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Abstract

We produce a connection between the Weil 2-cocycles defining the local and adèlic metaplectic
groups defined over a global field, i.e. the double covers of the attendant local and adèlic symplectic
groups, and local and adèlic Maslov indices of the type considered by Souriau and Leray. With the
latter tied to phase integrals occurring in quantum mechanics, we provide a formulation of quadratic
reciprocity for the underlying field, first in terms of an adèlic phase integral, and then in terms of
generalized time evolution unitary operators.
c⃝ 2015 Elsevier GmbH. All rights reserved.
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1. Introduction

André Weil gave, in “Sur certains groupes d’opérateurs unitaires” [63], what is now
regarded as the definitive explication of the analytic theory of quadratic forms presented
by C.L. Siegel [51]. One of the main themes of [63] is Weil’s beautiful reformulation of
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the Fourier-analytic proof of quadratic reciprocity for a global field (in Weil’s language, an
A-field) in terms of the unitary representations of the symplectic groups associated to the
natural skew-symmetric pairings of the given field’s localizations and adèlization with their
Pontryagin duals. Weil accordingly reframed the classical analytic proof of Gauss–Euler
reciprocity for an algebraic number field, originally given by Erich Hecke [27] almost forty
years earlier, in terms of unitary group representations. In light of what follows, it is worth
noting that the equivalent form of quadratic reciprocity used by Weil is Hilbert’s, or that of
Hilbert and Hasse.

Making a transition from Hecke’s classical Fourier analysis, centered on the essentially
Riemannian strategy of exploiting functional equations for ϑ-functions, to what is now
often called “abstract” Fourier analysis, i.e., Weil’s unitary representation theory, involves
the use of a good deal of mathematical machinery originally developed in connection
with quantum mechanics. To give one example, in Hecke’s original treatment the central
maneuver is to establish the aforementioned functional equations for what are now called
Hecke ϑ-functions by means of Fourier analysis (Poisson summation can be used). It is an
exercise in elementary analysis to tie each of the two ϑ-functions appearing in a functional
equation to a Gauss sum that transforms nicely with respect to an obvious action of a
generalized Legendre symbol. From there it is a short hop to quadratic reciprocity. The
corresponding feature in Weil’s treatment, working in an adèlic context, is the fact that a
certain linear functional, now called the Weil Θ-functional, is invariant under the action of
the rational points of the adèlic symplectic group (induced by a projective representation,
the so-called Weil representation). And so it is that one can already recognize something
quite familiar in this interplay between, on the one hand, Fourier series and ϑ-functions,
and, on the other hand, unitary representations. This same counterpoint is at the heart of
the functional analysis von Neumann was instrumental in developing [61] for the purpose
of capturing Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics under a
single umbrella. Indeed, it is the case that the Heisenberg group, Heis(V ), carries a(n
essentially) unique irreducible representation and since this group is an extension of the
underlying symplectic space by the scalars, the according symplectic group, Sp(V ), acts
on Heis(V ) in such a way that its elements twist the aforementioned representation into
an equivalent one. In other words, we get a projective representation, one of the main foci
of this article (see Section 2.3). The entry of the Heisenberg group onto the scene in this
manner suggests a close connection to von Neumann’s approach to quantum mechanics, as
is evident from the role played by the Stone–von Neumann Theorem in both the theory of
the oscillator representation and the theory of the Weil representation: but for their different
settings they are quite the same. This interplay, or, more specifically, the connection it
suggests between the present theme from the analytic theory of numbers and quantum
physics, provides one of the major motivations for the investigations we carry out in this
article.

Drawing a direct parallel between ϑ-functional equations and the aforementioned
invariance regarding the Weil Θ-functional, evocative though this may be, is a bit
disingenuous since it is the case that for our present purposes greater weight should
be given to the Weil representation. As just mentioned, the latter is actually not a true
representation at all, but a projective representation, which is to say that it is really a
low-dimensional cohomological object. This can be seen by looking at the long exact
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sequence in cohomology attached to the short exact sequence realizing the projective
unitary group attached to the irreducible representation of Heis(V ) just mentioned above:
any homomorphism into the projective unitary group on V gives a 2-cohomology class
with coefficients in the attendant 1-parameter unitary group. This having been said, as
acting on the symplectic group, the Weil representation is a homomorphism into the
group of unitary operators on a certain natural Hilbert space only up to multiplication
by a 2-cocycle taking its values (à priori) in C×

1 ≈ S1. In [63] Weil develops this
theme on two fronts: locally, for every valuation p on the underlying global field k,
and adèlically, which is to say, over the ring kA of k-adèles. In this way he obtains
local 2-cocycles cp ∈ H2(Sp(2, kp),C×

1 ), one for each valuation of the field, and an
adèlic 2-cocycle cA ∈ H2(Sp(2, kA),C×

1 ) via cA =


p cp, where we have written
Sp(2, kp) (resp. H2(Sp(2, kA))) for the indicated local p-adic (resp. adèlic) symplectic
group. Presently we will have occasion to sharpen this notation to Sp(kp × k∗

p) (resp.
Sp(kA × k∗

A)). The aforementioned invariance of the Θ-functional under the action of the
rational points, through the agency of the Weil representation, means that cA = 1 when
restricted to Sp(k) × Sp(k). In Weil’s approach this suffices to yield the reciprocity law
for the 2-Hilbert–Hasse symbol; in Kubota’s supplement [31–63], featuring a particularly
transparent presentation of the defining local 2-cocycle, we obtain 2-Hilbert reciprocity
directly. In this regard the reader might also consult [22] and [3]; additionally [5] contains
marvelous related material—see especially the articles by Roger Howe (p. 275 ff.) and
Stephen Gelbart (p. 287 ff.). Additionally, there is the important article [43] by Ranga
Rao where it is shown that by choosing a Haar measure in the right way there emerges a
simple formula for the Weil representation relative to the Bruhat decomposition of Sp(V )
resulting in an explicit 2-cocycle representing the corresponding cohomology class.

Going on to the particulars of the connections with quantum physics suggested above,
we note, first, that the Weil representation was already introduced earlier in the context of
a study [50] dealing with bosons (particles obeying Bose–Einstein statistics) and electron
spin, authored by David Shale and building on work by I.E. Segal [49]. With physical space
being the underlying topological space for this study, the symplectic group encountered
here is Sp(Rd) for d = 3, 4. For our purposes d can be any positive integer, although
eventually, as we home in on specific arithmetical goals, we will take d = 1, meaning that
for the localization of k at a real archimedean place (k∞ = R) the associated symplectic
group is of dimension 2 = 2d. Furthermore, giving all places of k equal billing, the general
local symplectic group will then be Sp(kp × k∗

p), as already indicated earlier. À propos,
physicists parochially tend to refer to the present projective representation of Sp(Rd) as
the oscillator representation, while number theorists call it simply the Weil representation;
ecumenists sometimes call it the Segal–Shale–Weil representation.

More needs to be said, however, about what physics has to offer. Well beyond this
historical point, that in the hands of Gérard Lion and Michele Vergne [34] a deep
connection was revealed between the Weil representation and the Kashiwara triple index
of Lagrangian planes in a symplectic space (or manifold). Lion and Vergne proved that
if we write c = c∞ ∈ H2(Sp(Rd),C×

1 ) for the 2-cocycle for the Weil representation
of Sp(Rd), and τ(l, lσ , lσ

′σ ) for Kashiwara’s triple index at the Lagrangian planes
l, lσ , lσ

′σ , where σ, σ ′
∈ Sp(Rd), then c is an eighth root of unity of a special form:
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c(σ, σ ′) = exp(−π i
4 τ(l, l

σ , lσ
′σ )), seeing that τ takes values in Z. Parenthetically, in [34]

Lion and Vergne refer to Kashiwara’s τ as Maslov’s index, as the title of their book
already indicates. Interestingly, Kashiwara and Schapira note in their Appendix A.3 to [29],
“Inertia index”, where the Kashiwara triple index is presumably introduced (cf. [29],
p. 487), that this index is sometimes also called the Maslov index. Doubtless it is this
convention that is followed in [34]. However, the genesis of the Maslov index proper is
somewhat more ramified in the sense that Maslov’s original formulation of it [35] occurred
in the context of flows on certain kinds of manifolds, a theme taken up by V.I. Arnol’d [1],
who apparently gave the index its name. A concomitant tradition is that this index should
be written as µ, and, while τ and µ are closely related, they are not identical. Happily, the
precise relationship between τ and µ is discussed at great length in the important recent
paper [7] by S. Cappell, R. Lee, and E.Y. Miller, where, among other things, the authors
present an explicit linear relation between these two indices. Thus we also get a relation
between c∞ and µ.

And this forms the point of departure for bringing physics’ path integral formalism
into the game. Specifically, at first working over R, we can map out a trajectory from
c∞ ∈ H2(Sp(Rd),C×

1 ) to µ, which means that we obtain an intrinsic tie between the
given cohomology class in H2 and an index in the true sense of the word, ultimately
gratia [34] and [7], as we shall see in the course of our discussion. But it is also the
case that the Maslov index µ appears, e.g., in the formula for the density of states of
nothing less than quantum mechanics’ harmonic oscillator [2], as well as in a pair of
marvelous and suggestive formulas presented respectively by Jean-Marie Souriau [53]
and by Joel Robbin and Dietmar Salamon [45,44]. Souriau’s formula directly addresses
the time evolution of a certain quantum mechanical system, while Robbin and Salamon
focus on a unitary operator formalism. Both of these formulas involve phase integrals
which have physical interpretations. Therefore we can inquire after a deep structural
connection between the arithmetical theme of quadratic reciprocity, couched in Weil’s
unitary representation theoretic language, and quantum mechanics, the conduit being the
Maslov index, i.e. symplectic. We partially developed this theme for the real case in [4],
which can be regarded as something of a precursor to the present work.

Recognizing that the preceding remarks are sketchy at best, we address in the pages that
follow the autonomous question of relationships between, on the one hand, the indices of
Kashiwara and Maslov, and, on the other hand, the aforementioned phase integrals. We
subsequentially specialize to the setting of arithmetical interest and tie things with the Weil
2-cocycle and double cover of Sp(kA × k∗

A) (for it is in fact the case that the Weil 2-
cocycle takes its values in Z2 (or µ2 = {1,−1} < C×

1 , if we work multiplicatively, but we
avoid this notation for obvious reasons); cf. [63] and [31]). This all means that we have to
develop two major themes. First, we have to see how the results of Lion–Vergne [34],
Cappell–Lee–Miller [7], Souriau [53], and Robbin–Salamon [45] can be adapted to
arbitrary local fields (i.e. to all the places of k, both archimedean and non-archimedean),
and then to adèlize everything in sight. Second, we have to look at what can be said about
the splitting of the double cover of Sp(kA × k∗

A) on the rational points in terms of the yoga
of phase integrals. The former theme is, at least as far as Lion–Vergne’s results go, covered
by the thesis [40] of Patrice Perrin, presented in detail in the Appendix to Part I of [34].
Accordingly, in what follows, the bulk of truly novel results accrue to the theme of how
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what we might call the resulting symplectic geometry informs the behavior of the relevant
phase integrals. This inevitably takes us to avant garde material on p-adic phase (and
ultimately Feynman) integrals and their connection to the p-adic counterparts of the Maslov
indices we consider with their subsequent adèlizations; cf. [47,58,59,17,16], and [14].

Yielding to temptation a little, we suggest at this admittedly early stage that the en-
terprise of going through these two investigations should in due course shed light on a
particularly vexing question in analytic number theory, viz. that of the nature of the ob-
stacles encountered in trying to generalize the analytic proof of quadratic reciprocity to
higher degrees, from, say, 2-Hilbert reciprocity to n-Hilbert reciprocity. Given the struc-
tural similarity between phase integrals and Fourier integrals, there is a possibility that
we can begin to address this question directly—Hecke himself posed this challenge at the
close of [27] by asking for transcendental functions to generalize his ϑ-functions. Regard-
ing these, assuming a somewhat different standpoint for the moment, one might enquire
after deep connections to algebraic geometry, given that ϑ-functions give rise to sections
of line bundles over abelian varieties. Here the definitive reference is Mumford [37]. Also,
still regarding ϑ-functions per se, the theory of the Weil representation as per [63] provides
that they can be regarded as functions on a quotient of the 2-fold cover of the symplectic
group, Weil’s metaplectic group. But, perhaps on a more prosaic level, ϑ-functions can be
viewed as sums of parameterized Gauss kernels, and the latter also figure directly into the
theory of quadratic phase Feynman integrals. One may therefore ask whether the analytic
proof of higher reciprocity ultimately redounds to maneuvers with higher phase Feynman
integrals. However, these claims about higher reciprocity are at this point still speculative
and preliminary.

1.1. The structure of this paper

Central to all of our considerations is the theory of the Weil (projective) representation of
the symplectic group, and we devote the second chapter of this article to this subject. There
are two themes to discuss in this connection, which, for lack of a better word, we refer to
as, respectively, the arithmetical part and the quantum mechanical part.

The arithmetical part is largely concerned with the indicated material in Weil’s 1964
paper [63] and its 1980 elaboration and interpretation given by Lion, Vergne, and
Perrin [34]. Our objective is to have a full treatment of the Weil representation at our
disposal, in the settings of all local fields kp arising as completions of the underlying global
field k at its prime spots p, as well as in the setting of the k-adèles kA. As we noted in the
preceding section, Lion and Vergne restructured Weil’s theory in the real setting, expressly
focusing on symplectic geometry, while the needed extension to local fields is covered
in their Appendix to Part I, devoted to the work of Patrice Perrin [40]. These particulars
set the stage for the transition to the third chapter of our paper, i.e., the discussion of the
Kashiwara index (their Maslov index) in [34].

To wit, in chapter three the focus falls explicitly on the Maslov index in its different
manifestations and definitions, and its connections to the 2-cocycle cp ∈ H2(Sp(2, kp),

Z2) (again, with values in Z2 rather than C×

1 or S1 thanks to Weil [63]). While [34]
deals only with Kashiwara’s Maslov index, i.e., τp, with p ∈ Vk , where Vk denotes
the set of all places of k, whence we only obtain a relationship between the cp and the
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corresponding τp in this context, we need to connect the cp to what Maurice de Gosson
calls the Arnol’d–Leray–Maslov index in [8], i.e. the data µp, with p ∈ Vk . The reason for
this is that, following [8], when p = ∞R this Arnol’d–Leray–Maslov index is only off by a
factor of 2 from the Maslov index m discussed by Souriau in [53], and thereafter by Leray
in [33]. It falls to us, therefore, to extend this relation to a usable connection between the
cp data and µp and mp data, mutatis mutandis.

It is in this context that we introduce the fact that, as also per the aforementioned seminal
work [63] by André Weil (see also [3]), the splitting of the adèlic double cover of the
symplectic group on the rational points is equivalent to the law of quadratic reciprocity for
the ground field k. We give a compact discussion of this at the end of chapter three.

Next we turn to physics, at least after a fashion. First off, for the sake of clarity, when
we are concerned with its arithmetical aspects, we take the liberty of referring to the
Segal–Shale–Weil representation simply as the Weil representation, while we use the term
oscillator representation when looking at the object from a physicist’s perspective. Regard-
less of its name, however, the development of this projective representation is intimately
tied to the unitary representations of some flavor of Heisenberg group, specifically to the
according Schrödinger representations, bearing in mind, of course, that we are concerned
with what transpires in the setting of the localizations of a global number field.

For our ultimate purposes the main point about the oscillator representation is its
relationship to a phase integral development of quantum mechanics (and perhaps, à
la Feynman, quantum field theory). Therefore, in the fourth chapter, we turn to the
formalism of physically motivated phase integrals, also taking the liberty to discuss the
position such integrals occupy relative to the Schrödinger and Heisenberg pictures of
quantum mechanics; here we largely follow Prugovečki [42]. More precisely, given a
quantum mechanical system (e.g., a single particle, in the simplest case), the formalism
of Schrödinger’s wave equation deals with the time evolution of its states, keeping
the observables fixed, whereas in Heisenberg’s formulation of quantum mechanics
(i.e. matrix mechanics) it is the other way around. The transition between these “pictures”,
Schrödinger’s and Heisenberg’s, is given in terms of the behavior of a 1-parameter
subgroup of the group of unitary operators on the Hilbert space of states of the system, and
it is a relatively straightforward matter to finesse this subgroup’s infinitesimal generator
so as to bring in an explicit phase integral. At the same time, this infinitesimal generator
comes from the system’s Hamiltonian (measuring total energy), which is fundamental as
far as our projected next step goes, namely, Feynman’s famous idiosyncratic development
of quantum mechanics, even though he starts out in [20] with Schrödinger’s equation and
works with a Lagrangian. In this connection we refer the reader to Faddeev’s wonderful
discussion of the attendant procedures in [19], and also Feynman’s book [21], co-written
with A.R. Higgs.

With this background in place we go on, in the fourth chapter, to look at the formal
connection between phase integrals and 1-parameter subgroups of certain unitary Lie
groups void of particular physical overtones. This is of particular interest because the
work of Souriau [53] mentioned earlier, connecting his Maslov index (i.e. essentially the
Arnol’d–Leray–Maslov index) to a phase integral, has found something of a modern echo
in work by Joel Robbin and Dietmar Salamon [44,45] dating to the early 1990s, in which
time evolution unitary operators dependent on a given Hamiltonian are featured.
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Additionally, given our prevailing need for p-adic data for all p ∈ Vk , we look into the
matter of designing suitable compatible p-adic and, subsequently, adèlic phase integrals,
for reasons that become clear in the fifth and final chapter of our paper. Suffice it to note at
this stage that since Hamiltonians are not available in these non-archimedean contexts, we
employ the strategy employed by V.S. Vladimirov, V.I. Volovich and E.I. Zelenov [58] and
Branko Dragovich [17,16] and shift the onus entirely to Weyl quantization.

Thus, the middle three chapters serve to lay out a coherent treatment of the connection
between, on the one hand, the cohomological data afforded by the Weil 2-cocycles,
locally as well as adèlically, and, on the other hand, Kashiwara and Maslov indices, and
subsequently to relate the latter to quadratic phase Feynman integrals. With all this in place,
the (very brief) fifth chapter is devoted to the culminating task of casting the fact that cA is
split on Sp(k) in terms of generalized adèlic phase integrals and in terms of the operators
discussed by Robbin and Salamon in this context.

