤ j ≤ 2c+bk−m,

Stk(n+ j · 2m) ≡ 0 (mod 2c)

and
Stk(n+ j · 2m) 6≡ 0 (mod 2c+1).

Proof. For part (a), we have m > c + bk. Since (ν2 ◦ Stk)(r) = c, it follows that Stk(r) ≡ 0
(mod 2c) but Stk(r) 6≡ 0 (mod 2c+1). By Proposition 8, we have Stk([n]2c+bk ) is constant
modulo 2c. Since m > c+bk, it follows that Stk([n]2m) is constant modulo 2c. Since r ∈ [n]2m
and Stk(r) ≡ 0 (mod 2c), we have that Stk([n]2m) ≡ 0 (mod 2c). Thus, ν2(Stk(i)) ≥ c for
all i ∈ [n]2m , and we have only left to demonstrate that ν2(Stk(i)) < c+ 1 for all i ∈ [n]2m .

By Proposition 8, we have that Stk([n]2c+1+bk ) is constant modulo 2c+1. Since m > c+ bk,
we know m ≥ c + 1 + bk, and so Stk([n]2m) is constant modulo 2c+1. Since j ∈ [n]2m and
Stk(j) 6≡ 0 (mod 2c+1), it follows that for all i ∈ [n]2m we have that Stk(i) 6≡ 0 (mod 2c+1),
in which case ν2(Stk(i)) < c+ 1 , as desired.

For part (b), we consider the case m ≤ c + bk. If ν2 ◦ Stk is constant on [n]2m , then
ν2 ◦ Stk([n]2m) = c. In this case, Stk([n]2m) ≡ 0 (mod 2c) but Stk(i) 6≡ 0 (mod 2c+1) for all
i ∈ [n]2m . For each j ∈ N such that 1 ≤ j < 2c−bk−m, we have n+ j · 2m ∈ [n]2m , and so the
conclusion follows.

Conversely, we assume that for all j ∈ N such that 1 ≤ j ≤ 2c−bk−m,

Stk(n+ j · 2m) ≡ 0 (mod 2c) (27)

and
Stk(n+ j · 2m) 6≡ 0 (mod 2c+1). (28)

We will show that for any b ∈ [n]2m , we have ν2(Stk(b)) = c, thus demonstrating that ν2 ◦Stk
is constant on [n]2m . Since b ∈ [n]2m , we have that b = n + i · 2m for some i ∈ N. Select
j ∈ N such that 1 ≤ j ≤ 2c−bk−m and i ≡ j (mod 2c−bk−m), in which case

b = n+ i · 2m ≡ n+ j · 2m (mod 2c−bk).

Thus, by Proposition 8, it follows that

Stk(b) ≡ Stk(n+ j · 2m) (mod 2c),

and so by (27), we have that Stk(b) ≡ 0 (mod 2c). Similarly, by using Proposition 8 in
conjunction with (28), we have that Stk(b) 6≡ 0 (mod 2c+1). Therefore, ν2(Stk(b)) = c.

Using the results from this section in conjunction with Theorem 5, we have a method
of verifying the AMM conjecture for different values of k. In the next section, we put this
method into practice.
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6 Examples

In this section, we begin with k = 5 in order to demonstrate how to reproduce the result of
Amdeberhan, Manna, and Moll [1] by using the techniques developed in this paper. Next,
we consider k = 6, 7, 13 and 15 in order to compare the behavior of ν2 ◦ Stk for values of
k other than 5. The case k = 6 is very similar to that of k = 5, but the scenario is more
complex when k = 7, as the behavior depends on the parity of n. We then close with the
case k = 13, which exhibits even more complex behaviors.

Before going into specific examples, we describe the general approach. The goal is to
apply Theorem 5 for a given choice of k, which requires establishing conditions (i) and (ii) of
that theorem. That is, we need to investigate whether Stk([n]2m) is constant modulo 2m−bk+ℓj

but not constant modulo 2m−bk+ℓj+1. Proposition 8 and Proposition 13 give us methods for
checking these congruences. Unfortunately, however, each of these require certain minimal
values of m. The significant bound is

m ≥ s+ 1 = ν2(k!) + ℓ− bk − 3,

where ℓ must be determined to ensure that fk(n) ≡ 0 (mod 22s+4). (For small values of m,
we will also need to check that 2m−m ≥ s+3.) Once ℓ is determined, we can prove Theorem
5 for all but a small number of values of m using Mathematica to perform the necessary
calculations. The cases for small m can then be handled by the use of Proposition 14. At
this point, we have then verified Conecture 1 for the given value of k.