We should add that something of a caveat is in order regarding what we are up to:
since the prevailing thrust of this article is ultimately number theoretic, we take great
pains to develop the physical themes that come into play, given their relative unfamiliarity,
and in this regard we also take the liberty of providing some historical background
where indicated. To mitigate the irregularity in emphasis this engenders, we provide many
references. Additionally, in extending our main result from the paradigm case of the real
field (as a completion of the rational numbers) to other local fields so as to include all
the completions of our base field, k, and subsequently proceeding over to the case of the
k-adèles as the underlying topological ring, we are faced with something of a technical
imbalance. As far as our number-theoretic considerations are concerned, we are traveling
well-trodden paths which were first developed by such scholars as Tate [54] and Weil [64],
and which over the years took their place in the mainstream of both analytic and algebraic
number theory. But when it comes to quantum physics, considerations of non-archimedean
settings are both still rather novel and, as far as our purposes are concerned, only partly
developed. Specifically, whereas the theory of unitary operators on a Hilbert space is
certainly part of quantum mechanics’ formalism as developed by von Neumann, the
context is of course that of space and time as generally understood, and the presupposition
is made that measurement (always a rational number, no matter how sophisticated the
instrumentation) ultimately “lives” in the real numbers; indeed, this hypothesis in implicit
in science as a general rule: why should one even consider other completions of the rational
numbers? But in the last few decades a small number of scholars have begun to consider
the possibility that a non-archimedean setting, i.e. p-adic completions of Q, should be a
proper context for quantum mechanics (cf. [57,47,58,59]), and most recently versions of
quantum mechanics have been proposed in the context of none other than the Q-adèles (cf.
[14,17,16]), with, in both cases (locally as well as adèlically) Weyl quantization taking the
lead and obviating the need for a Hamiltonian. Thus, over the base field Q there is available
to us a well-developed non-archimedean formalism which we can bring into play as, so to
speak, the other side of the equation (rather literally as it turns out) when it comes to our
central results pitting the Weil 2-cocycle cA against functional phase integrals. What is
missing, however, is a well-developed quantum mechanics formalism over the local fields
kp, and then over the adèle ring kA with (k : Q) > 1: the physicists obviously have no
need for such conceits. Therefore, in what we do below in this most general setting, we
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provide only the architecture of what our general formulas should look like (sufficient for
the purposes outlined above), but leave aside for now the task of lifting p-adic and Q-adèlic
quantum mechanics to p-adic and k-adèlic quantum mechanics. We save this for a sequel
to the present work. What we present here is autonomous.

Furthermore, specifically concerning the types of integrals that enter into our
considerations, i.e., the aforementioned functional phase integrals, there is an element
of ambiguity present that we should like to say a few words about now, before we get
underway. Of course, on the number theoretic side the integrals that occur are entirely
well-defined as (in their most general form) Haar integrals. The physics side of things,
as it stands, will ultimately be seen to involve physically meaningful integrals of the
type considered (over the real numbers) by Jean-Marie Souriau [53], who was following
leads by V.I. Arnol’d [1] and Jean Leray [33]. The latter physically meaningful integrals
are all taken over some Rn and, as such, avoid the notorious problem of Feynman path
integrals proper, viz. their ill-definition due to the absence of a true measure on Feynman’s
spaces of paths. The integrals we reach “on the physics side of things” in what follows
are, first, also integrals over Rn (and indeed correspond to those considered in []) and,
subsequently, are generalizations of these well-defined integrals to both local and adèlic
non-archimedean settings. What is not done yet, but what we hope to get to in a future
study, is to address the natural next move, namely, what happens when we go from the
present path integrals to Feynman path integrals; we note that this tactic fits with what
Robbin and Salamon undertake in [45] and [44]. Additionally, what all this comes down
to is that we take the liberty to play fast and loose with terminology, as far as the jargon
we use in the present article is concerned. This is much along the lines of what seems to
be conventional in the literature: generally speaking the physically meaningful integrals
we deal with are functional integrals and phase integrals because there is a phase that
defines them (in the usual manner), and, since the action (or Lagrangian) appearing in the
integrand is multiplied by the imaginary unit, can also be called oscillatory integrals. We
use all these descriptions, and what should be borne in mind is that because they set the
stage for Feynman’s integrals, they indeed occupy a very special role in quantum physics.

Finally, the author wishes to express his sincere gratitude to a referee, whose cogent
suggestions were incorporated into this work.

2. The Segal–Shale–Weil representation

2.1. Shale’s paper

Let H be the real Hilbert space consisting of the real normalizable solutions ψ of the
Klein–Gordon equation for the electron,

1

c2

∂2ψ

∂t2 = △ψ −
m2c2

h̄2 ψ (2.1)

in the form given by Pauli [39, p. 146] in his elegant treatment of Dirac’s relativistic wave
equation for the free electron. As always, △ is the Laplacian, c is the speed of light, h̄
is Planck’s constant, and m is the electron’s mass. Following I.E. Segal [49], H admits
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a non-degenerate skew-symmetric bilinear form B by means of the procedure of first
complexifying H, i.e. forming the space H ⊗ C, recovering H’s original inner product
by taking the real part of the inner product on H ⊗C, and then stipulating that B should be
the accompanying imaginary part. Thus, we are immediately in possession of a symplectic
datum (H, B) as part of the standard formalism of relativistic quantum mechanics for the
present system.

Next, if T : H → H is a bounded (whence continuous) linear operator, recall that T
is of Hilbert–Schmidt type (or simply Hilbert–Schmidt) if its L2-norm relative to a(ny)
orthonormal basis {xα}α for H is finite:


α ∥T (xα)∥ < ∞. The class of Hilbert–Schmidt

operators on H constitutes a Banach space denoted by H S(H).
Then, as usual, write GL(H) for the composition group of all bounded linear operators

T on H for which T −1 is also bounded (i.e. continuous). If, generally, |T | stands for the
self-adjoint part of the polar decomposition of T , define, first, the subgroup

GL(H)H S = {T ∈ GL(H) | T = I + E, E elementary, E ∈ H S(H)} (2.2)

of GL(H), and, second, define what Shale calls the restricted general linear group:

RGL(H) = {T ∈ GL(H) | |T | ∈ GL(H)H S}. (2.3)

Shale then proves [50, p. 152] that RGL(H) is a topological group, and if the symplectic
group for H is the obvious isotropy group, namely,

Sp(H) := {T ∈ GL(H) | ∀ψ, ~ ∈ H, B(Tψ, T~) = B(ψ, ~)}, (2.4)

and

RSp(H) := Sp(H) ∩ RGL(H), (2.5)

then we obtain

Proposition 1. If H is decomposed as

H = Λ−1(M)⊕ M (2.6)

where Λ : H → H and Λ2
= −I , then

(i) any T ∈ Sp(H) can be realized as

T = U (S−1
⊕ S)U ′ (2.7)

where S ∈ GL(H) is self-adjoint, S ⊕ S−1 acts on Λ−1(M)⊕ M in the obvious way, and
U,U ′ are unitary operators on H; and
(ii) any T ∈ RSp(H) can be realized similarly but with the proviso that S be an element

of GL(H)H S .

It is the decomposition (2.7) that provides a rationale for the oscillator representation as
a projective unitary representation, as we now shall see.

Again with Shale we write, for any natural number n, fixed and suppressed, S(H FC ) for
the symmetric n-fold tensor subalgebra of (H FC )⊗n associated to the Fock–Cook quanti-
zation of the Hilbert space L2(M⊗n), M being the underlying space–time manifold. It was
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shown by I.E. Segal [48] that there is in a place a duality

S(H FC )∼
D

L2(M⊗n) (2.8)

which intertwines with the canonical unitary representation γ of the unitary group U(H FC )

on the algebra S(H FC ). In other words, we get, for all unitary operators T on S(H FC ) a
mapping

Γ (T ) := D ◦ γ (T ) ◦ D−1
: L2(M⊗n) → L2(M⊗n). (2.9)

Additionally, if we denote by Ξ the mapping from RGL(H) to U(L2(M⊗n)) defined
by

Ξ (T )( f (x)tame) = δ(T )1/2 f (T ∗x) (2.10)

where δ(T ) is a Radon–Nikodym derivative for whose specifications we refer to [50]
and [49], then Ξ is weakly continuous, and, most importantly, we have all the ingredients
needed to delineate the projective oscillator representation of RS P(H). Specifically, if
a generic T is decomposed as T = U (S−1

⊕ S)U ′ as in (2.7), then the oscillator
representation is the association

T → Γ (U ) ◦ Ξ (S) ◦ Γ (U ′). (2.11)

(To be precise, (2.10) is actually to be understood as something of a germ of the oscillator
representation as Shale constructs it in [50]: he works with a unitary ray realized by taking
the right side of (2.10) as its representative mod×C×

1 .)

2.2. Some remarks on the Heisenberg rules and symplectic forms

To be sure, the material in the preceding section introducing Shale’s construction of the
oscillator representation is only a framework. For one thing, a great deal of the required
functional analysis, evidently due to Shale’s advisor, I.E. Segal, is not mentioned; in
[50, p. 149] Shale himself characterizes the content of this material as “approximately
the same as [what is provided in] my doctoral dissertation”. For another, the style of
quantization, that of Fock–Cook, is not elaborated at all. Regarding the first shortcoming,
we note that our goal in what follows is to provide an initial sketch for Shale’s
groundbreaking contribution, consonant with later reformulations of Shale’s results in a
form more amenable to number theory rather than the physics of bosons.

Thus, while everything is indeed fitted into a quantum mechanics formalism, our
orientation is more in the direction of the geometry provided by a skew-symmetric
bilinear form, i.e. B, above, than in the direction of the mass of functional analytic details
attendant to what is ultimately von Neumann’s rendering of quantum mechanics (cf. [61]).
This circumstance, that von Neumann’s formalism can largely be replaced by symplectic
geometry (surrounding B), is also our rationale for tolerating the second shortcoming,
i.e. skirting any elaboration of Fock–Cook quantization. In fact, in this regard Shale himself
simply notes [60] that his, and Segal’s, chosen commutation relations, i.e. (verbatim),

V (z1)V (z2) = e−i B(z1,z2)/2V (z1 + z2) (2.12)
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for all z1, z2 ∈ H, “are essentially those given by Weyl (in [65] and) have been used by von
Neumann [60] for finite systems and by Segal [49] for fields”. It is standard fare, however,
that Weyl quantization, which evidently engenders in (2.12) the composition law for a
Lie group (cf. Proposition 2, and the remarks that follow), is not just formally equivalent
to Heisenberg quantization, but is in fact directly based on Heisenberg’s work of 1922,
setting out his famous commutation laws which are, after all, part and parcel of canonical
quantization.

Beyond this, as we shall see in Section 4.2, Weyl quantization is required for the de-
velopment of non-archimedean quantum mechanics, including adèlic quantum mechanics,
which ultimately constitutes the context for most of our discussion of the interplay between
the yoga of 2-Hilbert reciprocity in the style of Weil and Kubota and a formalism of phase
integrals.

Accordingly, capitalizing on the physical as well as mathematical equivalence between
Heisenberg quantization and Weyl quantization, we can safely start with symplectic
structure per se, taking symplectic geometry to be, for our purposes, the best context for
the oscillator representation, a.k.a. the Segal–Shale representation in the present physics
context. Therefore, we start with the Heisenberg picture of quantum mechanics.

First, however, a bit of history (cf. [56], specifically Van der Waerden’s opening
remarks). It is commonly agreed that quantum mechanics, in roughly the form in which it is
now practiced, appeared on the scene in 1925 as the next evolutionary step after Heisenberg
and Born’s formulation of matrix mechanics. Indeed, 1925 was the year in which (in
the single month of November, in fact) not only the famous Dreimännerarbeit [6] was
submitted to Z. Physik, but Dirac presented his own formulation of quantum mechanics in
terms of Poisson brackets [10] to Proc. Royal Society. We start by taking the former article
as our point of departure for Heisenberg’s picture of quantum mechanics and Heisenberg
quantization.

So it is, then, that Born, Heisenberg, and Jordan present, in the opening pages of [6], the
famous relation

pq − qp =
h

2π i
1, (2.13)

for matrices p, q, 1(=id), the former two being the quantum mechanical counterparts to
classical momentum and position, respectively. In the authors’ subsequent discussions of
quantum mechanical systems of, say, n degrees of freedom, these commutation relations
are fleshed out to read, verbatim,

pkql − ql pk =
h

2π i
δkl (2.14)

pk pl − pl pk = 0 (2.15)

qkql − qlqk = 0 (2.16)

for all 1 ≤ k, l ≤ n, with δkl Kronecker’s delta: δkl = 1 (resp. 0) when k = l (resp.
k ≠ l). We see immediately, however, that if [ , ] denotes the commutator (or Lie bracket),
as usual, then the preceding relations can be recast as

[pk, pl ] = 0 = [qk, ql ] (2.17)
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[pk, ql ] =
h

2π i
δkl = −[ql , pk]. (2.18)

This formalism is already amenable to interpretation as a carrier of symplectic structure,
but it is traditional to normalize the Lie bracket first, so as to yield the schema

[pk, pl ] = 0 = [qk, ql ] (2.19)

[pk, ql ] = δkl = −[ql , pk] (2.20)

with 1 ≤ k, l ≤ n. Evidently this normalization can also be effected at the level of the
Schrödinger wave equation (see [42] for an in-context treatment) as well as that of Dirac’s
formulation of quantum mechanics using Poisson brackets. It is particularly apposite to
single out Dirac’s approach, in contrast to those of Schrödinger and Heisenberg, because
of its consonance with Feynman’s rendering of quantum mechanics going back to his
thesis [20].

With this set-up in place, following [23] (the source for everything in this section),
coordinatize R2n via the symbols {pk; ql}1≤k,l≤n and realize it as the phase space for
the indicated n-particle system. Hamiltonian mechanics requires that this flavor of R2n be
identified with the cotangent bundle to the particle’s base space, and that the phase space
transformations giving the system’s time evolution and its symmetries are diffeomorphisms
fixing the non-degenerate differential form

ω =

n
j=1

dp j ∧ dq j . (2.21)

But now it is standard differential geometric practice to refer to these phase space
diffeomorphisms as symplectomorphisms, meaning that these mappings cut out the
symplectic group Sp(2n,R) as the subgroup of GL(2n,R) defined by the relation

B(xσ , yσ ) = B(x, y) (2.22)

for all x, y ∈
n

k=1 Rpk ⊕ (
n

l=1 Rql) ≈ R2n , where B is the skew-symmetric bilinear
form obtained fromω by identifying the tangent space (another isomorph of R2n , of course)
with the aforementioned base space, and σ runs through Sp(2n,R). The thrust of this

identification is that if we have x = ( p⃗, q⃗), y = (
→

p′,
→

q ′) then the data provided by (2.21)
transmogrifies to the characterization of B as

B = Bω :


n

k=1

Rpk


⊕


n

l=1

Rql

2

∋ (x, y) → p⃗ ·

→

q ′
−q⃗

→

·p′

=


k

pkq ′

k − qk p′

k ∈ R. (2.23)

So, to be sure, we have arrived at the definition of one of the principals in our story, the
symplectic group Sp(2n,R), in its usual form: it is the isotropy group of B.

Due to the non-degeneracy of ω, we can also identify each tangent vector X at ( p⃗, q⃗)
with the cotangent vector τX at the same point in such a way that for any other tangent
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vector Y we have that

τX (Y ) = ω(X, Y ). (2.24)

The induced association of tangent and cotangent vectors, or, equivalently (and preferably)
of vector fields and differential forms, lifts to the level of classical observables which are,
by definition, functions f on the phase space R2n in the form of the association of the
Hamiltonian vector field X f to d f ∈ Ω1(R2n) with

ω(Y, X f ) = d f (Y ). (2.25)

In terms of the canonical basis of the cotangent space this means that

X f =

n
j=1


∂ f

∂p j

∂

∂q j
−
∂ f

∂q j

∂

∂p j


. (2.26)

It is now standard fare t to define, for smooth observables f, g, the Poisson bracket

{ f, g} = ω(X f , Xg) =

n
j=1


∂ f

∂p j

∂g

∂q j
−
∂ f

∂q j

∂g

∂p j


, (2.27)

which is manifestly skew-symmetric and satisfies the Jacobi identity: the space of smooth
(i.e., C∞) observables acquires a Lie algebra structure. Moreover, the association f −→

X f is a Lie algebra homomorphism since [X f , Xg] = X{ f,g}. Additionally we get that

{pk, pl} = 0 = {qk, ql} (2.28)

{pk, ql} = δkl . (2.29)

So much for the classical Hamiltonian formalism.
Quantization within the Hamiltonian framework centers on the famous correspondences

between the classical and quantum pictures stipulated by the founders of quantum
mechanics. In particular, the classical (position) coordinate functions q1, . . . , qn are
interpreted as, and, in point of fact, replaced by, self-adjoint operators Q1, . . . , Qn on
L2(R2n), whose projectivization gives the space of states of the quantum mechanical
system. Additionally, the (momentum) coordinate functions p1, . . . , pn are thereupon
regarded as, or replaced by, self-adjoint operators P1, . . . , Pn on L2(R2n). Under these
correspondences, which is to say, within this new framework of operators on a Hilbert
space, we now obtain, in much the same way as before (cf. (2.17) and (2.18)),

[Pk, Pl ] = 0 = [Qk, Ql ] (2.30)

[Pk, Ql ] =
h

2π i
δkl1. (2.31)

Says Folland in this connection [23, pp. 15–16]: “By the ‘quantization problem’ we
. . . mean the problem of setting up a correspondence . . . between classical and quantum
observables, i.e., between functions on R2n and self-adjoint operators on L2(R2n), such
that the properties of the classical observables are reflected as much as possible in their
quantum counterparts in a way consistent with the probabilistic interpretation of quantum
observables ..”. So it is, then ([23], p. 17), that “[t]he Poisson bracket relations for canonical
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coordinates in Hamiltonian mechanics [being our (2.28) and (2.29)] and ... their quantum
analogues are formally identical”. However, in quantum mechanics the next move is to
introduce a Lie algebra structure as follows (and we adopt de Gosson’s definition 6.1 on
p. 161 of [8] for our purposes):

Proposition 2. Take Pk (resp. Ql ), with 1 ≤ k, l ≤ n, to be the operators

Pkψ = −i
h

2π
∂ψ

∂qk
(2.32)

Qlψ = qlψ. (2.33)

Then the data {Pk, Ql}k,l satisfies (2.30) and (2.31). Furthermore, if we add the operator

Tψ = i
h

2π
ψ (2.34)

to the mix, with [Pk, T ] = 0 = [Ql , T ], for 1 ≤ k, l ≤ n, then

N :=


n

k=1

RPk


⊕


n

l=1

RQl


⊕ RT (2.35)

is a Lie algebra under the indicated bracket, [ , ].

N is in fact a Heisenberg Lie algebra (see (2.39)), and getting from there to a Heisenberg
(Lie) group is now a routine matter involving the exponentiation mapping. This will
be one of the main things to do in our next section, so we end our discussion of this
form of quantization here, except for the following remark by de Gosson ([8, p. 160]):
“The Heisenberg group is a simple mathematical object; its interest in quantization
problems comes from the fact that its Lie algebra represents in abstract form the canonical
commutation relations”.

2.3. From the Heisenberg Lie algebra and group to the oscillator representation of
the real symplectic group

Given any number field that is not totally imaginary, the field of real numbers appears
as a localization of the number field k at a real archimedean prime: R is itself a local
field. Seeing that in connection with what follows, viz. adèlization, we must treat all places
of the number field (or A-field, in Weil’s vernacular [64]) on an equal footing, be they
archimedean or not, we emphasize at the start of this section that working over R should
be seen as something of a model for what follows: in due course we will be working
over an arbitrary local field kp. Additionally, in accord with our primary text [34], we
work first in dimension 2n, even though our ultimate goal is to apply our results to the
case considered in [63], i.e., Sp(2, kp) = Sp(kp × k∗

p), meaning that n = 1. In light of
future maneuvers it is useful, however, to have the indicated preliminaries taken care of for
arbitrary dimensions. But when we reach the point where Weil’s result to the effect that his
2-cocycle, cp, à priori an element of H2(Sp(2n, kp),C×

1 ), in fact takes values in {1,−1}

for all places p, so that we are always dealing with a double cover of the (local) symplectic
group Sp(2n, kp), we restrict to the case of arithmetical interest and set n = 1. This is
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done so as to be able to get to the adèlization of the collective data {cp}p as quickly
as possible, directly using the formula provided by Kubota in [31] instead of, say, the
Matsumoto construction (cf. [36] and [30]), or even Weil’s own original discussion. But
for the moment, the discussion that follows, dealing with the general n-dimensional case,
is adapted from [34] and [23].

The ambient vector space is

V :=


n

i=1

RPi


⊕


n

j=1

RQ j


, (2.36)

where the set {Pi ; Q j }1≤i, j≤n is a symplectic basis with respect to the non-degenerate
skew-symmetric bilinear form B, meaning that

B(Pi , Pj ) = 0 = B(Qi , Q j ) (2.37)

B(Pi , Q j ) = δi j = −B(Q j , Pi ), (2.38)

with B mapping bilinearly into R. Under this regime, introduce a formal symbol E and
stipulate that

N := V ⊕ RE, (2.39)

where, in the presence of an obvious Lie bracket [ , ], we have that

[N, E] = 0 (2.40)

∀x, y ∈ V, [x, y] = B(x, y)E . (2.41)

Thus, (N, [ , ]) acquires the structure of a Lie algebra: the Heisenberg Lie algebra. It is
then standard that N is associated to

exp(N) =: N , (2.42)

the corresponding Heisenberg group, also written as Heis(V ; B), where, with the
exponential map in the game, the group law on N is given by

exp(x + t E) exp(x ′
+ t ′E) = exp


x + x ′

+
1
2

B(x, x ′)E


. (2.43)

Accordingly we also have (using the usual notational convention that if G is a Lie group
and g is its Lie algebra, then Lie(G) = g and exp(g) = G) that

N = Lie(N ) = Lie(Heis(V ; B)). (2.44)

Next, we define a subspace l of V to be (a) Lagrangian (plane) if it is self-dual with
respect to B, expressed compactly as l⊥ = l, where

l⊥ = {x ∈ V | B(x, y) = 0,∀y ∈ l}. (2.45)

One proves quickly that any Lagrangian plane has dimension n =
1
2 dim(V ). We say that

two Lagrangian planes, l, l⊥ are transverse if l ∩ l⊥ = 0. It is standard that V admits a
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decomposition into pairwise transverse Lagrangian planes:

V = l ⊕ l ′, where l ∩ l⊥ = 0 and l ′ ∩ (l ′)⊥ = 0. (2.46)

Now, fixing such a decomposition, let

L = exp(l ⊕ RE) < N , (2.47)

and consider the group character

χL : L → C×

1 via exp(x + t E) → e2π i t . (2.48)

It is easy to see that if we define the following Hilbert space naturally associated to the
chosen Lagrangian plane l

H(l) := {ϕ ∈ L2(N) | ∀y ∈ l,∀x ∈ N, ϕ(yx) = χ−1
L (y)ϕ(x)}, (2.49)

where we abuse language a bit by just writing χL for χL ◦ exp, then χL can be realized as
acting in the algebra U(H(l)) of unitary operators on H(l) as follows:

χL : L ∋ exp(x + t E) → [ f → e2π i t f ] ∈ U(H(l)). (2.50)

In other words, we have, simply, that

χL(exp(x + t E)) = e2π i t
· idH(l). (2.51)

The point to be taken is that we can regard χL as a central character, seeing that the center
Z(N) of N is just the group exp(RE) (cf. [23]). This is of huge significance as we proceed
to invoke the theorem of Stone and von Neumann.

To wit, we define the Schrödinger representation of the Heisenberg group Heis(V ; B)
= N as the induced representation

I nd N
L (χL) : N → U(H(l)), (2.52)

and one generally uses the Stone–von Neumann Theorem to infer that we have an
irreducible representation [23, p. 35 ff]. For our present purposes it is apposite, however, to
cite the following equivalent phrasing of the Stone–von Neumann Theorem at this stage:

Proposition 3. If ϱ : Heis(V ; B) → U(H) is any unitary representation of the Heisen-
berg group (just N) in some Hilbert space H, and if

ϱ|Z(N ) = χL , (2.53)

then ϱ and the Schrödinger representation I nd N
L (χL) are unitarily equivalent. Here Z (N )

is just the center of N , which is the group RE. In other words, for all x ∈ N, we have

ϱ(x) = U−1
◦ I nd N

L (χL)(x) ◦ U, (2.54)

where U : H
≈
→ H(l).

If, with Lion–Vergne (p. 13 of [34]), we simply write W (l) instead of the more
cumbersome expression I nd N

L (χL), stressing dependence on l as per (2.49), then the
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preceding assertion yields immediately that for any Lagrangian planes l1, l2,

W (l1)(x) = FT1,2 ◦ W (l2)(x) ◦ FT2,1, (2.55)

with FT2,1: H(l1) → H(l2) a (partial) Fourier transform (of rather an abstract sort; see
p. 30, ff., of [34]), so that FT1,2 = (FT2,1)

−1. This will figure prominently presently.
Furthermore, having introduced in Proposition 3 the form of the Stone–von Neumann

Theorem we wish to use, we now come to its principal application in the present
setting, namely, the (re)introduction and explication of the oscillator representation. Write
Sp(V ; B) or, equivalently, Sp(2n,R), with dim(V ) = 2n, for the isotropy group of the
symplectic data (V, B):

Sp(V ; B) = Sp(2n,R)
= {σ ∈ GL(2n,R) | ∀x, y ∈ V, B(xσ , yσ ) = B(x, y)}. (2.56)

We immediately obtain the group action of Sp(2n,R) on N via

σ : exp(x + t E) −→ exp(xσ + t E) (2.57)

for which, obviously, σ |Z(N ) = idZ(N ).

It follows from all the preceding that (W (l),H(l)) is a unitary N -module, and, if we
write W σ (l) : N → U(H(l)) for the map, or data, W (l)(xσ ) : H(l) → H(l), then one
checks immediately that, ∀σ ∈ Sp(2n,R),

W σ (l)|Z(N ) = χL , (2.58)

so we can apply Proposition 3 to get

Corollary 1. For any σ ∈ Sp(2n,R), the unitary representations W (l) and W σ (l) are
intertwined:

W (l) (x) = FT−1
σ ◦ W σ (l)(x) ◦ FTσ , (2.59)

where FTσ maps H(l) isomorphically to itself, realizing H(l) first as the representation
space for W (l), then as the representation space for W σ (l).

Before we get to the dénouement of this section, namely, the exploitation of the preced-
ing corollary to demonstrate that FT essentially determines a class in H2(Sp(2n,R),C×

1 ),
we wish to note that we have here an illustration of how isomorphy can cover a
lot of sins. Specifically, when it comes time to delineate the connection between the
Weil(-Kubota) 2-cocycle, i.e. the cohomology class just mentioned, and the Kashiwara
triple index, the data given above in terms of intertwining operators needs to be connected
to the behavior of Lagrangian planes. Ultimately the net-effect will be that a special choice
should be made for l, and therefore for L = exp(l ⊕ RE), and in this way a specific in-
stance of I nd N

L (χL) = W (l) is tagged. But this will only come to light after a number of
maneuvers with, e.g., (2.59) and its ilk.

All this having been said, we can infer the following critical result, the aforementioned
dénouement:
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Proposition 4. There exists a unimodular scalar c(σ1, σ2), depending on σ1, σ2 ∈

Sp(2n,R), such that

FTσ1σ2 = c(σ1, σ2)FTσ1 ◦ FTσ2 . (2.60)

Proof. It follows from Hilbert–Schmidt theory (cf. [34], p. 21, ff.) that a bounded unitary
operator on H(l) that commutes with all the W (l) (x) is a scalar. It then follows easily,
e.g. from a manipulation of commutative diagrams conveying the relevant intertwinings,
that FTσ1 ◦FTσ2 ◦FT−1

σ1σ2
∈ C×. Lastly it follows directly from unitarity that |FTσ1 ◦FTσ2 ◦

FT−1
σ1σ2

| = 1. �

Therefore we have a mapping

c : Sp(2n,R)× Sp(2n,R) → C×

1 (2.61)

characterized by (2.60); it only remains for us to call upon the usual associativity arguments
(cf. [26]) to establish that

c(σ1σ2, σ3) = c(σ1, σ2σ3)c(σ2, σ3) (2.62)

in C×

1 , which implies, by definition, that c ∈ H2(Sp(2n,R),C×

1 ).
The thrust of Proposition 4 is that FT is a projective unitary representation with

c as its associated factor set. It is this mapping that is commonly known as the
Segal–Shale–Weil representation, or the oscillator representation, in keeping with the
remarks in the Introduction. As we also mentioned there, we opt for the latter term in the
present setting, i.e., that of the representation theory of the real Heisenberg Lie algebra
N = (

n
i=1 RPi ) ⊕ (

n
j=1 RQ j ) ⊕ RE and its associated (Heisenberg) Lie group

exp(N) = N .

2.4. From the oscillator representation of the symplectic group to the Kashiwara
triple index

Using (2.55) we note right off that if l is a Lagrangian plane in V and σ ∈ Sp(V ) then
lσ is also a Lagrangian plane, and it follows that we get

W (l) = FT−1
lσ ,l ◦ W (lσ ) ◦ FTlσ ,l , (2.63)

where we have written FTlσ ,l for the obvious transform mapping from H(l) to
H(lσ ). Soon, this identity will serve us well in connection with the relation between the
object of present concern, Kashiwara’s triple index (cf. [29], p. 486), and the Weil–Kubota
2-cocycle c discussed in the preceding section.

However, the Kashiwara index τ(=τ∞) is itself defined in terms of triples of Lagrangian
planes. Specifically, given pairwise transverse Lagrangian planes l1, l2, l3 in V =

(
n

i=1 RPi )⊕ (
n

j=1 RQ j ), consider the quadratic form

qB : l1 ⊕ l2 ⊕ l3 ∋ x1 + x2 + x3

−→ B(x1, x2)+ B(x2, x3)+ B(x3, x1) ∈ R. (2.64)
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Recalling that a quadratic form’s signature is the difference between the number of positive
eigenvalues and the number of negative eigenvalues of the associated symmetric matrix (cf.
e.g. [46], p. 704), we accordingly take the Kashiwara triple index to be

τ∞(l1, l2, l3) = sgn(qB) (2.65)

in the present real case.
The preceding characterization of τ∞, predicated on the presupposition that we have

pairwise transversality among l1, l2, l3, is a condition that Lion and Vergne proceed to
remove by means of defining another quadratic form, namely, B(p13x, p31x), acting on l2,
with the mappings p13, p31 being the natural projections. This then allows:

Proposition 5. Suppose l1 ∩ l3 = (0), i.e., l1, l3 are transverse Lagrangian planes. Then

τ(l1, l2, l3) = sgn(l2; B(p13( ), p31( ))). (2.66)

In this connection, see also Proposition 14.
We can now list a number of properties of triples of Lagrangian planes and the attendant

behavior of τ∞(=τ, simply, in the remainder of this section) that are carefully worked out
in [34], following Masaki Kashiwara; see the appendix to [29]. We say more about these
things later; however, as far as detailed proofs go, the reader should consult [34].

Proposition 6. For any triple of Lagrangian planes and any σ ∈ Sp(V ) we have that

τ(lσ1 , l
σ
2 , l

σ
3 ) = τ(l1, l2, l3). (2.67)

Proposition 7. For any quartet of Lagrangian planes l1, l2, l3, l4 we obtain

τ(l1, l2, l3) = τ(l1, l2, l4)+ τ(l2, l3, l4)+ τ(l3, l1, l4), (2.68)

which engenders a chain condition.

Proposition 8. If V0 is any isotropic subspace of (V ; B), which is to say that, by definition,
B(V0, V0) = 0, then B|V ⊥

0 /V0
is again a nondegenerate symplectic (i.e., skew-symmetric

bilinear) form.

Proposition 9. If l is a Lagrangian plane in V and V0 is isotropic as above, and if

lV0 =


l ∩ V ⊥

0


+ V0 = (l + V0) ∩ V ⊥

0 ⊂ V ⊥

0 , (2.69)

then (lV0)⊥ = (l⊥)V0 , and accordingly lV0/V0 is a Lagrangian plane in V ⊥

0 /V0.

Finally, as a result of the foregoing (cf. [34], p. 43 ff.), we get

Proposition 10. If V0 ⊂ (l1 ∩ l2)+ (l2 ∩ l3)+ (l3 ∩ l1), then

τ(lV0
1 , l

V0
2 , l

V0
3 ) = τ(l1, l2, l3). (2.70)
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These results illustrate some of the main properties enjoyed by the Kashiwara
triple index, including its intrinsically cohomological nature (as per Proposition 7). We
also include them at this stage as a prelude of sorts to our upcoming discussion in
Section 3.3 regarding the relationship between this index τ , evidently acting on the set
Lag(V )3 = Lag(V )×Lag(V )×Lag(V ), of triples of Lagrangian planes, and the Maslov
index µ of Arnol’d and Leray (and Souriau and de Gosson: cf. [1,33,53,8]), as explicated
by Cappell, Lee, and Miller [7]. This relationship is critical for what we will do later vis à
vis the business of bringing in phase integrals.

We note, in addition, that in [34] Lion and Vergne state these propositions without the
earlier proviso in place that the Lagrangian planes involved should be pairwise transversal:
regarding (2.64), for example, the expression l1 ⊕ l2 ⊕ l3 should then be interpreted as
a formal direct sum. This situation is addressed in [8] by de Gosson, whose object is to
present these results with no restriction qua pairwise orthogonality whatsoever.

Next, for all i, j ∈ {1, 2, 3} we have the relation

W (li ) = FTi, j ◦ W (l j ) ◦ FT j,i (2.71)

which follows immediately from (2.59), of course (suppressing x’s). Thus, and again due
to the fact that the relevant bounded unitary operator on a Hilbert space (in this case H(l1))
commutes with all the W (li )(x) for all x ∈ Sp(V ), it follows (in large part by an induction
on the dimension of V ) that there is a unimodular scalar a(l1, l2, l3), i.e.

a : Lag(V )3 → C×

1 (2.72)

such that

a(l1, l2, l3) = e−
iπ
4 τ(l1,l2,l3). (2.73)

This puts us in the position to state a result that is of considerable importance to our
enterprise, namely

Proposition 11. There is a Lagrangian plane l0 in V such that, for all σ1, σ2 ∈ Sp(V ),

a(l0, l
σ1
0 , l

σ2σ1
0 ) = cl0(σ1, σ2) = c(σ1, σ2), (2.74)

i.e.,

c(σ1, σ2) = c∞(σ1, σ2) = a(l1, l2, l3) = e−
iπ
4 τ(l1,l2,l3). (2.75)

In view of these protocols we stipulate that the Lagrangian plane l occurring in our
definition (2.52) (see also (2.49)) of the real Schrödinger representation of the Heisenberg
group Heis(V ; B) = N should be the object l0 featured in the preceding proposition; thus,
with L0 = exp(l0 + RE), and χL0 : L0 → U(H(l0)),

I nd N
L0
(χL0) =: W (l0). (2.76)

This material is part and parcel of §1.6 (pp. 47–63) of [34]. Since it is our objective
to extend the characterization (2.75) of the general Weil–Kubota 2-cocycle in terms of
Lagrangian planes, first to the indicated symplectic spaces Vp defined over any relevant
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local fields (i.e., for p ∈ Vk), and then to pass to the according adèlization, we proceed
to give an account of the proof of Proposition 11 later. At this stage, however, we should
simply like to make a closing observation regarding the values taken by the Weil–Kubota
2-cocycle in light of (2.75): it is obvious that we have

c ∈ H2(Sp(V ; B),Z8). (2.77)

On the other hand, as we shall also see later, it is in truth the case that

c ∈ H2(Sp(V ; B),Z2), (2.78)

a fact proven by Weil himself in [63].

2.5. From the real case to the p-adic case

The situation considered by Weil in [61] is that of an algebraic number field k,
i.e., a global field or, in Weil’s suggestive language, an A-field, so that the preceding
considerations apply directly as long as k has at least one real embedding in C over Q:
we can realize R as k∞ for ∞ = ∞R ∈ Vk . For the sake of consistency we adopt this
position à forteriori at this point and interpret Sections 2.3 and 2.4 in this light. With
this convention in place we stipulate, then, that the local fields of current interest are the
completions kp of k at the places p ∈ Vk , with, as we stipulated earlier, Vk denoting the
set of all places of k.

What follows next, crucial to our enterprise, is in effect a synopsis of the Appendix
to Part I of [34, p. 104, ff.]. We refer to this as the definitive source for detailed
proofs and further discussion. Also, in [34] the stipulation is made that we are not
working in characteristic 2; this is of course no problem: each kp has characteristic
0. Additionally, before we get off the ground, it is proper to give credit to the originator of
this generalization to arbitrary local fields: this was achieved by Patrice Perrin in his 1979
thesis [40] at Paris, and Perrin co-authored the aforementioned Appendix with Gérard Lion.