The above is essentially how our computer proof works, except that in a few cases we
need a little additional information (as will be discussed in the example of k = 13, the only
value for k ≤ 20 that requires this information). It appears that the approach we use may
require more computation than absolutely necessary, which we shall discuss further when we
look at the case of k = 13.

6.1 k = 5 and k = 6

We begin by considering the case k = 5. We note that b5 = ⌈log2(5)⌉−2 = 1 and ν2(5!) = 3,
and so s = 3 + ℓ − 1 − 3 = ℓ − 1. Thus m ≥ ℓ. However, if ℓ = 1 or 2, the condition
that 2m − m ≥ s + 3 is violated for small values of m, and so we know that we must use
Proposition 14 to check whether both m = 1 and m = 2 satisfy the conjecture. Using the
proposition, we can computationally determine whether ν2 ◦ St5 is constant on [n]2m for a
given choice of n and m. Using the notation from Defintion 2, with the aid of Mathematica,
we determine the following: N5,1 = {5, 6}, N5,2 = {7, 8} and N5,3 = {7, 12}. For m ≥ 3, we
turn to our general argument.

By Proposition 8, for m ≥ 3,

St5([n]2m) is constant modulo 2m−1. (29)

If ℓ = 1, then s = ν2(5!) + ℓ − b5 − 3 = 0 and so by Proposition 13, St5([n]2m) is constant
modulo 2m whenever m ≥ 3 if and only f5(n) 6≡ 0 (mod 24). We will check the case n = 7
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here.

f5(7) =

(

5

1

)

17(12
1

− 1) +

(

5

3

)

37(32
1

− 1) +

(

5

5

)

57(52
1

− 1) (mod 24)

= 0 + 10 · 11 · 8 + 1 · 13 · 8 (mod 24)

= 8 (mod 24)

6≡ 0 (mod 24).

Mathematica needs only a finite check (since we are working modulo 24) to show the non-
congruence for all n. Thus, we conclude that for all m ≥ 3,

St5([n]2m) is not constant modulo 2m. (30)

Now, if we select M = 3, we see that N5,3 = {7, 12}, and if we define ℓ7 = ℓ12 = 3,
then parts (i) and (ii) of Theorem 5 hold for all non-negative integers. (In fact, in order to
apply Theorem 5, we only need these two parts to hold when n is congruent to either 7 or
12 modulo 8.) Thus, we have that the AMM conjecture holds with µ5 = #N5,3 = 2 and
M5 ≤ 3. In fact, since we have verified the conjecture for levels m = 1 and m = 2, it follows
that M5 = 1.

When k = 6, the result follows very similarly. Using Proposition 14 and Mathematica,
we find that N6,1 = {6, 7}, N6,2 = {8, 9} and N6,3 = {12, 13}. When k = 6, we note that
b6 = ⌈log2(6)⌉ − 2 = 1 and ν2(6!) = 4. By Proposition 8, for m ≥ 3,

St6([n]2m) is constant modulo 2m−1. (31)

Using Proposition 13 in a manner similar to that for k = 5, we we conclude that for all
m ≥ 3,

St6([n]2m) is not constant modulo 2m. (32)

Again, as in the case when k = 5, an application of Theorem 5 justifies that the AMM
conjecture holds for k = 6 with µ6 = 2 and M6 ≤ 3, and since we already determined that
the conjecture holds for levels m = 1 and m = 2, it follows that M6 = 1.

The calculations for k = 6 are of roughly the same magnitude as those for k = 5, and in
both cases, they are not dissimilar from the proof for k = 5 given by Amdeberhan, Manna,
and Moll. One aspect in both of these cases is that n ∈ Nk,m if and only if Stk[k]([n]2m+bk) ≡ 0
(mod 2m). That is, the converse of Proposition 9 holds.