First, regarding the Heisenberg group in this general p-adic setting, fix a decomposition
V = E ⊕ E∗ to emphasize the duality between E ≈ ⊕

n
i=1 kp Pi and E∗

≈ ⊕
n
j=1 kpQ j

brought about through the services of the skew-symmetric (p-adic) bilinear form B = Bp

(all in keeping with (2.22)). There is an iota of housekeeping to be taken care of here in the
sense that the symplectic structure on V in this form is actually given by means of the rule

B(x + f, y + g) = g(x)− f (y); (2.79)

see also [23].
This said, we obtain, next, that

N = Np = Heis(Vp; Bp) = Vp × kp. (2.80)

(When there is no risk of ambiguity we shall occasionally omit the subscripts to Np and
Vp: they will reappear and figure again when we get to adèlization.) Additionally, fix an
additive character χp of kp (cf. [54]), pick a Lagrangian subspace l ⊂ V (i.e., as before, l
is by definition maximally isotropic with respect to B, or, what amounts to the same thing,
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l is isotropic, i.e. l = l⊥, and dim(l) = n =
1
2 dim(V )), set L = l × kp, and define

H(l) =


ϕ : N → C | ∀x ∈ N ,∀y ∈ L , ϕ(xy)

= (1 ⊗ χp)(y)
−1ϕ(x) and


N/L

|ϕ|
2 < ∞


(2.81)

(here the integral is taken with respect to Haar measure on N/L). Since 1⊗χp is obviously
a character of L < N , we get, parallel to (2.52),

W (l) := I nd N
L (1 ⊗ χp) : N = Heis(V ; B) → U(H(l)) (2.82)

as the attendant unitary (p-adic) Schrödinger representation of the Heisenberg group.
Next, by the standard functional analytic device of associating to any f in

Hom(E, kp) = E∗ the character χp(⟨ f, ⟩), we obtain an identification of E∗ with E’s
Pontryagin dual, so that there arises a pairing of Haar measures; indeed this obviously
works for any E ∈ Vect/kp, the category of kp-vector spaces. Thus we get a general
formalism of partial Fourier transforms via

FT : f (x) −→


kp

χp(−⟨x∗, x⟩) f (x)dx =: FT( f )(x∗), (2.83)

a unitary operator.
Furthermore, it behooves us to recall briefly (cf. p. 3 of [64]) that if Φ : (E, dx)

∼
→

(F, dy) is an isomorphism of locally compact topological groups (e.g., the topological
vector spaces we are concerned with), then the Haar modulus of Φ, written |Φ|, is the
unique positive real number for which, for any f ∈ L1(E),

F
f (Φ−1(y))dy = |Φ|


E

f (x)dy. (2.84)

With these players in the game, we define, for any Lagrangian planes l1, l2

gl2,l1 : l1 ∋ x → [gl2,l1 : y −→ B(x, y)] ∈ l∗2 . (2.85)

Thus, abusing notation a bit, we get that gl2,l1 :
l1

l1∩l2
→


l2

l1∩l2

∗

. Under these circum-

stances it is shown in [34] that l2
l1∩l2

admits a Haar measure dẋ such that |gl2,l1 |
1
2 dẋ2 does

not depend on the choice of Haar measure on l1 ∩ l2 and we have.

Proposition 12.

FTl2,l1 : ϕ(x) −→


l2

l1∩l2

ϕ(y(x2, 0))|gl2,l1 |
1
2 dẋ2, (2.86)

where x2 = projl2(x), extends to a unitary operator, again denoted by FTl2,l1 , from H(l1)
to H(l2), intertwining the Schrödinger representations W (l1) and W (l2). Furthermore,
FT−1

l2,l1
= FTl1,l2 .
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(Compare Corollary 1, i.e., (2.59).)
Returning to the decomposition V = E ⊕ E∗, where E is of course free to be any

Lagrangian subspace of V , let Q be any symmetric bilinear form on E , define the mapping
sQ : E → E∗ by the rule

sQ : x −→ [y → Q(x, y)], (2.87)

and set

L Q := {x + sQ x}x∈E , (2.88)

evidently realizing a subspace of V in the above decomposition. Now L Q is easily seen to
be a Lagrangian plane in V , too, so that we can make sense of the mappings FTE,L Q ◦

FTL Q ,E∗ and FTE,E∗ as partial Fourier transforms acting between the Hilbert spaces
H(E∗) and H(E) courtesy of Proposition 12. But then it follows readily, just by writing
out a few obvious commutative diagrams, that the operator FTE,L Q ◦FTL Q ,E∗ ◦FT−1

E,E∗ is a
unitary operator on H(E) which commutes with the Schrödinger representation W (E). In
the same manner as before, this implies that

FTE,L Q ◦ FTL Q ,E∗ ≡ FTE,E∗(mod× C×

1 ). (2.89)

Equivalently,

Proposition 13. There exists a unimodular scalar γ (Q) such that

FTE,L Q ◦ FTL Q ,E∗ = γ (Q) · FTE,E∗ . (2.90)

Corollary 2. γ is a character of the Witt group W(kp).

Proof. (2.83) and (2.90). �

Finally, we observe that the Kashiwara triple index τ(l1, l2, l3), defined for real
Lagrangians li , i = 1, 2, 3, in Section 2.4 (cf. (2.65)), is amenable to a closely related
definition in the present more general p-adic context. The salient new feature is that we
now take τ to be an element in W(kp). Specifically, we again take

qB(x1 + x2 + x3) = B(x1, x2)+ B(x2, x3)+ B(x3, x1), (2.91)

for x1 + x2 + x3 ∈ l1 ⊕ l2 ⊕ l3, now mapping into kp, of course, and now simply
set τ = qB . Under these circumstances many properties that hold in the real case go
through essentially unchanged in the p-adic case; Propositions 6–8 carry over verbatim, for
example. Beyond this, however, with τ ∈ W(kp) for all p ∈ Vk , we are now in a position to
add a result to the mix that will eventually facilitate the critical transition from the present
more or less geometrical material to the arithmetical results of Weil [63]. Indeed, in the
current setting of the Witt group we obtain

Proposition 14. Given three Lagrangian planes l1, l2, l3, suppose l1 ∩ l3 = (0), i.e., l1, l3
are transverse Lagrangian planes. With p13 and p31 the usual projections, define the
following quadratic form on l2:

r(x2) = B(p13x2, p31x2). (2.92)
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Then

τ(l1, l2, l3) = (l2; r) ∈ W(kp). (2.93)

Thus, the thrust of the preceding proposition (cf. [34], p. 109) is that for all places p
of k the story is the same: the Kashiwara triple index can be realized as an element of
the Witt group of kp, the difference between the archimedean and non-archimedean cases
being the respective presence and absence of the signature map. It turns out that as far as
we are concerned, i.e. in regard to the role played by the Kashiwara index in the definition
of the local Weil(–Kubota) 2-cocycle, this distinction is neutralized by virtue of the action
of local characters. We turn to this theme below; see Section 2.6.

In any event, with the hypotheses of Proposition 14 still in place, use B to identify l3
and l∗1 ; set E = l1, E∗

= l3, and identify L Q in (2.88) with l2, which is to say that we set
L Q = Lr . Then we obtain from Proposition 13 that

FTl1,l2 ◦ FTl2,l3 ◦ FTl3,l1 = γ (τ(l1, l2, l3)) · idH(l1). (2.94)

Next, we must expand the earlier remarks surrounding Propositions 4 and 11 to the
present p-adic case, generalizing the multiplier a(l1, l2, l3) in the process, all in order to
compare γ (τ) and c (as given by (2.75)), the crucially important 2-cocycle just mentioned.

So, fixing a Lagrangian plane l and therefore the associated Hilbert space H(l), we
begin by defining a canonical projective representation (i.e. a Weil representation) of
Sp(Vp; Bp) ≈ Sp(2n, kp) in H(l) as follows. First, for any σ ∈ Sp(2n, kp), let

A : Sp(2n, kp) ∋ ϕ(x) −→ ϕ(xσ
−1
) ∈ Mor(H(l),H(lσ )); (2.95)

then the desired mapping is

Rl : Sp(2n, kp) ∋ σ → FTl,lσ ◦ A(σ ) ∈ U(H(l)). (2.96)

With this definition in place we can argue as before (once more by means of a handful of
obvious commutative diagrams) to get that, for any σ, σ ′

∈ Sp(2n, kp),

Rl(σ ) ◦ Rl(σ
′) ≡ Rl(σσ

′)(mod× C×

1 ). (2.97)

This implies that we have:

Proposition 15. There exists a 2-cocycle cl,p = cp ∈ H2(Sp(2n, kp),C×

1 ) such that, for
all σ, σ ′

∈ Sp(2n, kp),

Rl(σσ
′) ◦ Rl(σ

′)−1
◦ Rl(σ )

−1
= cp(σ, σ

′) · idH(l). (2.98)

At the same time, however, (2.94) yields that

FTl,lσ ◦ FTlσ ,lσ ′σ ◦ FTlσ ′σ ,l = γ (τ(l, lσ , lσ
′σ )) · idH(l), (2.99)

and the characterization of Rl given by (2.96) therefore suggests a close relationship
between cp(σ, σ

′) and γ (τ(l, lσ , lσ
′σ )). Indeed we get
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Proposition 16. For all σ, σ ′
∈ Sp(2n, kp),

cp(σ, σ
′) = γ (τ(l, lσ , lσ

′σ ))−1. (2.100)

Proof. It follows directly from (2.96) that Rl(σ )
−1

= A(σ−1) ◦ FTlσ ,l , for all σ , which
implies, by means of an easy calculation starting from (2.99), that

γ (τ(l, lσ , lσ
′σ )) · idH(l)

= Rl(σ ) ◦ A(σ−1) ◦ FTlσ ,lσ ′σ ◦ A(σ ′σ) ◦ Rl(σσ
′)−1. (2.101)

Thus, since (from (2.98))

cp(σ, σ
′)−1

· idH(l) = Rl(σ ) ◦ Rl(σ
′) ◦ Rl(σσ

′)−1, (2.102)

it suffices to show that

A(σ−1) ◦ FTlσ ,lσ ′σ ◦ A(σ ′σ) = FTl,lσ ′ ◦ A(σ ′), (2.103)

or, equivalently,

FTl,lσ ′ = A(σ−1) ◦ FTlσ ,lσ ′σ ◦ A(σ ), (2.104)

given that A(σσ ′) ◦ A(σ ′)−1
= A(σ ) by (2.95). But by means of Proposition 12 the

indicated (partial) Fourier transforms are of course rendered as Haar integrals and we get,
respectively, that with ϕ(x) ∈ H(lσ )

FTl,lσ ′ (ϕ(x)) =


l

l∩lσ
′

ϕ(x · (x2, 0))|gl,lσ ′ |dẋ2 (2.105)

and

FTlσ ,lσ ′σ (ϕ(x)) =


lσ

lσ ∩lσ
′σ

ϕ(x · (x2, 0))|glσ ,lσ ′σ |dẋ2. (2.106)

The proof is completed by effecting the obvious changes of variable, x → xσ or
x → xσ

−1
, in the respective integrals so as to obtain that

FTl,lσ ′ ◦ A(σ−1) = A(σ−1) ◦ FTlσ ,lσ ′σ , (2.107)

which is clearly all that is needed. �

(This theorem appears without proof on p. 110 of [34]; it is evidently due to Patrice
Perrin.)

Now, with Proposition 16 in place, we are in a position to discuss:

2.6. The double cover of Sp(2n, kp); restriction to the lowest-dimensional case

In the lowest-dimensional case, n = 1, i.e. Sp(2, kp) = Sp(kp × k∗
p) (employing

Pontryagin duality), it was André Weil who established [63] that the aforementioned
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projective representation actually takes values in {1,−1}, meaning that the attendant
2-cocycle cp defines a twisted group law on Sp(kp × k∗

p)× {1,−1} as follows:

(σ, ξ)(σ ′, ξ ′) = (σσ ′, cp(σ, σ
′)ξξ ′), (2.108)

where σ, σ ′
∈ Sp(kp × k∗

p) and ξ, ξ ′
∈ {1,−1}. Committing the usual act of abus de

langage, i.e. writing Z2 for the multiplicative group {1,−1} (instead of the equally popular
but multiplicativeµ2, a notation which we avoid, however, sinceµ is also standard notation
for the Maslov index proper which will figure more and more in what follows), we define

in this way the double cover Sp(kp × k∗
p)×cp Z2 =:

∼
Sp(kp × k∗

p), meaning that we have
the short exact sequence

1 → Z2 →
∼
Sp(kp × k∗

p) → Sp(kp × k∗
p) → 1. (2.109)

In point of fact, following both Weil [63] and Tomio Kubota [31], who opted to replace
Sp(kp × k∗

p) by its isomorph SL(2, kp), the defining 2-cocycle cp ∈ H2(Sp(kp × k∗
p),Z2)

can be rendered in terms of local symbols, the Hilbert–Hasse symbol (at p) for Weil and the
2-Hilbert symbol for Kubota, and this provides a relatively easy route to adèlization. For
instance, the fact that the 2-Hilbert symbol evaluated at a fixed pair of entries from the
base field reduces to 1 for all but a finite number of p immediately solves the problem
of well-definition for the infinite product


p cp, where we now understand cp to mean

the 2-cocycle used by Kubota [31] and this immediately gives us a formula for cA ∈

H2(Sp(2, kA),Z2). This will be of critical significance later: the fact that cA, equivalently
∼
Sp(kp × k∗

p), is split on the subgroup of rational points (being Sp(2, k)) is part and parcel
of the product formula for the 2-Hilbert symbol, i.e. quadratic reciprocity for the number
field k. (See also the appendix to [3].)

Lion–Vergne and Perrin, however, in dealing with the general case of Sp(2n, kp),
make the dependence of their construction of cp on quadratic forms more direct and
explicit. Indeed, for the real case, treated at length in the first part of [34], it is in fact
true that τ(l, lσ , lσ

′σ ) is itself already a 2-cocycle, and this goes through essentially without
change for arbitrary primes of Ok , as brought out by Lion and Perrin in the aforementioned
Appendix [40] to the first part of this book. The issue, quite simply, is to make a choice
of additive character χp for each p (in accord with what was done with (2.81)), leading to
realizing τ(l, lσ , lσ

′σ ) as an element of H2(Sp(2n, kp),W(kp)), where, as before, W(kp)

is the Witt group for kp. The real case is distinguished by an extra application of the
signature map, viz. (2.65). However, in the indicated Appendix, all valuations p are covered,
so, if we jettison this signature map in the real case, we get, uniformly for all p ∈ Vk ,

1 → W(kp) →
∼
Sp(2n, kp) → Sp(2n, kp) → 1, (2.110)

which just says that
∼
Sp(2n, kp) is regarded as Sp(2n, kp)×τ(l,lσ ,lσ ′σ )

W(kp), engendering
the group law

(σ, q)(σ ′, q ′) = (σσ ′, q + q ′
+ τ(l, lσ , lσ

′σ )). (2.111)
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Additionally it follows immediately from Propositions 15 and 16 that, with γ being a
character of W(kp), the mapping

(σ, q) −→ γ (q) · Rl(q) (2.112)

gives a true (and unitary) representation of
∼
Sp(2n, kp), Weil’s metaplectic group defined

in [63]: we have obtained the (local) metaplectic representations.
For our ultimately arithmetical purposes, however, and as we already indicated at the

start of Section 2.2, we now take the liberty to restrict ourselves to the case where n = 1 (for
the time being), and we have that, for all p, Sp(2n, kp) is just Sp(2, kp) = Sp(kp × k∗

p) ≈

SL(2, kp).

2.7. Another realization of the double cover of the symplectic group

It behooves us at this point to add a different perspective to the mix, which we perhaps
might characterize as closer in spirit to the geometric considerations that motivated
Arnol’d, Leray, and Souriau in their original work on the Maslov index, in contrast
to the later considerations on the part of, for example, Kashiwara and Lion, Vergne,
and Perrin. The former were more closely concerned with quantum mechanics and its
geometry, so that the according representation theory takes on a particular flavor, and the
Arnol’d–Leray–Maslov index, as de Gosson terms it in [8], is accordingly characterized
in terms of flows on the (real) Lagrangian Grassmannian. The Kashiwara triple index,
however, which, as we have seen, is termed “Maslov index” by Lion and Vergne, is
associated with a “static” triple of pairwise transverse Lagrangians. To be sure, the
connections are there, as delineated very carefully by Cappell, Lee, and Miller in [7], but
these two indices are not identical; see Section 3.1 for more on this matter.

We mentioned above, in the Introduction, that the works of Robbin and Salamon dating
to the early 1990s [45,44] contain something of a parallel to Souriau’s article [53] of 1975,
although this is admittedly at best a sketchy appraisal (and it should be noted that Robbin
and Salamon go on to consider Feynman path integrals properly so-called). What is of
importance to our purposes, is that both of these works present explicit formulas tying
the Arnol’d–Leray–Maslov index to a phase integral, and there are evocative similarities
between these formulas; again, we say more about this in the third chapter of this
paper. What we focus on at this point is that Robbin and Salamon present a development of
the double cover of the symplectic group and the metaplectic representation in the context
of unitary operators involving phase integrals, which by their own description devolves
to that given by Leray in his classic, Lagrangian Analysis and Quantum Mechanics
[33, pp. 19–20]. We now present a sketch of what Robbin and Salamon do to get at what

is ultimately our
∼
Sp(2n,R).

Working over R it all starts with a Hamiltonian H on Rn , which is to say that we
are operating on the usual 2n-dimensional real symplectic space. Thus, the Hamiltonian
expresses the sum of kinetic and potential energy of a (quantum mechanical) system of n
particles, and we are dealing with the familiar position and momentum coordinates; see
Section 2.2. One can ascribe to H a so-called evolution system ψ

t1
t0 , from initial time t0

to final time t1 (as per [45]: it is in fact a semigroup in the continuous parameter t , with
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t0 ≤ t ≤ t1), which, as we shall see, is closely related to the time evolution of the quantum
mechanical system under consideration and therefore to the 1-parameter Lie group of
unitary operators arising in the Schrödinger picture of quantum mechanics. This evolution
system is associated to a generating function S(x0, x1), where at initial time t0 we are at
z0 = (x0, y0), while at final time t1 we are at z1 = (x1, y1) (all on a so-called symplectic
relation, i.e., by definition, a Lagrangian submanifold of the Cartesian product of a pair of
symplectic manifolds tailored to support the formalism of the calculus of variations trained
on quantum mechanics; see [45] for the details). This generating function in due course
plays the role of a phase function in the sense of the physicists.

Now it is appropriate and natural [44] to introduce the Arnol’d–Leray–Maslov index as
a mapping from the universal cover of Sp(2n,R) to the set n/2 + Z in keeping with the
characterizations presented by Arnol’d [1], Souriau [53], and of course Leray [33]. Since
this approach allows one to regard this index as a function on the homotopy classes of
paths in the Lagrangian Grassmannian manifold (cf. Teruji Thomas’ pithy presentation in
[55]), Robbin and Salamon can single out the Arnol’d–Leray–Maslov index µ(t1, t0; H)
as the according index of the path given by the mapping of the time interval [t0, t1] into
the matrix group Sp(2n,R) (regarded as a real manifold), given by t → Ψ t

t0 , where the
latter expression, i.e. Ψ t

t0 , is the linear part of ψ t
t0 . Additionally, write Υ for the upper right

block of Ψ t1
t0 , so that properly Υ = Υ(t0, t1) (Robbin and Salamon write B instead, but we

avoid this, given that in this paper the notation B is reserved for the bilinear form imparting
symplectic structure to V ).