6.2 k = 7

Although the behavior exhibited by ν2 ◦ Stk is similar for the cases k = 5 and k = 6, the
landscape changes when k = 7. By Proposition 8, for m ≥ 3,

St7([n]2m) is constant modulo 2m−1. (33)

Using Proposition 13 with ℓ = 1 in conjunction with Mathematica, we find that for m ≥ 3

St7([n]2m) is not constant modulo 2m if and only if n is odd. (34)
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In fact, since (33) follows directly from (34), we did not actually need to apply Proposition
8 for the case k = 7. Using Proposition 13 with ℓ = 2, we find that for m ≥ 3,

St7([n]2m) is not constant modulo 2m+1 if and only if n is odd. (35)

Applying Proposition 13 with ℓ = 3 yields the following for all non-negative integers when
m ≥ 4:

St7([n]2m) is not constant modulo 2m+2. (36)

As with the cases k = 5 and k = 6, it is possible to determine N7,4 explicitly. However, we
demonstrate that this is not necessary when justifying that the AMM conjecture holds. Fix
M = 4, and consider j ∈ N7,4. Whenever j is odd, define ℓj = 1, and whenever j is even,
define ℓj = 2. Thus, whenever n is odd, we see that (35) and (34), constitute parts (i) and
(ii) of Theorem 5, respectively. In addition, whenever n is even, (36) and (35) constitute
parts (i) and (ii) of Theorem 5, respectively. Putting this together, we see that the AMM
conjecture holds for k = 7 with M7 ≤ 4.

At this point, it makes sense to say a few words about the role that ℓ plays as well as the
link between Stk([n]2m+bk ) ≡ 0 (mod 2m) and n ∈ Nk,m. When ℓ = 1, we have for exactly
one child (say x) of [n]2m+bk that Stk([x]2m+bk+1) ≡ 0 (mod 2m+1) and x ∈ Nk,m+1. However,
when ℓ > 1, both children have the property of Stk([x]2m+bk+1) ≡ 0 (mod 2m+1), but we
know that only one lies in Nk,m. The value of ℓ essentially tells you how many generations
of children of n have the property of being congruent to 0 for the appropriate power of 2.
More precisely, when we calculate the sets N7,1, N7,2, N7,3, and N7,4, we have the following:

N7,1 = {7, 8}

N7,2 = {9, 10}

N7,3 = {13, 14}

N7,4 = {13, 14}.

While this looks similar to the cases k = 5 and k = 6, there is a difference in the behavior
of the children regarding congruences to 0 modulo 2m. While St7(7) ≡ St7(8) ≡ 0 (mod 20),
we see that 7 and 9 behave differently from 8 and 10. In particular, St7(8) ≡ St7(10) ≡ 0
(mod 21), but St7(7) = 1 6≡ 0 (mod 21). In fact, it is more complicated when you look at
10. In this case, both the children and the grandchildren are congruent to 0 modulo the
appropriate power of 2. Moreover, this pattern continues, which is why we had to choose
different values of ℓ in the cases that n was even and odd. This more complex behavior is
what appears to limit the proof method used by Amdeberhan, Manna, and Moll. Moreover,
the case k = 7 is only the tip of the iceberg. When k = 15, each value of ℓ from 1 to 4 gives
new congruence classes for n with f15(n) 6≡ 0 (mod 22s+4). On the bright side, however,
similar to the case k = 7 where f3(n) 6≡ 0 (mod 22s+4) for all n whenever ℓ = 3, for k = 15
we have a similar result for ℓ = 4.

6.3 k = 13

The case k = 13 is unique in that it is not sufficient to use Proposition 8 in conjunction
with performing calculations according to Proposition 13. According to Proposition 8, for
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m ≫ 0, we have
St13([n]2m) is constant modulo 2m−2. (37)

For m ≫ 0, we can use Proposition 13 to determine that the following holds if and only if
n ≡ 1, 2 (mod 4):

St13([n]2m) is not constant modulo 2m−1. (38)

In addition, for m ≫ 0, the following holds if and only if n ≡ 0, 1, 2 (mod 4):

St13([n]2m) is not constant modulo 2m. (39)