This puts us in the position to cite some relevant results by Robbin–Salamon (cf. p. 21
of [45]), which we do with the additional stipulation that Planck’s constant should be set
to 1.

Proposition 17. If E Mp(2n,R) is the extended metaplectic group, i.e the group of unitary
operators on L2(Rn) of the form

f (x) →
1

(2π)n/2| det Υ |1/2
eiπµ(t1,t0;H)/2


Rn

ei S(ξ,x) f (x)dx, (2.113)

where H is to be a time-dependent quadratic Hamiltonian, let Mp(2n,R) be the subgroup
of E Mp(2n,R) cut out by those operators of this type for which the Hamiltonian is also
homogeneous. Additionally, let E Sp(R2n

× U (1)) be the group of all diffeomorphisms of
R2n

× U (1) of the form

gt1
t0 : (z0, u0) → (ψ

t1
t0 (z0), u0ei S(x1,x0)), (2.114)

bringing the connection to the aforementioned 1-parameter group into the open. Then we
obtain the following short exact sequences, the latter being a consequence of the former:

1 → Z2 → E Mp(2n,R) → E Sp(R2n
× U (1)) → 1, (2.115)

1 → Z2 → Mp(2n,R) → Sp(2n,R) → 1. (2.116)

Furthermore, the mapping E Mp(2n,R) → E Sp(R2n
× U (1)) in (2.115) is given by

the natural projection

gt1
t0 → ψ

t1
t0 . (2.117)
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It is evident that the preceding provides another method whereby to construct the double
cover of the real symplectic group, which is to say, another route to (2.78). However,
it should be noted that one of the main themes in our analysis is obscured: the
corresponding 2-cocycle, putatively Weil’s and Lion–Vergne’s c ∈ H2(Sp(2n,R),Z2)

(modulo coboundaries, of course), is not immediately forthcoming in this approach. Thus,
even though the preceding proposition presents a direct relationship between µ(t1, t0; H)
and the phase (in fact, oscillatory) integral


Rn ei S(ξ,x) f (x)dx , there is no explicit

formulaic connection with H2(Sp(2n,R),Z2) to be had, at least not at first sight:

the connection with Mp(2n,R)(≈
∼
Sp(2n,R)) is for now perhaps best described as

extrinsic. This will soon lead us to the corresponding work of Souriau, and, indeed, we
accordingly resume these considerations surrounding Robbin–Salamon’s work, especially
the relation (2.113), toward the end of our third chapter. We now go on to address the
question of the adèlization of the earlier symplectic data over k.

2.8. Adèlization of the symplectic group Sp(2, k) and its double cover

We note, first, that in what immediately follows we take the foundational material
concerning non-archimedean analysis, dealing with local fields and rings of adèles, largely
for granted, given that this material is standard fare for number theory (cf. [54,64]
&c.). However, further down the line (Section 4.2, ff.) we will have occasion to consider the
question of quantum mechanics over non-archimedean fields, and at that point we will have
to recall a number of basic facts and propositions especially about the attendant character
theory. Accordingly some of the things we discuss in the present section(s) will be given a
good deal more air-play below, in Chapter 4.

Let p be any valuation of k, archimedean or not. The local objects we have garnered
so far include the following which are of particular interest in the sequel. First of all, the
algebraic as well as topological setting is of course provided by the local field kp equipped
with its maximal order, or ring or integers, Op, with its unique maximal ideal pOp; thus,

Op = {xp ∈ kp | ∥xp∥p ≤ 1}, (2.118)

pOp = {xp ∈ Op | ∥xp∥p < 1}. (2.119)

Next, the symplectic group Sp(2, kp), featured so prominently in the preceding sections,
can be realized as an algebraic group scheme by regarding SL(2) as a subscheme of
GL(2), which is in turn realized as the locus defined by the polynomial det(g)t − 1 = 0,
where one takes g ∈ M2×2 and t a coordinate for the affine line A. In this way
Sp(2) ≈ SL(2) ⊂ GL(2) ↩→ A5. Now Sp(2, kp) is nothing else than the preceding
subscheme taken over the field kp, in other words the kp-valued points. As we shall see
momentarily, this algebraic geometric formulation of the local symplectic groups facilitates
an elegant compact phrasing of the all-important adélic symplectic group.

As we already indicated at the close of the preceding section, the Weil 2-cocycle data,
{cp}p, of such importance to our enterprise, is exceptionally amenable to adèlization in the
form given to it by Tomio Kubota in [31], which is to say, in terms of the local 2-Hilbert
symbol. Specifically this is due to the fact that this symbol always reduces to 1 for almost
every valuation so that we can legitimately write down the infinite product


p cp: in the

present lowest dimensional case we are done. (We reiterate this below.)
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Finally, with (2.99) in place, i.e.

FT(p)l,lσ ◦ FT(p)
lσ ,lσ ′σ

◦ FT(p)
lσ ′σ ,l

= γp(τp(l, l
σ , lσ

′σ )) · idH(l), (2.120)

where the superscripts have been added so as to indicate that we have local Fourier
transforms to deal with here (and, but for the unwieldiness of what would result, we
should really also replace every l by l(p) and every σ by σp, but enough is enough). It
is evident that since γp is a character of the Witt–Grothendieck group W(kp) we need to
look at what it means to adèlize the group theoretic data {W(kp)}p, but this is actually a
very straightforward matter. Finally, since, as we just noted, the FT(p) are local Fourier
transforms, the question of adèlic Fourier transforms arises, and it turns out this is
addressed in some recent work by Branko Dragovich [17].

On to some of the details of adèlization, then. Starting off with the base field itself, we
have that, by definition,

kA := {(xp)p =: xA | xp ∈ kp,∀p and xp ∈ Op, a.e.p}, (2.121)

or, equivalently,

kA := {(xp)p | ∥xp∥p ≤ 1, a.e.p}. (2.122)

From a topological perspective kA is realized as the topological product


′ kp with respect
to the collection of maximal orders Op ⊂ kp.

Continuing in this topological vein, taking into account our earlier remarks regarding
Sp(2n) as an algebraic subscheme of GL(2), it is now all but automatic to render the
adèlization of the data {Sp(2, kp)}p as

Sp(2, k)A =

′
p

Sp(2, kp), (2.123)

which is to say,

Sp(2, k)A = Sp(2, kA)

= {(σp)p =: σA | σp ∈ Sp(2, kp),∀p, and σp ∈ k4
p, a.e.p}. (2.124)

When it comes to local second cohomology, or, rather, the adèlization thereof, we may
obviously simply reiterate that

cA :=


p

cp ∈ H2(Sp(2, k)A,Z2) (2.125)

following Kubota [31], as we already indicated.

Accordingly, in terms of short exact sequences realizing the corresponding double covers
of the local as well as adèlic symplectic groups, in other words the local and adèlic
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metaplectic groups (in the sense of Weil, not Kazhdan–Patterson [30]), the data {cp}p gives
rise to

1 → Z2 →
∼
Sp(kp × k∗

p) → Sp(kp × k∗
p) → 1 (2.126)

where

∼
Sp(kp × k∗

p) = Sp(kp × k∗
p)×cp Z2, (2.127)

so that we get the corresponding adèlization

1 → Z2 →
∼
Sp(kA) → Sp(kA) → 1, (2.128)

and this in turn means that

∼
Sp(kA) = Sp(kA)×cA Z2. (2.129)

With this object in place, and with the accompanying adèlic 2-cocycle cA, we have
essentially finished the task of adèlizing the first major player in our projected connection
between arithmetic data in the form of Weil’s metaplectic group and data from physics in
the form of phase integrals (or, more precisely, oscillatory integrals); it falls to us down
the line to address the adèlization of the other players in the game, specifically the Maslov
cocycles and, of course, the indicated integrals. We address these matters in Sections 4.2
and 5.2.

2.9. Quadratic reciprocity

In the immediately preceding sections we have trained our focus on the double cover
of the (simplest) symplectic group over the localizations of the ground field, k, at all of
the places p as well as over the associated ring of k-adèles, kA, and the proper algebraic
location of these double covers, locally as well as adèlically, is the set of short exact

sequences given by (2.126) and (2.128). The according group laws on the
∼
Sp(kp × k∗

p)

(i.e. the
∼
Sp(2, kp)) and on

∼
Sp(kA) are twisted by, respectively, the 2-cocycles cp, with

p ∈ Vk , and cA, with (2.125) in effect. We also mentioned above that cp was given
explicitly in terms of the 2-Hilbert symbol by Tomio Kubota in [31]: he made this move
in the context of a simplification of sorts vis à vis Weil’s original presentation of this

material consisting in replacing the symplectic group
∼
Sp(kp × k∗

p) by the special linear
group SL(2, kp), given their natural isomorphism. Weil had of course developed the
entire theory of these double covers (in [63]) as part of his explication of Carl Ludwig
Siegel’s vaunted analytic theory of quadratic forms (cf., e.g. [51]) in terms of unitary
group representation theory, or, in Weil’s own description, abstract Fourier analysis. In
Weil’s presentation, quadratic reciprocity now appears as a consequence of exploiting the

behavior of
∼
Sp(kA) with respect to its so-called rational points, i.e. Sp(k), the emerging

form of this arithmetical law being that of Hilbert–Hasse (what with quadratic forms taking
center stage).
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Specifically, Weil notes in [63] that what he has done is to rephrase the classical Fourier-
analytic proof of quadratic reciprocity for any number field k given by Erich Hecke
in [27] in representation theoretic terms by letting the pivotal role of Hecke’s ϑ-functional
equations be taken over by an invariance of what is now called the Weil Θ-functional. The
parallels are as follows.

A Hecke ϑ-function obeys a functional equation by virtue of much the same Fourier-
analytic maneuvers Riemann himself developed for his second proof of the functional
equation for the ζ -function, and with this functional equation in place, it is just a matter
of passing to ϑ-constants (Thetanullwerte) to get a relation between Gauss sums. Since
Gauss sums transform nicely with respect to the Legendre symbol, the aforementioned
relation soon translates to nothing less than quadratic reciprocity for k in the form of
Gauss–Euler. By comparison, Weil’s approach centers on the fact that through the services
of the adèlic Weil representation (one adèlizes (2.96)) one can define a natural action of
Sp(kA) on a particular functional, the earlier Weil Θ-functional, and observe that the
restricted action of the rational points, Sp(k), leaves the Θ-functional invariant. This
implies that, for instance, (2.128), which is not in itself split exact, does split on the
rational points, and in view of (2.125) this is sufficient to yield, in Weil’s hands,
2-Hilbert–Hasse reciprocity, and, in Kubota’s hands, 2-Hilbert reciprocity: we obtain the
required product formulas (over Vk) for the indicated local symbols. It only remains to
note the commonplace fact that all forms of quadratic reciprocity are equivalent. (These
themes are discussed at great length in [3]; see especially p. 105.)

In view of the splitting of (2.128) on Sp(k), or, more evocatively for our purposes, the
fact that

cA|Sp(k)×Sp(k) ≡ 1, (2.130)

which, as we have just seen, is part and parcel of quadratic reciprocity for k, we now make
the observation that what lies ahead for us, namely, the task of tying the Weil–Kubota
2-cocycle data {cp}p∈Vk , cA =


p cp, to path (and oscillatory) integrals, will have to

exhibit this splitting behavior in a new guise, as a property of such integrals in a generalized
(adèlic) quantum mechanical context. In other words, when all is said and done, the main
thrust of the present work is not only to render these Weil–Kubota 2-cocycles directly in
terms of building blocks of quantum mechanics in the style of functional phase integrals,
but to reveal connections with number theory by translating (2.130) into adèlic quantum
mechanical language.

3. The Maslov index

3.1. The Kashiwara triple index

Going back to Sections 2.4 and 2.5 we recall that, working over R, if V =
n

i=1 RPi ⊕

(
n

j=1 RQ j ) is a symplectic space with respect to the skew-symmetric bilinear form B,
and if qB is the quadratic form

qB : x1 + x2 + x3 → B(x1, x2)+ B(x2, x3)+ B(x3, x1), (3.1)
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then the Kashiwara triple index is given by the signature of qB (cf. (2.65)). Furthermore,
when we are working over the local field kp, p ∈ Vk , we simply take (2.64) as the definition
of the Kashiwara index, leaving the signature mapping out of the picture (cf. Section 2.5)
so that we get an element of the Witt group of kp. We also saw in Section 2.5 that the latter
convention, which evidently also covers the real case, makes for a uniform means whereby
to tie all the local Kashiwara index data to H2(Sp(2n, kp),C×

1 ). Specifically, with

τ : Lag(2n, kp) → W(kp) (3.2)

the Kashiwara index acting on the triples of Lagrangian planes in V ≈ k2n
p , and given the

character

γ : W(kp) → C×

1 , (3.3)

then, following Proposition 16, the object γ (τ(l, lσ , lσ
′σ )), with l ∈ Lag(2n, kp) and

σ, σ ′
∈ Sp(2n, kp), defines a 2-cocycle of Sp(2n, kp) with values in C×

1 . Indeed, we have
seen above, in (2.100) that γ (τ(l, lσ , lσ

′σ ))−1 agrees with cp, Weil’s defining 2-cocycle for
his (local) metaplectic group.

We also indicated above that the definition of the Kashiwara index as the signature
of qB is evidently Kashiwara’s own (cf. the Appendix of [29] and p. 162 of [7]), and
there is some terminological confusion in the game because in Lion–Vergne [34] this
object is simply termed the Maslov index, and to be fair, this license is already extended
on p. 487 of [29]. But this just thickens the plot since the literature actually sports at
least a half dozen carriers of this name. Evidently the first Maslov index indeed goes
back to V.P. Maslov [35], but the thread was soon picked up by V.I. Arnol’d [1]. A
connected contribution was made by C.T.C. Wall [62], but soon thereafter the focus shifted
to France with the compact paper [53] by J.-M. Souriau, followed by the seminal work
by J. Leray [33], carrying the historical note: “In Moscow in 1967 . . . Arnol’d asked
me [Leray] my thoughts on Maslov’s work . . . The present book is an answer to that
question”. For latter considerations, having to do with what M. de Gosson (cf. e.g. [8]) now
aptly calls the Arnol’d–Leray–Maslov index, a nomenclature we have already embraced
above, the setting is manifestly that of symplectic geometry and analysis, with quantum
mechanics the driving force in the background. The ambient space is therefore real and, as
we already suggested in Section 2.7, the central idea is that the index should be thought
of as attached to homotopy classes of paths in the Lagrangian Grassmannian manifold
Lag(V ) = Lag(2n,R). It is possible, therefore, to characterize the Maslov index of
Kashiwara and Lion–Vergne, acting on triples of Lagrangians in V , as a more static affair,
so to speak, and we single these two respective indices out as representatives of two classes
into which the various so-called Maslov indices can be collected.

It turns out, however, that we find in Souriau’s aforementioned paper of 1975 an
exceedingly suggestive formula tying the Arnol’d–Maslov–Leray index µ (or, in Souriau’s
preferred notation, m) to an oscillatory integral, and so, in keeping with our goals stated
in the Introduction, the first order of business must be to inquire after the relationship
between, on the one hand, µ and m, and, on the other, τ ; à propos, µ and m are
not identical either, but they only differ by a factor of 2, about which we say more
presently. Of course, the greater objective is to exploit this pending relationship between
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the Arnol’d–Leray–Maslov index and the Kashiwara(–Maslov) index to get, rather easily,

a relationship between Weil’s c, defining the group law on
∼
Sp(2n,R) ≈ Mp(2n,R),

and an oscillatory integral; after this is done (in Section 3.4), the questions of getting
p-adic counterparts to this relation and subsequently adèlizing it are to be addressed: see
Section 4.2, ff. But first the question of µ, m, and τ needs to be settled, and for this we turn
to the important paper [7] by S.E. Cappell, R. Lee, and E.Y. Miller.

3.2. An axiomatic characterization of the Maslov index

For our purposes, the first relevant result of [7] is that what the authors refer to as
Maslov indices proper (and there are six such candidates) are in fact one, appearances
notwithstanding. Furthermore, it is possible to write down a list of axioms which
completely characterize such a µ and, as regards getting identifications between different
flavors of Maslov indices, it is accordingly just a matter of checking that each of these
indices satisfies these (six) axioms.

We stay with the same setting as before: V is a symplectic space over R and
Lag(V ) = Lag(2n,R) is the accompanying Lagrangian Grassmannian manifold. With
Cappell–Lee–Miller let

P([a, b]; Lag(V )2)

= { f : [a, b] → Lag(V )2 | f is continuous and piece-wise differentiable}, (3.4)

so that we can write f (t) = (l1(t), l2(t)), with a ≤ t ≤ b. Equip P([a, b]; Lag(V )2) with
the piece-wise smooth topology. The focus falls on integer-valued mappings

µ : P([a, b]; Lag(V )2) → Z. (3.5)

As just indicated, Cappell–Lee–Miller present the following six properties for a Maslov
index µ to obey which we may present as axioms in view of the upcoming Proposition 19:

Axiom 1. Letψ : [a, b] → [ka+l, kb+l], for fixed k > 0, l ≥ 0 in R, so that composition
withψ takes any path f ∈ P([a, b]; Lag(V )2) to a path f ◦ψ ∈ P([a, b]; Lag(V )2). Then
µ( f ◦ ψ) = µ( f ).

Axiom 2. Let f (s) : t → (l1(s)(t), l2(s)(t)), for 0 ≤ s ≤ 1 and a ≤ t ≤ b, and f varying
continuously with s. Suppose, too, that ∀s ∈ [0, 1] we have that l1(s)(a) = l1(s)(b) and
l2(s)(a) = l2(s)(b), so that we are dealing with a family of paths in Lag(V )2 all having
the same starting points and end points. Then µ( f (0)) = µ( f (1)).

Axiom 3. If f ∈ P([a, b]; Lag(V )2) and a < c < b then µ( f ) = µ( f |[a,c])+µ( f |[c,b]).

Axiom 4. For W also a symplectic space, define P([a, b]; Lag(V ⊕ W )2) in the natural
manner: if f (t) = (l1(t), l2(t)) ∈ P([a, b]; Lag(V )2) and g(t) = (l ′1(t), l

′

2(t)) ∈

P([a, b]; Lag(W )2), then f ⊕ g ∈ P([a, b]; Lag(V ⊕ W )2) by means of the rule
f ⊕ g(t) = (l1(t)⊕ l ′1(t), l2(t)⊕ l ′2(t)). Then µ( f ⊕ g) = µ( f )+ µ(g).
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Axiom 5. Let ϕt : V
∼
→ V , i.e. ϕt ∈ Sp(V ), varying continuously and piece-wise smoothly

with t ∈ [a, b]. Write ϕ∗ for the pull-back: if f = (l1(t), l2(t)) ∈ P([a, b]; Lag(V )2)
then ϕ∗( f ) ∈ P([a, b]; Lag(V )2) is given by ϕ∗( f )(t) = (ϕt (l1(t)), ϕt (l2(t))). Then
µ(ϕ∗( f )) = µ( f ).