However, within our ability to calculate with Mathematica there is no non-negative integer
ℓ such that for sufficiently large m such that for all n ≥ m, f13(n) 6≡ 0 (mod 2s+4). In other
words, there is no non-negative integer L such that the following holds for all non-negative
integers n:

St13([n]2m) is not constant modulo 2m+L. (40)

This peculiarity distinguishes the case k = 13 from all other cases when k ≤ 20. Fortunately,
a finite check (using Proposition 9) verifies that ν2 ◦ St13 is constant on the class [n]2m
whenever n ≡ 3 (mod 4), and so when employing Theorem 5, we only need to consider
values of n where n ≡ 0, 1, 2 (mod 4). Consequently, statements (37), (38) and (39) are
sufficient for the purposes of validating the AMM conjecture.

This brings up a method to increase computational efficiency, but at some cost in terms
of ease of programming. Our algorithm looks for a sufficient value of ℓ to guarantee that
fk(n) 6≡ 0 (mod 22s+4) for all n, but in cases like k = 13, where finding such an ℓ is beyond
our computing power, the program then performs a check to see whether the values of n that
we cannot guarantee the non-equivalence are constant. However, we could use Proposition
9 to check which n we need to check for each ℓ. While this would lead to some improvement
in the number of values of k that we could check, the work in calculating fk(n) (mod 22s+4)
is a limiting factor since the magnitude of s is largely dictated by ν2(k!).

The case of k = 13 also shows another complication in that 9 ∈ N13,3, but [9]2m has no
non-constant children. Indeed, the number of congruence classes modulo 2m+bk for which
Proposition 9 does not rule out a non-constant class is 6 for m = 1, 8 for m = 2, 10 for
m = 3 and m = 4, 14 for m = 5, and then a constant 6 for m ≥ 6. The case k = 13 is the
first such case where the congruence classes with this property are not (weakly) monotone
with respect to m, and is the only case for k < 21.

6.4 General k

The Mathematica code that performs the calculations yielding the proof of the conjecture
for k ≤ 20 is available at http://myweb.lmu.edu/emosteig. For these values of k, the
largest choice of ℓ necessary is 4 (in the case k = 15). In principle this code will work for
any value of k for which the conjecture holds true, and while we anticipate that we could
further optimize the program to produce results for larger values of k, it also seems with the
current ideas that the best we could hope for using these algorithms would be k ≤ 100 (and
in fact, k = 89 appears to be require a very large value of ℓ based on the data we currently
have).
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7 Further questions

As we approached this problem, we collected a lot of data concerning which values of n,m
and k the statement Stk([n]2m+bk ) ≡ 0 (mod 2m) holds true. As might be expected by
the requirement that fk(n) 6≡ 0 (mod 22s+4) together with m ≥ s + 1 in the computer-
generated (as well as the hand-generated) proof, we often had more data than was fully
needed for the proofs. In addition, when k is large, although our automated proof process
is computationally infeasible due to the magnitude of s, we have a great deal of data that
suggests many conjectures. We close by describing what appear to be the most tractable
problems at this time.

The case where k = 2t + 1 for some positive integer is extremely intriguing. The data
suggests several results, which we are currently working on with a student. In particular, we
have the following conjecture.

Conjecture 15. The AMM conjecture holds for k = 2t +1 for all integers t ≥ 2. Moreover,
the following hold.

1. The parameter ℓ can be chosen equal to 1. That is, if s = ν2(k!) + 1 − bk − 3 =
ν2(k!) + t− 3, m ≥ s+ 1, and 2m −m ≥ s+ 3, then fk(n) 6≡ 0 (mod 22s+4) for all n.

2. Mk = 1.

3. µk = #Nk,m = 2t−1 for all m.

A natural question arises about whether this work might apply to the work of Berrizbeitia
et. al. [2], where the authors look at the p-adic valuation of S(n, k) where p is an odd prime.
For small odd primes, similar arguments to the one in this paper should apply, given that
the right analogue of Proposition 7 can be found. While this seems relatively easy to do in
the case of p = 3, where there will need to be two possible starting states (t ≡ ±1 mod 3),
stating a similar result in a usable way for odd primes greater than 3 might be quite difficult
as there will necessarily be p− 1 starting states to use. For example, looking at the case of
25

n

modulo 5n+1 yields the result for n < 11 that

25
n

≡
n
∑

t=0

at5
t (mod 5n+1),

where

a0 = 2, a1 = 1, a2 = 2, a3 = 1, a4 = 3, a5 = 4, a6 = 2, a7 = 3, a8 = 0, a9 = 3, a10 = 2.