Axiom 6. Impart to C ≈ R2 the canonical symplectic structure {, } given by {z1, z2} =

{(x1, y1), (x2, y2)} = x1 y2 − y1x2 = − Im(z1 z2) = Re(i z1 z2). Consider the path
f0 ∈ P([−π/4, π/4], (C, {, })) defined by f0(t) = (R · 1,R · ei t ). Then taking
µ : P([−π/4, π/4];Lag(V )2) → Z, get that µ( f0) = 1, µ( f0|[−π/4,0]) = 0, and
µ( f0|[0,π/4]) = 1.

And now we get, as promised,

Proposition 18. There exists one and only one mapping µ : P([a, b]; Lag(V )2) →

Z satisfying Axioms 1–6 for all real symplectic spaces (V, B). Furthermore, if ξ :

P([a, b]; Lag(V )2) → Z satisfies Axioms 1–5 for all (V, B), then there exist fixed
integers A, B such that, with f (t) = (l1(t), l2(t)) ∈ P([a, b]; Lag(V )2), we have that
ξ( f ) = (A + B)µ( f )+ B(dim(l1(a) ∩ l2(a))− dim(l1(b) ∩ l2(b))).

Proof. Section 4 of [7]. �

Proposition 18 clearly justifies the terminology the Maslov index.
With this regime in place, it follows from several theorems presented by Cappell–

Lee–Miller in [7] (see especially their p. 172) that if π :
∼

Lag(V ) → Lag(V ) denotes
the natural projection from its universal covering space to the Lagrangian Grassmannian
of V , then

τ(π(l̃1), π(l̃2), π(l̃3)) = 2{m(l̃1, l̃2)+ m(l̃2, l̃3)+ m(l̃3, l̃1)} (3.6)

where, generally, l̃ is above l, i.e. π(l̃) = l, so that we can also write, simply,

τ(l1, l2, l3) = 2{m(l̃1, l̃2)+ m(l̃2, l̃3)+ m(l̃3, l̃1)}. (3.7)

A quicker presentation of this relation can be found in de Gosson [8]: see his p. 2, p. 5.
Note that in view of (2.75) this immediately implies that upon setting l1 = l0, l2 =

lσ1
0 , l3 = lσ2σ1

0 we obtain the following important relation:

c(σ1, σ2) = ei π2 {m(l̃0,l̃
σ1
0 )+m(l̃

σ1
0 ,l̃

σ2σ1
0 )+m(l̃

σ2σ1
0 ,l̃0)}. (3.8)

It is this relation which we will use to great advantage later. Before doing so, however, we
take some time out to discuss at greater length how the all-but sub rosa maneuvers with
Maslov indices fit into this development.

3.3. The different appearances of the Maslov index

In their careful analysis of the proliferation of indices laying claim to the name “Maslov
index”, Cappell, Lee and Miller distinguish four classes of such claimants, µgeo,1, µgeo,2,
µanal,1, andµanal,2; they takeµgeo,1 as the paradigm, as given by Guillemin and Sternberg
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in [25]: in their vernacular, µgeo,1 = µproper . Regarding this index they note that “[t]he
idea is to count with signs and multiplicities the number of times that [, for a ‘proper path’
f (t) = (l1(t), l2(t)), a ≤ t ≤ b, one gets l1(t) ∩ l2(t) ≠ (0)]”. This characterization
hearkens back to the original ideas of Arnol’d in [1].

The next rendering of µ given by the authors, i.e. µgeo,2, is an ostensibly more intricate
affair in the sense that the prevailing setting requires a complex structure on V (yielding a
particular rendering of B, of course), as well as a subsequent identification of Lag(V ) with
a unitary (factor) group: this is in fact also the setting in which Leray [33] and Souriau [58]
operate and it accordingly behooves us to look at this presentation of µ more closely. The
complex structure on V is given via J , with J 2

= −idV , preserving B, so that, with ⟨ , ⟩

the associated Hermitian inner product on V , we have

B(x, y) = − Im⟨x, y⟩ (3.9)

⟨x, y⟩ = −B(J x, y)− i B(x, y). (3.10)

Under these circumstances any Lagrangian plane in V , i.e. l ∈ Lag(V ), can be realized as

l =

n
j=1

R · e j , (3.11)

where {e j }
n
j=1 is an orthonormal basis of the n-dimensional C-vector space (V, J ). Obtain

immediately that, upon fixing an l and a basis {e j } for l, the natural morphism (depending
on l)

U (n) ∋ A →

n
j=1

R · Ae j ∈ Lag(V ) (3.12)

of, e.g., varieties, is a surjection with kernel O (n) so that we get the identification

Lag(V ) ≈ U (n)/O(n), (3.13)

from which it follows that Lag(V ) can be regarded as a subobject of the unitary
group. Subsequently Cappell, Lee and Miller show that with multiplication by exp(Jϑ)
always being an automorphism of Lag(V ), given any pair of Lagrangian planes, l1, l2,
there exists 0 < ε < π such that if 0 < |ϑ | < π , then l1 and eJϑ l2 are transverse:
l1 ∩ eJϑ l2 = (0). Additionally, since real orthogonal matrices have determinant ±1, the
mapping det2 : U (n) → C×

1 factors through U (n)/O(n), whence we get that

det2 : Lag(V ) ∋ Al → (det A)2 ∈ C×

1 . (3.14)

For any choice of basis {e j }
n
j=1 the wedge product e1 ∧ · · · ∧ en ∈

n
C V has

norm 1 (relative to the norm induced by ⟨ , ⟩), and so a change of orthonormal
basis merely engenders introducing a factor of ±1, which is of course obliterated by
squaring. Accordingly we get that det2 is no longer dependent on the choice of l =
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⊕
n
j=1 R · e j :

det2 : Lag(V ) → S1

 n
C

V

⊗2
 , (3.15)

where (as per [7]) the object S1
[(
n

C V )⊗2
] is the unit circle (S1

≈ C×

1 , after all) in
(
n

C V )⊗2
= (

n
C V ) ⊗ (

n
C V ). Now, if f (t) = (l1(t), l2(t)), a ≤ t ≤ b, is a path

in P([a, b]; Lag(V )2), choose 0 < ε < π such that for all 0 < |ϑ | < ε we have
l1(ϑ) ∩ eJϑ l2(ϑ) = (0) = l1(b) ∩ eJϑ l2(b). Then, following Guillemin–Sternberg [25],
we can also pick 0 < ϑ ′ < ε′/n such that there exist two paths of Lagrangians γle f t (t)
(resp. γright (t)), for a − 1 ≤ t ≤ a (resp. b ≤ t ≤ b + 1), such that γle f t (t) (resp.
γright (t)) is transverse to l1(a) (resp. l2(b)) for t ∈ [a − 1, a] (resp. t ∈ [b, b + 1])
and γle f t (a − 1) = e−Jϑ ′

l1(a), γle f t (a) = e−Jϑ ′

l2(a), γright (b) = e−Jϑ ′

l2(b), and
γright (b + 1) = e−Jϑ ′

l1(b). With this machinery in place, we can compare the following
two (composite) paths of Lagrangians:

Γ := l1(a) ◦ {l1(t)}
t=b
t=a ◦ l1(b), (3.16)

Γ ′
:= γle f t (t) ◦ {e−Jϑ ′

l2(t)}
t=b
t=a ◦ γright (t) (3.17)

by going over to their respective images

Γ := {(t, det2 Γ (t))}a−1≤t≤b+1, (3.18)

Γ ′
= {(t, det2 Γ ′(t))}a−1≤t≤b+1 (3.19)

in the cylinder [a − 1, b + 1] × S1, where we have identified S1 with S1
[(
n

C V )] in the
natural way. This done, Cappell–Lee–Miller provide that

µ( f ) = µgeo,2( f ) = µgeo,2(l1(t), l2(t)) = #(Γ ∩Γ ′). (3.20)

As noted earlier, this characterization of µ is representative of the quasi-combinatorial
approach consonant with Axiom 6.

The other flavor of Maslov index Cappell–Lee–Miller consider is what they term
“analytic”, which is to say that in addition to the preceding renderings of µgeo,1 and
µgeo,2 they present us with µanal,1, and µanal,2. For our purposes, however, it suffices
to consider µanal,1. Write D(l1, l2) for the differential operator −J d

dt acting on the class
of functions ϕ : [0, 1] → (V, J ) such that ϕ(0) ∈ l1 and ϕ(1) ∈ l2. It is in fact the
case [7] that as an operator mapping the Sobolev completion of the set of ϕ of class C∞

satisfying the given boundary conditions into the L2-completion C∞(V [0,1]), the mapping
D(l1, l2) is self-adjoint with kernel R ∩ (l1 ∩ l2); furthermore, we get the eta-invariant of
Atiyah–Singer–Patodi by first meromorphically continuing

η(s) :=


λ̸=0

λ∈specD(l1,l2)

sgn(λ)
|λ|s

(3.21)
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and then setting η(0) =: η(D(l1, l2)). Subsequently, returning to the above morphism det2

and again identifying S1 with S1
[(
n

C V )], define the Keller–Arnol’d–Maslov form to be
the 1-form ω := (det2)∗( dϑ

2π ), obtained by pulling the normalizing 1-form dϑ
2π on S1 back

via det2. With l1,2 : [a.b] → Lag(V ) and det2 : Lag(V ) → S1 so that ω ∈ Lag(V ), we
can pull back again to get l∗1,2(ω) ∈

1
([a, b]), and we are now in a position to define

µ( f ) = µanal,1( f ) :=
1
2
{η(D(l1(b), l2(b)))− η(D(l1(a), l2(a)))}

+

 b

a
l∗2 (ω)− l∗1 (ω)


+

1
2
{dim(l1(a) ∩ l2(a))− dim(l1(b) ∩ l2(b))}. (3.22)

For completeness, as regards µanal,2( f ), the last index of the quartet considered
in [7], we actually return to the first-mentioned theme of characterizing µ more or
less combinatorially. Specifically, for f as above, the authors demonstrate that there
exists ε > 0, dominated by the absolute values of all the non-zero eigenvalues of both
η(D(l1(a), l2(a))) and η(D(l1(b), l2(b))), so that the self-adjoint operator D(l1(t), l2(t))−
ε · id has no nonzero eigenvalues at t = a, b. And then µ( f ) = µanal,2( f ) is defined as
the spectral flow of this operator on [a, b]; thus, the computation of µanal,2( f ) entails that
one “counts with signs ([i.e.]+1 for increasing value, −1 for decreasing) and multiplicities
the number of eigenvalues of D(l1(t), l2(t)) crossing the line λ = ε” ([7, p. 158]).

We reiterate that one of the main thrusts of this work by Cappell, Lee, and Miller is
that these four renderings of µ cut out the same object since each of them in point of fact
satisfies the six axioms given in Section 3.2, and one needs only to cite Proposition 18 in
this connection. Thus, any of these four definitions may be used to characterize the Maslov
index.

We proceed now to take a look at how the index considered by Souriau fits into this
taxonomy, with his index largely agreeing with the one discussed by Leray in [33] (in
reply to a query raised by Arnol’d, as mentioned above), and thereafter we tie the earlier
relation (3.8) between the Weil 2-cocycle c and the Maslov index m, favored by Souriau, in
with the latter’s marvelous rendering of the time evolution of a certain quantum mechanical
system involving this same m.

3.4. Souriau’s Maslov index, and Leray’s, and the formulas of Souriau and
Robbin–Salamon

In his 1975 paper, “Construction explicite de l’indice de Maslov. Applications”, [53],
Jean-Marie Souriau presents the following disarmingly simple characterization of a Maslov
index, evidently due originally to Jean Leray (cf. p. 74 of [33]) and which in Souriau’s
notation is written m rather than µ.

Again, let
∼

Lag(V ) denote the universal cover of the topological space Lag(V ) (recalling

that V ≈ R2n), and realize a point of
∼

Lag(V ) as a pair l̃ = (Al , ϑ) where Al is a unitary
matrix (see immediately below) and ϑ ∈ R is characterized by eiϑ

= det(Al). Then, with



183

l̃1 = (Al1 , ϑ1) and l̃2 = (Al2 , ϑ2) in
∼

Lag(V ),

m(l̃1, l̃2) :=
1

2π
{ϑ1 − ϑ2 + iT r(Log(−Al1 A−1

l2
))}, (3.23)

where, by definition ([33], p. 126)

Log(A) =

 0

∞

{(s I − A)−1
− (s I − I )−1

}ds, (3.24)

for A a square matrix.
The identification of Lag(V ) with U (n)/O(n) as above (cf. (3.13)), i.e. the

characterization of Lag(V ) as a quotient of the unitary group, can be replaced by an actual
embedding of Lag(V ) in U (n) in accord with Arnol’d’s approach in [1]. Specifically, once
more (as in (3.11)) writing any l ∈ Lag(V ) as l =

n
j=1 R · e j , with {e j } orthonormal, we

can write Al = (e1
...e2
... · · ·

...en) ∈ U (n) and thereby obtain an unambiguous presentation of
∼

Lag(V ) in U (n). We can certainly cover the (latter) unitary group by Ũ (n) = {(A, ϑ) |

A ∈ U (n), ϑ ∈ R, and det(A) = eiϑ
}, a Lie group, so that we get the following exact

sequence

1 → {(id, 2kπ)}k∈Z → Ũ (n) → U (n) → 1, (3.25)

where the surjection is just projection onto the first coordinate. Under these circumstances
the universal cover of Lag(V ) can be rendered as a diffeomorphic image of Ũ (n)/SO(n),
namely,

∼

Lag(V ) =


l̃ = (Al , ϑ) | l =

n
j=1

R · e j ∈ Lag(V ), Al = (e1
...e2
... · · ·

...en) ∈ U (n),

and ϑ ∈ R, with det(Al) = eiϑ


. (3.26)

Here we have used the fact that as an algebraic (i.e. topological) group Ũ (n)/SO(n) is
simply connected to get the universality of this cover. One also notes that

π1(Lag(V )) ≈ Z, (3.27)

an observation going back to Arnol’d [1].
Returning to Souriau [53], working with a Lagrangian formalism for a simple quantum

mechanical system in which the potential energy is given by a positive quadratic form
M
2

n
k=1 ω

2
kq2

k , with q = (q1, . . . , qn) ∈ Rn , the ωk stand for the oscillator’s proper
periods, and M naturally means mass, he demonstrated that if aτ is the diagonal matrix
(e−iωkτ δkl)1≤k,l≤n with τ standing for (the passage of) time, then the value

m(ut , ut+τ ) =
1

2π
{2(ω1 + · · · + ωn)+ iT race(Log(−a2τ ))} (3.28)

realizes a manifestation of the Maslov index, with ut , ut+τ being suitable Lagrangian
planes. For our purposes the most salient result in Souriau’s article is that, in point of
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fact,

m(ut , ut+τ ) =
n

2
+

n
k=1

ωkτ

π


, (3.29)

where ⌊−⌋ denotes the greatest integer (or floor) function.
With this formalism laid out, Souriau goes on to prove that

ψτ+t (q) =


n

j=1

ω j

2π
|csc(ω jτ)|

1/2

ei π2 mSou(ut ,uτ+t )

×


Rn
ψt (q′)e

i
2 S(ω,q,q′,τ )dq′, (3.30)

where q and q′ are position vectors in an n-dimensional quantum mechanical phase space
with ψt denoting a state at time t , where ω = (ωk)1≤k≤n , and where, finally,

S(ω,q,q′, τ ) =

n
j=1

ω j csc(ω jτ) · {2q j q
′

j − (q2
j + q ′2

j ) cos(ω jτ)}. (3.31)

We observe that the integral in this equation has the form of an oscillatory integral: its
relationship to quantum mechanics hinges on the interpretation of S(ω,q,q′, τ ).

Additionally, it turns out that in the presence of de Gosson’s observation (p. 80 of [8]), to
the effect that, up to a factor of 2, the Souriau index agrees with the Arnol’d–Leray–Maslov
index, we may bring the following more recent analysis to bear on the matter. In [45]
and [44] Joel Robbin and Dietmar Salamon present the relation

U(t, t0; H)( f (x)) =
eiπµ(t,t0;H)

(2π)n/2| det B|1/2


Rn

ei S(x,x0) f (x0)dx0, (3.32)

where U(t, t0; H) is a unitary (quantum mechanical) evolution operator in the presence
of a Hamiltonian H on an n-dimensional real phase space, and S is a phase
function. Furthermore, as already hinted, µ(t, t0; H) is indeed the Maslov index in a form
tailored to fit the present situation. Robbin and Salamon identify (or stipulate the existence
of) a symplectomorphism ψ t

t0 , conveying the change of state from time t0 to time t and
belonging to the Hamiltonian formalism governed by H , with the property that the matrix
B is the upper right hand (time-dependent) block of ψ t

t0 in its matrix form. We note, again,
that we have set Planck’s constant equal to 1; Robbin and Salamon deal with the more
general situation. Moreover, comparing (3.32) and (3.30) it is evident that if we can make
the identification S(x, x0) ∼

1
2S(ω,q,q′, τ ), the corresponding results are equivalent

and we can say without equivocation that, in the present real case, they capture a direct
connection between the formalism of Maslov indices (and thus the archimedean Weil
2-cocycle) and the yoga of oscillatory integrals:


Rn ei S(x,x0) f (x0)dx0 is a prime example

of the latter.
The presence of the factor eiπµ(t,t0;H) in (3.32) together with an integral of

the right form—witness the kinship between eiπµ(t,t0;H)


Rn ei S(x,x0) f (x0)dx0 and

ei π2 mSou(ut ,uτ+t )


Rn ψt (q′)e
i
2 S(ω,q,q′,τ )dq′—suggest, from a somewhat different angle, that
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by means of the proper identifications we could let (3.32) do the same bidding as
(3.30) in what we are about to do, namely, to get from Weil’s 2-cocycle for the double
cover of Sp(2n,R) to oscillatory integrals of the type found early on in Feynman’s
version of quantum mechanics. In view of the explicit nature of Souriau’s treatment
of the matter, presented at length above, we first develop this connection in terms of
(3.30) and proceed to craft an overt connection between a phase integral and Weil’s
c∞, so that we can in due course provide non-archimedean counterparts and proceed
to adèlization. Nonetheless, it is useful for us to observe that in view of the heuristic
identification S(x, x0) ∼ S(ω,q,q′, τ ), Robbin–Salamon’s unitary operator U(t, t0; H),
having the shape of oscillatory integration against a kernel ei S(x,x0) modulo a factor of some
arithmetical significance (as we shall see later), should correspond to the evolution ofψt (q)
(to ψτ+t (q)) in Souriau’s formulation. In any event, these time evolutionary behaviors
require that at t = 0, say, we set ut = u0 = l̃ while at τσ we set ut+τ = uτσ = l̃σ whence
we get, writing ω0

σ, j in place of ω j in order to bring out the dependency of this parameter

on l̃ ∈
∼

Lag(V ) and σ ∈ Sp(V ),

e−i π2 m(l̃,l̃σ )
=


n

j=1


ω0
σ, j

2π |csc(ω0
σ, jτσ )|

1/2 
Rn ψ0(q′)e

i
2 S(ω0

σ ,q,q
′,τσ )dq′

ψτσ (q)
. (3.33)

This takes care of the transit from t = 0, ut = u0 = l̃ to t = τσ , ut+τ = uτσ = l̃σ , effecting
the state evolution from ψ0(q) to ψτσ (q). Proceeding similarly, but taking u0 = l̃σ and
uτσ ′σ

= l̃σ
′σ

0 from t = 0 to t = τσ ′σ , effecting a state evolution from ϕ0(q) to ϕτσ ′σ (q), we
obtain

e−i π2 m(l̃, l̃σ
′σ

0 )

=


n

j=1


ωσ
σ ′σ, j
2π |csc(ωσ

σ ′σ, jτσ ′σ )|

1/2 
Rn ϕ0(q′)e

i
2 S(ωσ

σ ′σ, j
,q,q′,τσ ′σ )dq′

ϕτσ ′σ (q)
, (3.34)

and then, taking u0 = l̃σ
′σ

0 and uτ = l̃ from t = 0 to t = τ , effecting a state evolution
from ξ0(q) to ξτ (q), we obtain

e−i π2 m(l̃σ
′σ

0 ,l̃)
=


n

j=1


ωσ

′σ
0, j
2π |csc(ωσ

′σ
0, j τ)|

1/2 
Rn ξ0(q′)e

i
2 S(ωσ

′σ
0, j ,q,q

′,τ )dq′

ξτ (q)
. (3.35)

Substituting these relations into (3.8) then quickly yields the following result, of critical
importance to our enterprises:
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Proposition 19. With q,q′, r, r′, s, s′ ranging over Rn we obtain that

c(σ, σ ′) =


n

j=1


ω0
σ, jω

σ
σ ′σ, j

ωσ
′σ

0, j

8π3 |csc(ω0
σ, jτσ ) csc(ωσ

σ ′σ, jτσ ′σ ) csc(ωσ
′σ

0, j τ)|

1/2

ψτσ (q)ϕτσ ′σ (r)ξτ (s)

×


R3n

ψ0(q′)ϕ0(r′)ξ0(s′)

× e
i
2 {S(ω0

σ ,q,q
′,τσ )+S(ωσ

σ ′σ, j
,r,r′,τσ ′σ )+S(ωσ

′σ
0, j ,s,s

′,τ )}
dq′dr′ds′. (3.36)

The proof is a direct consequence of the foregoing. �
Furthermore, given the structural agreement between Souriau’s (3.30) and Robbin–

Salamon’s (3.32) discussed earlier, the preceding result can be restated in terms of the
latter formalism as follows, with the caveat that we have now written the Maslov indices
in the form favored by Cappell–Lee–Miller and incorporated the according proportionality:

Corollary 3. c(σ, σ ′)U(t, t0; H)0,σ ( f (x))U(t, t0; H)σ,σ
′σ (g(y))U(t, t0; H)σ

′σ,0(h(z)) =
1

(8π3)n/2| det(B0,σ Bσ,σ ′σ Bσ ′σ,0)|
1
2


R3n ei{S(x,x′)+S(y,y′)+S(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′, where

we take as our Maslov index Cappell–Lee–Miller’s µ( f ) = µgeo,2( f ) =

µgeo,2(l1(t), l2(t)) as per (3.20), and, with the obvious indexing in place as re-

gards (3.33)–(3.35), we set, first, µ(t0, t1)
0,σ
RS = µ(π(l̃σ ), π(

∼
γ

0

σ )), with l̃ = l̃ , l̃ =

l̃σ , second, µ(t0, t1)
σ,σ ′σ
RS = µ(π(l̃σ

′σ ), π(
∼
γ
σ

σ ′σ )), with l̃ = l̃σ , l̃ = l̃σ
′σ , and fi-

nally, third, µ(t0, t1)
σ ′σ,0
RS = µ(π(l̃), π(

∼
γ
σ ′σ

0 )), with l̃ = l̃σ
′σ , l̃ = l̃ ; in other

words, we have, first, U(t, t0; H)0,σ ( f (x)) =
eiπµ(t0,t1)

0,σ
RS

(2π)n/2| det B0,σ |1/2


Rn ei S(x,x′) f (x′)dx′,

second, U(t, t0; H)σ,σ
′σ (g(y)) =

eiπµ(t0,t1)
σ,σ ′σ
RS

(2π)n/2| det Bσ,σ ′σ |1/2


Rn ei S(y,y′)g(y′)dy′, and, third,

U(t, t0; H)σ
′σ,0(h(z)) =

eiπµ(t0,t1)
σ ′σ,0
RS

(2π)n/2| det Bσ ′σ,0|
1/2


Rn ei S(z,z′)h(z′)dz′.

The notation in Proposition 19 is manifestly cumbersome, and the same can be
said about Corollary 3, if to a lesser extent. Indeed, the equality that forms the
thrust of Corollary 3 is substantially more amenable to the generalization processes
we will propose in order to lift this connection between Weil–Kubota data and os-
cillatory integrals to the indicated localizations and adèlizations of k rather than

just Q. Here we also note that the respective multipliers, i.e. [
n

j=1{
ω0
σ, jω

σ
σ ′σ, j

ωσ
′σ

0, j

8π3

|csc(ω0
σ, jτσ ) csc(ωσ

σ ′σ, jτσ ′σ ) csc(ωσ
′σ

0, j τ)|}]
1/2 and 1

(8π3)n/2| det(B0,σ Bσ,σ ′σ Bσ ′σ,0)|
1
2

, are of ev-

idently well-equipped with inner symmetries that ab initio have to be consonant with the
fact that c(σ, σ ′) ∈ H2(Sp(2,R),Z2). We train our focus on the latter of these two expres-
sions, and taking all the conventions above into account, abbreviate it to F ∞R(c∞R(σ, σ

′)).



187

Thus we get, compactly, that for all σ, σ ′
∈ Sp(2,R),

c∞R(σ, σ
′)U(t, t0; H)0,σ ( f (x))U(t, t0; H)σ,σ

′σ (g(y))U(t, t0; H)σ
′σ,0(h(z))

= F∞R(c∞R(σ, σ
′))


R3n

ei{S∞R (x,x
′)+S∞R (y,y

′)+S∞R (z,z
′)}

× f (x′)g(y′)h(z′)dx′dy′dz′, (3.37)

where we have made the dependency on the completion of Q to R (as the only real local
field over Q) explicit. With the foregoing simplifications in place, and seeing that the indi-
cated generalization of Proposition 19 and Corollary 3 are from now on the main order of
business (which we will refer to as effecting, successively, p-adicization and Q-adèlization,
followed by p-adicization and k-adèlization), we bring these maneuvers to fruition in the
next chapter. The focus will fall on (3.37).

4. Phase and oscillatory integrals in quantum mechanics: heading
toward Feynman

4.1. Brief preliminaries concerning Feynman’s method

The integrals we have encountered in the preceding, particularly in Proposition 19,
Corollary 3, and (3.37), are of a shape that ultimately points in the direction of Feynman’s
vaunted path integrals. They are certainly both oscillatory and phase integrals and, as such,
can in principle already be tied to quantum mechanics; in fact the cited work [45] by
Robbin–Salamon also makes this point explicitly. So we are now leaning in the direction
of Feynman’s version of quantum physics.

There are many sources available dealing with Richard Feynman’s path-integral
method in quantum mechanics, quantum electrodynamics, and quantum field theory. Re-
garding the latter, recent activity concerned with, e.g., string theory, has spawned a number
of texts on the subject which of course count Feynman’s approach as foundational, for
instance, [66,15], and [18]. The method’s origin is found in Feynman’s 1942 doctoral the-
sis [20], wherein he credits P.A.M. Dirac for some of the fundamental ideas behind this
new approach to quantum mechanics. Dirac’s paper [12] is particularly relevant in this
connection. Regarding Feynman’s approach as such, we also mention [21], his later text
written together with A.P. Higgs.

It is useful for us to repeat at this stage that, as is so often the case, there is an
intrinsic difference in style and presentation of all this material, separating physicists
from mathematicians. For example, the aforementioned treatments of quantum field
theory [15,18], by, respectively, Dolgachev and Etinghof, come more heavily equipped
with mathematical rigor and formalism than the influential text [66] by Zee, which is
aimed at budding physicists per se. Additionally, and particularly relevant to our purposes,
there is a text in print that perhaps best illustrates the (tenuous) ecumenism extant between
physicists and mathematicians working at the frontier of what quantum field theory has
wrought, viz. the two-volume compendium [9], Quantum Fields and Strings: A Course for
Mathematicians: with the physics presented here expressly tailored for mathematicians,
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it is poised to serve our purposes. We explicitly single out the lectures, “Introduction to
Quantum Field Theory”, by Ludwig Faddeev, especially the first lecture [19] on the “Basis
of quantum mechanics and canonical quantization in Hilbert space” ([19], pp. 515–522).

Properly speaking, the backdrop for this development of quantum mechanics is Weyl
quantization with the focus placed on the time evolution operator for a simple quantum
mechanical system. To wit, if H is the operator corresponding to the Hamiltonian (total
energy) of the system, then it follows from Stone’s theorem [42] (p. 335) that we are
dealing with a 1-parameter group of unitary operators, e−i Ht , where, again, we have taken
Planck’s constant h̄ to be 1. Accordingly, if A(t) is an observable for the system, then the
Schrödinger equation governing the dynamics is, in Dirac’s language [13],

d A

dt
= {H, A(t)} = i(H A(t)− A(t)H), (4.1)

and the time evolution of the according dynamical system is given by the formalism

U (t) = e−i Ht (4.2)

A(t) = U−1(t)A(0)U (t). (4.3)

The phase integral approach to this situation engenders providing an integral expression
for U , giving a kernel for realizing the effect of U as an operator on an L2 state function f
through the services of the usual functional analysis convolution scheme: we are after all in
the conventional quantum mechanical setting in which a system’s states are identified with
unit vectors in a suitable Hilbert space and the attendant observables arise as (generally
densely defined) self-adjoint operators [42,13]. In Faddeev’s aforementioned treatment,
the space of paths is equipped with a Liouville measure; see [19] and also [15].

The upshot is that we are almost always dealing, at least in somewhat rough terms, with
integrating kernels of the form

U =


eiS, (4.4)

suppressing the measure and its putative measure space, and obtain subsequently that the
action of U on a square integrable f takes the form

U ( f ) =


eiS f. (4.5)

The all-important object S is of course the action attending the given quantum mechanical
system and is itself generally expressed as a linear functional in its integral guise, at
least when we are working in the classical context (courtesy of something like the Riesz
representation theorem). For our purposes it should be noted that our earlier relations (3.36)
and (3.37) evidently fit into this scheme rather well, and kindred observations are present
in Souriau [53] and Robbin–Salamon [45,44]; we observe, too, that this type of integral
formalism is consonant with Hörmander’s development of oscillatory integrals in [28].

We might characterize this situation in tactical terms as a first approximation to
developing a formalism of quantum mechanics along the lines favored by Feynman, but we
should mention that Feynman famously goes on to develop his version of not just quantum
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mechanics but also quantum electrodynamics in terms of integrals taken over all paths in
a certain region of space–time. This is the physicists’ well-known “sum over all histories”
technique which contains, in general, a very nasty mathematical pitfall: the method begs
the question of how properly to define a measure on such a space of paths. This question,
as such, remains open, except for a few cases such as those pertaining to the Feynman–Kac
formula [52,24].

In any event, a relationship between the real symplectic group’s double cover and
quantum mechanical operators given as oscillatory integrals has been delineated in
Proposition 19, and we now turn to the matter of adèlizing this data. This entails first
and foremost that we write down the corresponding counterparts for every place of the
underlying field k, be it archimedean or non-archimedean, and then glue this cumulative
data together to get a single relation of the same form as what is given in Proposition 19
or (3.36). Since we have already addressed the questions of non-archimedean Weil
2-cocycles and Maslov indices above, in Sections 2.5–2.6, and even the adèlization of
the former data in Section 2.8, it now falls to us to develop quantum mechanics from these
perspectives.

4.2. Regarding non-archimedean quantum mechanics and adèlic quantum mechan-
ics: some background

In his 2006 lecture, “Has God made the quantum world p-adic?” [57], V.S. Varadarajan
starts by quoting Dirac’s introduction to his 1931 paper [11] proposing magnetic
monopoles, to the effect that “[n]on-euclidean geometry and noncommutative algebra,
which were at one time considered to be purely fictions of the mind and pastimes of logical
thinkers, have now been found to be very necessary for the description of the general
facts of the physical world . . . [T]his process of increasing abstraction will continue . . . and
advance in physics [will] be associated with a continual modification of the axioms at the
base of the mathematics rather than with a logical development of any one mathematical
scheme on a fixed foundation”. In their important work [59], V.S. Vladimirov, I.V.
Volovich, and E.I. Zelenov observe that because “the Planck length is the smallest distance
that can in principle be measured . . . a suggestion emerges to abandon the archimedean
axiom at small distances”. Subsequently, in the authors’ introductory remarks to the chapter
“p-Adic Quantum Theories”, we read that “[i]nvestigation of p-adic quantum mechanics
is of great interest even independent of possible new physical applications because it can
lead to better understanding of [the] usual quantum theory”. Vladimirov, Volovich, and
Zelenov then go on to state something particularly apposite for our objectives, namely that
they “hope also that the investigation of p-adic quantum mechanics and field theory will be
useful in pure mathematical researches in number theory, representation theory, and p-adic
analysis”.

Thus, there are certainly various precedents in place in mathematical physics for
considering both archimedean and non-archimedean quantum mechanics, corresponding
respectively to a model of the material universe in which the rational numbers are
completed either with respect to the ordinary absolute value or with respect to a
p-adic valuation. Beyond this, as we shall see, there is a precedent as well for
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considering archimedean and non-archimedean quantum mechanics together: adèlic
quantum mechanics.

The physicists’ focus in this regard is on the case where the base field is Q because, after
all, the direct measurements that are the life’s blood of physics are by their very nature
rational numbers. The idea that discreteness rules at the Planck scale therefore suggests the
imperative that the non-archimedean completions to be considered are just the Qp with p a
rational prime, and beyond this, i.e. when one adèlizes, the paradigmatic ring of Q-adèles
QA. In keeping with what we have done above, however, we take a more general position
in that we work with an arbitrary base field k (with (k : Q) = d, say) and have as our
completions the local fields kp and obtain the ring kA as the according adèlization, all as
before.

However, it is proper for us at this stage to go into greater detail regarding the attendant
character theory, and we shall pursue this next. We adopt, by and large, the original
conventions going back to Tate’s 1950 thesis [54], in which p is taken to range over
all valuations, infinite (archimedean) as well as finite (non-archimedean). Of course, the
question of direct physical interpretation in this more general case is a tenuous one at best.

Turning to the perspective assumed by Vladimirov, Volovich, and Zelenov, we first
encounter the following adaptation, presented in the paper [58] by the first two authors (cf.
p. 661, [58]): “the usual Schrödinger representation cannot be used for [the] construction
of p-adic quantum mechanics with complex wave functions. We . . . use a formalism of
p-adic quantum mechanics with complex wave functions in the Hilbert space L2(Qp).
It is quite remarkable that the Weyl representation can be used not only in [the] usual
quantum mechanics but also in the p-adic case. p-Adic quantum mechanics does not
possess a Hamiltonian and we propose to work directly with a unitary group of time
translations”. Thus, it is evident and fortunate that the developments of the preceding
pages surrounding the Weil representation, as well as the Maslov index and what derives
from it, are consonant with the present approach to quantum mechanics in the manner of
Hermann Weyl (and the authors of [58] and [59] indeed note that the seminal reference in
this connection is Weyl’s famous monograph [65]).

We can recapitulate the salient points as follows. As far as physics is concerned,
unitary representation theory is the order of the day, and within this representation-
theoretic context the emergence of 1-parameter subgroups of the over-arching unitary
groups resides at the very heart of the foundational architecture. The latter feature is
particularly in evidence when it comes to formulating the connection between the (Arnol’d-
Leray-)Maslov index and phase integrals as presented above in Section 3.4, and equally so
in connection with Robbin–Salamon’s work. In general everything is pervaded by “unitary
group[s] of time translations”.

Accordingly, with the ideology of Weyl quantization in place, we can argue that, even
for an arbitrary number field k, it is legitimate to consider the collective p-adic data
surrounding both the Weil 2-cocycle for the local metaplectic group (the double cover
of the symplectic group) and the Maslov index (gratia Lion–Vergne and Perrin) in parallel
with a corresponding collection of p-adic phase integrals (all for p ≤ ∞, so to speak). This
then sets the stage for the move that ultimately constitutes the raison d’être for all these
machinations with archimedean as well non-archimedean valuations: the k-adèlization of
the relevant parts both of the arithmetical themes developed above surrounding the Weil
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2-cocycle and quantum mechanics in keeping with Weyl quantization, and (ultimately
Feynman’s) path integral formulations.

With these objectives in mind, we need to note that, generally, in order to adèlize the data
provided by a collection of equations of the right form, a certain inner compatibility has to
be in place: the collection is indexed on all the places of the base field and the hypotheses
for adèlization as set forth by Tate [54] or Weil [63] are met. Given that k-adèlization of
local data on the arithmetical side of things, i.e. the indicated maneuvers surrounding cA,
is already soundly in place, it follows à forteriori that if the various analytic expressions on
the other (physics) side of (3.37) are amenable to both p-adicization and k-adèlization, any
questions about the inner compatibility of the data on this quantum mechanics side of the
divide, so to speak, are largely moot. Nonetheless, in the next section, we address a good
amount of this material directly, specifically regarding the phase and oscillatory integrals
(and unitary operators) populating the earlier 1-parameter family of such; we also return to
this theme at the end of Section 4.6.

Apparently the first work focused on this theme to appear on the scene is the 2004
work [17] by Branko Dragovich. In his Introduction to this article, harking back to both
the aforementioned work by Vladimirov, Volovich, and Zelenov and work by (e.g.) P.G.O.
Freund, E. Witten, and P. Ruelle, the author presents the appraisal that “[s]ince 1987, the
application of p-adic numbers has been of interest in string theory, quantum mechanics,
and some other areas of mathematical physics”, and then, getting down to specifics, he
goes on to state that “in [his] formulation of p-adic quantum mechanics [he follows]
the Vladimirov–Volovich approach [and] [t]his approach is generalized to adèlic quantum
mechanics”.