Our choice of working modulo 5n+1 was purely arbitrary here. In the p = 2 case, we needed
2n+3, and if we must move to a higher power of 5 in the modulus in the proofs, this would
add even more complexity, as 25

n

≡ 75
n

(mod 5n+1), but not modulo 5n+2.
Another potential challenge in the odd prime case is that instead of looking at the differ-

ence Stk(n+ 2m)− Stk(n), we will need to show that each element of {Stk(n+ a · pm) | a ∈
{0, 1, . . . , p− 1}} lies in its own equivalence class modulo the appropriate power of p. Thus
instead of looking at terms of the form tn(t2

m

− 1), we will be looking at terms of the form
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tn(tp
m

− a), where a = 1, 2, . . . , p− 1, and we will need to show they are all non-zero. While
both of these hurdles seem possible to overcome, both may require modifying our techniques
significantly.

Generalizing these results to other sequences modulo 2 may prove more tractable. The
difficulty here seems to be identifying interesting such sequences. For example, the sequences
b · an + 1 for appropriate choices of integers a and b seem to have similar properties to the
S(n, k), but for many choices of a and b the result appears to be uninteresting as the 2-adic
valuation is bounded. A few examples suggest that choosing a and b so that b · an + 1 is
congruent to 0 modulo 8 may generally lead to interesting examples, but even here, we do
not seem to get the full range of behaviors that make the Stirling numbers interesting.

Other interesting problems arise from the terms of ℓ, Mk and µk. In particular, from our
early data, it appears that µk is a non-decreasing sequence. Is this true in general? A more
ambitious problem appears to be determining the behavior of Mk. Regarding ℓ, we notice
that the largest choices of ℓ needed for Lemma 11 occurs when k = 2t − 1. Is there a reason
for this? Is this true in general? More precisely, determining bounds for ℓ depending on k
would be extremely interesting.

References

[1] T. Amdeberhan, D. Manna, and V. Moll, The 2-adic valuation of Stirling numbers, Exp.
Math. 17 (2008), 69–82.

[2] A. Berrizbeitia, L. A. Medina, A. C. Moll, V. Moll, and L. Noble, The p-adic valuation
of Stirling numbers, Journal for Algebra and Number Theory Academia 1 (2010), 1–30.

[3] S. De Wannemacker, On 2-adic orders of Stirling numbers of the second kind, Integers 5
(2005).

[4] D. Dummit and R. Foote, Abstract Algebra, Prentice-Hall, 1991.

[5] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.

[6] Y. H. H. Kwong, Minimum periods of S(n, k) modulo M , Fibonacci Quart. 27 (1989),
217–221.

[7] T. Lengyel, On the divisibility by 2 of the Stirling numbers of the second kind, Fibonacci
Quart., 32 (1994) 194–201.

[8] T. Lengyel, On the 2-adic order of Stirling numbers of the second kind and their differ-
ences, in 21st International Conference on Formal Power Series and Algebraic Combi-
natorics — FPSAC 2009, Discrete Math. Theor. Comput. Sci. Proc., 2009, pp. 561–572.

[9] Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL, 2010.

2010 Mathematics Subject Classification: Primary 11B73; Secondary 05A15.

20



Keywords: Stirling number, valuation, combinatorial enumeration problem.

Received April 27 2012; revised version received February 17 2013. Published in Journal of
Integer Sequences, March 2 2013.

Return to Journal of Integer Sequences home page.

21

http://www.cs.uwaterloo.ca/journals/JIS/

	Congruence Classes of 2-adic Valuations of Stirling Numbers of the Second Kind
	Digital Commons @ LMU & LLS Citation

	Introduction
	Background
	Preliminary results
	General framework
	Computational framework
	Examples
	k=5 and k=6
	k=7
	k=13
	General k

	Further questions