To convey what is going on, therefore, with both non-archimedean and adèlic quantum
mechanics, we now proceed by sketching Dragovich’s approach to the adèlic case,
which includes the protocols for the non-archimedean case as presented by Vladimirov,
Volovich, and Zelenov. The background for adèles qua adèles is of course still Tate’s
thesis [54].

4.3. Local fields and adèle rings: preparation for quantum mechanics

First, following [17] and [59] we take Q as our base field, noting that presently these
maneuvers will apply to facilitate generalization to our case of interest, an arbitrary number
field k. The rationale for this intermezzo is that adèlic quantum mechanics is still quite
novel and relatively little known outside its circle of devotées, and it is accordingly useful
to have a model at our disposal of what happens in the simplest case of Q itself. We take
some trouble at this stage to delineate rather explicitly what we covered more discursively
in the earlier chapters of this article, in the more general context of the local fields kp,
because we now have occasion to make rather pointed comparisons between quantum
mechanics over R and quantum mechanics over, first, Qp, and subsequently QA. Because
these presentations are by their very nature rife with formulas amenable to calculations of
the type physicists find meaningful, the viewpoint assumed in regard to non-archimedean
analysis is necessarily more prosaic than ours in the earlier sections, focused as they were
on, ultimately, second degree cohomology and structural results. With the task before
us being to convey this still quite novel non-archimedean quantum mechanics in terms
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amenable to the prospect of interpreting our results, Proposition 19 and Corollary 3, more
specifically (3.37) (which indeed encapsulates its two foregoing results) in the according
non-archimedean and adèlic terms, it is clearly necessary to develop the relevant non-
archimedean and adèlic quantum mechanics in as effective a fashion as possible.

Thus, if aA = (a∞; ap)p prime = (a∞; a2, a3, a5, . . . , ap, . . .) is an adèle, i.e. aA ∈ QA,
so that a∞ ∈ R and ap ∈ Zp which is to say that ∥ap∥p ≤ 1, a.e. p (meaning for all but a
finite number of primes, p), then the idèles, comprising the set (and multiplicative group)
Q×

A ⊂ QA, are cut out by the requirement a∞ ≠ 0, ap ≠ 0, ∀p, and ∥ap∥p = 1, a.e. p. A
principal adèle (resp. idèle) is any element of QA (resp. Q×

A) for which a∞ = r = ap,
∀p, with r ∈ Q (resp. r ∈ Q×, i.e., r ≠ 0). We recall (cf. [62]) that the adèles obtain as a
restricted direct product (manifesting itself in the requirement given above) and comprise
a topological ring; the subset of idèles is a multiplicative group. Furthermore, we are of
course dealing with complete normed spaces with, qua adèles,

∥aA∥ = ∥a∞∥∞


p

∥ap∥p = |a∞| ·


p

∥ap∥p, (4.6)

and we obtain as a consequence of the fundamental theorem of arithmetic that if (r) is a
principal idèle (r ∈ Q×), then

∥(r)∥ = 1. (4.7)

Furthermore, as far as the indicated topologies are concerned, given that R and the Qp
are locally compact abelian groups and, as just mentioned, the adèles are a restricted
direct (topological) product, we obtain a pair of Haar measures on QA and Q×

A as
follows. Writing xA = (x∞; x p)p, and with Lebesgue measure on R (resp. QA) normalized
via


|x∞|≤1 dx∞ = 2 (resp.


∥x p∥p≤1 dx p = 1), first, the product measure

dxA = dx∞dx2dx3 · · · dx p · · · (4.8)

gives a measure on QA. Second, if we stipulate that

d×x∞ =
dx∞

|x∞|
and d×x p =

1

1 −
1
p

·
dx p

∥x p∥p
(4.9)

then we get a measure on Q×

A by setting

d×xA = d×x∞d×x2d×x3 · · · d×x p · · · . (4.10)

Next, it is of course the case that any p-adic number can be written (formally) as an
expansion

ap = ±


k≥k0

αk pk (4.11)

where, for each k, αk ∈ Z/pZ, which is to say that αk ∈ {0, 1, . . . , p − 1}, so that we
get, in particular, that αk ∈ Zp if and only if k0 ≥ 0. Under these circumstances the
so-called fractional part, {ap}, of the p-adic number ap is defined to be the finite sum
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0>k≥k0

αk pk . Then we fix an additive character on QA as the mapping

χA : xA = (x∞; x p)p → e−2π i x∞


p

e2π i{x p}. (4.12)

Evidently the individual (local) factors of χA are the respective canonical local factors,
namely, χ∞(x∞) = e−2π i x∞ and χp = e2π i{x p}, for all p. Thus, (4.12) can be rewritten in
the compact from

χA(xA) = χA((x∞; x p)p) = χ∞(x∞)


p
χp(x p). (4.13)

Because, under all circumstances, x p ∈ Zp, a.e. p, meaning that {x p} = 0 a.e. p, the
product is well-defined.

As far as the idèles are concerned, an idèlic character looks like

πA,s(xA) = |x∞|
s


p
∥x p∥

s
p = ∥xA∥

s (4.14)

for a fixed s ∈ C (cf. [54]). Again, this character is well-defined because when evaluated at
a given idèle, its local factors always reduce to 1 almost everywhere. On principal adèles
and idèles the respective characters (4.13) and (4.14) reduce to unity.

With this back-ground material in place, we can now begin to make a path toward the
adèlic functional analysis required for adèlic quantum mechanics. First off, by definition,
an elementary function on QA is an object

ϕA(xA) = ϕA((x∞; x p)p) = ϕ∞(x∞)


p
ϕp(x p), (4.15)

where ϕ∞ and the ϕp are complex-valued Schwartz–Bruhat functions on R and the Qp
respectively, and then the Schwartz–Bruhat class S(QA) for the ring of adèles is the
linear closure (i.e. the set of all finite linear combinations) of these adèlic elementary
functions. The upshot of this is that ϕ∞ ∈ C∞(R) and, for any n ≥ 0, |x∞|

nϕ∞(x∞) → 0
as |x∞| → ∞; ϕp has compact support in Qp and there exists a natural number ν
(depending on ϕp) such that if ∥yp∥p ≤ p−ν then ϕp(x p + yp) = ϕp(x p) (in other
words, ϕp is locally constant); and finally, for almost every p we have that ϕp(x p) = 1 if
0 ≤ ∥x p∥p ≤ 1, while ϕp(x p) = 0 if ∥x p∥p > 1. So S(QA) is the vector space of all finite
linear combinations of such ϕA.

Given S(QA) one defines two important transforms, the Fourier transform and the
Mellin transform, as follows: for the Fourier transform, ϕ̂A(ξA), of ϕA(xA) we have the
formula

ϕ̂A(ξA) =


QA
ϕA(xA)χA(xA)dxA, (4.16)

and for the Mellin transform, ΦA(s), of ϕA(xA), we have, with s ∈ C and Re(ṡ) > 1, the
formula

ΦA(s) =


Q×

A

ϕA(xA)πA,s(xA)d
×xA =


Q×

A

ϕA(xA)∥xA∥
sd×xA. (4.17)
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These two players are famously situated at the heart of Tate’s thesis [54], devoted as
it is to “generalizing the notion of ζ -function and simplifying the proof of the analytic
continuation and functional equation for it, by making fuller use of analysis in the spaces
of valuation vectors [a.k.a. adèles] and idèles . . . ”, and accordingly providing, for example,
that ΦA(s) is amenable to analytic continuation to C except for singularities at s = 0, 1,
where there are simple poles with respective residues −ϕA((0)) and ϕ̂A((0)); additionally
we have the functional equation ΦA(s) = Φ̂A(1 − s).

Returning to functional analysis, however, one next defines a number of Hilbert
spaces. Working locally, we have of course L2(R) equipped with the inner product

⟨ f, g⟩ =


R
−

f (x∞)g(x∞)dx∞ and its attendant norm, and, for all primes p, L2(Qp)

equipped with ⟨ f, g⟩p =


Qp

−

f (x p)g(x p)dx p and its norm. Then, adèlically, we set

L2(QA) =


ϕA : QA → C |


QA

−
ϕ(xA)ϕA(xA)dxA < ∞


. (4.18)

In other words, L2(QA) obtains as a complete inner product space relative to the norm

⟨ϕA, ψA⟩ =


QA

−
ϕ(xA)ψA(xA)dxA, (4.19)

so that ∥ϕA∥
2
2 = ⟨ϕA, ϕA⟩, and L2(QA) is characterized, as always, by the rule that

ϕA ∈ L2(QA) if and only if ∥ϕA∥2 < ∞.

4.4. Quantum mechanics over Qp and QA

At this point in the discussion we are evidently in a position (or very nearly so)
to mimic in the indicated local and adèlic contexts what amounts to von Neumann’s
functional analytic rendering of the quantum mechanics of, primarily, Heisenberg and
Schrödinger, as presented in the classic monograph [61]. But before we turn to this, a few
remarks are in order about something already briefly alluded to earlier (in Section 2.2),
namely, the matter of what quantization model is proper for the non-archimedean or
adèlic cases. In their article [58], Vladimirov and Volovich note that “standard quantum
mechanics starts with a representation of . . . the Heisenberg commutation relation [q̂, p̂] =

i in . . . L2(R) [where] . . . the operators q̂ and p̂ are realized by multiplication and
differentiation respectively. However, in . . . p-adic quantum mechanics we have x ∈ Qp
and ψ(x) ∈ C, and therefore the operator ψ(x) → xψ(x) of multiplication by x has no
meaning. Fortunately . . . there is the Weyl representation . . . ”. Thus, as we have already
indicated above in a slightly different connection, the proper perspective on the entire
affair of developing adèlic quantum mechanics also centers on Weyl quantization in a very
natural fashion given that adèles’ coordinates are largely p-adic.

In Dragovich’s presentation, following Weyl’s lead in that the work is done by
1-parameter groups of unitary operators on a Hilbert space of states, the local spaces L2(R)
and L2(Qp), ∀p, are assigned evolution operators U∞(t∞) and Up(tp), ∀p, respectively,
and one is immediately able to impart physically meaningful eigenbases to L2(R) and
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the L2(Qp), taking quantum mechanical requirements into account. Specifically, with the
same provisos in place as above, one sets

UA(tA) := U∞(t∞)


p
Up(tp), (4.20)

so that eigenbases for L2(R) and the L2(Qp) relative to the operators U∞ and the Up give
rise to an eigenbasis for L2(QA) relative to UA(tA). One observes, with Dragovich, that
in this way membership in the various local as well as adèlic Schwartz–Bruhat classes is
automatically taken care of.

Next, before we get to Weyl quantization proper, we lay out a few standard conventions
concerning what, in contrast to adèlic quantum mechanics, we might call local quantum
mechanics. In the paradigmatic real case we do have at our disposal the non-relativistic
classical Hamiltonian

H =
1

2m
κ2

+
mω2

2
q2, (4.21)

in the notation of [17] (which we continue to follow as closely as possible), with q being
position, κ momentum (seeing that p and k, which are Dragovich’s choices, are already
spoken for), m being mass, and ω the frequency for the harmonic oscillator. Let z =

q
κ


,

let Tt = ( cosωt
1

mω
sinωt

−mω sinωt cosωt
). One obtains immediately that Tt Tt ′ = Tt+t ′ , and, if B is the

(familiar, if repackaged) skew-symmetric bilinear form

B(z, z′) = B


q

κ


,


q ′

κ ′


= −κq ′

+ qκ ′ (4.22)

on the given phase space, then

B(Tt (z), Tt (z
′)) = B(z, z′), (4.23)

and we actually find ourselves on very familiar ground.
We note, also, that in the real setting (and in standard notation) the harmonic oscillator

is of course given by the Schrödinger wave equation:

d2ψ

dx2 +
2m

h̄


E −

mω2

2
x2

ψ = 0, (4.24)

which, in a normalized form, provides, as far as solutions go, an orthonormal basis
{ψn(x)}n≥0 of L2(R) with each basis element being a scalar multiple of the product
of the Gaussian density e−πx2

and a Hermite polynomial. In this arrangement, which is
something of an amalgamation of the Heisenberg and Schrödinger “pictures” of quantum
mechanics, as Dirac described these formalisms (cf. [13]), the eigenfunctions ψn(x)
are indeed the fundamental data of quantization itself, and therefore, given that Weyl
quantization must yield a physically equivalent description of the indicated harmonic
oscillator, these eigenfunctions have to agree with what one would obtain under this
régime.
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When it comes to the interpretation of the immediately preceding objects, in the
p-adic case one obviously takes the local quantities and variables to be p-adic, noting
that regarding p-adic versions of cosωt and sinωt one has to restrict attention to domains
cut out by the inequalities ∥ωt∥p ≤

1
p if p ≠ 2 and ∥ωt∥2 ≤

1
4 .

Now we proceed to Weyl quantization and sacrifice any putative Hamiltonian
formalism. Over R this entails the data (L2(R),W (z),U (t)), where W is related to
a unitary representation of the Heisenberg(–Weyl) group in L2(R) and U (t) is, as
already indicated, a unitary representation of the attendant evolution operator on the same
space. Specifically, if we present the Heisenberg–Weyl group in question as the set of
pairs (z, a), with z as above and a ∈ R or Qp, respectively, subject to the group law
(z, a)(z′, a′) = (z + z′, a + a′

+
1
2 B(z, z′)), then the Weyl representation is given by

(z, a) → χ(a)W (z), (4.25)

where χ = χ∞ or χp, respectively.
It is useful for us to take note of the fact that we evidently have a point of close contact

here with one of our principal earlier themes, viz. the unitary representation theory of the
Heisenberg group as discussed in Section 2.3, ff. Indeed, in Dragovich’s present notation
the Weyl quantization relation is rendered as

W (z)W (z′) = χ∞


1
2

B(z, z′)


W (z + z′), (4.26)

in which we recognize nothing less than our earlier (2.12). Additionally, the action of the
W (z) on the eigenfunctions ψn(x) ∈ L2(R) is given by the relation

W (z)(ψn(x)) = χ∞

κq

2
+ κx


ψn(x + q). (4.27)

Furthermore, regarding the data U (t), which, as we said, is part and parcel of a
1-parameter group of unitary operators (since U (t)U (t ′) = U (t + t ′)), we have that

U (t)(ψ)(x) =


R

Kt (x, y)ψ(y)dy (4.28)

for ψ ∈ L2(R) and Kt the usual kernel for the harmonic oscillator:

Kt (x, y) =
1

√
2
{1 − i · sign(2 sin t)}

e2π i( x2
+y2

2 tan t +
xy

sin t )

√
| sin t |

. (4.29)

Moreover,

U (t)W (z) = W (Tt (z)), (4.30)

in which we might recognize some other telling parallels with what we presented in
Section 2.3. We do not pursue this at present, however.

Going on to the p-adic case, and following [17,58] and [59], in this setting the
fundamental quantum mechanical data is given by a triple (L2(Qp),Wp(z p),Up(tp)),
where the obvious changes have been made: in our present non-archimedean functional
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analytic setting Wp is again connected to a unitary representation of the according p-adic
Heisenberg(–Weyl) group, and Up yields p-adic time evolution. This means that we get
explicit relations

Wp(z p)Wp(z
′
p) = χp


1
2

Bp(z p, z′
p)


Wp(z p + z′

p), (4.31)

Wp(z)(ψ
(p)(x p)) = χp

κq

2
+ κx p


ψ (p)(x p + q), (4.32)

Up(tp)(ψ
(p)(x p)) =


Qp

Ktp (x p, yp)ψ
(p)(yp)dyp, (4.33)

along the same lines as in the real case, including the intertwining of the indicated unitary
representation of the p-adic Heisenberg group and the time-evolution operator, namely,

Up(tp)Wp(z p) = Wp(Ttp (z p))Up(tp). (4.34)

The expression for the p-adic integrating kernel involves some novel maneuvers, but
happily its “shape” is amenable to that of (4.28):

Ktp (x p, yp) =


δp(x p − yp), if tp = 0

λp(2tp)∥tp∥
−

1
2

p χp


x p yp

sin tp
−

x2
p + y2

p

2 tan tp


, if tp ≠ 0

(4.35)

for δp the p-adic Dirac delta function. Here the function λp is given by the following
definitions involving the Legendre symbol (a circumstance we will have occasion to return
to later):

λp(ap) =



1, if p ≠ 2, and 2|k0 in (4.11)
αk0

p


, if p ≠ 2, 2 - k0 in (4.11) and p ≡ 1 (mod .4)

i


αk0

p


, if p ≠ 2, 2 - k0 in (4.11) and p ≡ 3 (mod .4)

1
√

2
{1 + (−1)αk0+1 i}, if p = 2 and 2|k0 in (4.11)

1
√

2
(−1)αk0+1+αk0+2{1 + (−1)αk0+1 i}, if p = 2 and 2 - k0 in (4.11).

(4.36)

Additionally it bears repeating that the time-evolution operators engender a 1-parameter
group in both the real and p-adic cases, i.e. in both the archimedean and non-archimedean
settings, which is the main thrust of the proposition that

U∞(t∞ + t ′∞) = U∞(t∞)U∞(t
′
∞), Up(tp + t ′p) = Up(tp)Up(t

′
p), (4.37)
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where we have written U∞(t∞) for our earlier U (t). Furthermore, as regards the integrating
kernels (4.29) and (4.35) we have

Kt∞+t ′∞
(x∞, y∞) =


R

Kt∞(x∞, z∞)Kt ′∞
(z∞, y∞)dy∞,

Kt∞+t ′∞(x p, yp) =


Qp

Kt∞(x p, z p)Kt ′∞
(z p, yp)dyp

(4.38)

where we have taken care to place the individual valuations on the same notational footing
in view of the upcoming task of adèlizing much of this data.

Thus, with local Weyl quantization given as above, as the archimedean data
(L2(R),W∞(z∞),U∞(t∞)) and the non-archimedean data (L2(Qp),Wp(z p),Up(tp)) for
all p, where

(z∞, a∞) −→ χ∞(a∞)W∞(z∞); (z p, ap) −→ χp(ap)Wp(z p), ∀p, (4.39)

provide the various local Weyl representations, and

U∞(t∞)(ψ)(x∞) =


R

Kt∞(x∞, y∞)ψ(y∞)dy∞;

Up(tp)(ψ)(x p) =


Qp

Ktp (x p, yp)ψ(yp)dyp, ∀p,
(4.40)

define the indicated 1-parameter groups of unitary operators characterizing, respectively,
archimedean and non-archimedean time-evolution, with ψ ∈ L2(R) or L2(Qp), we
can see our way clear to what needs to be done in formulating the required results
over kp, with p running over Vk , i.e., to develop the local quantum mechanics
(L2(kν),Wv(zv),Uν(tν)). We address this in Section 4.5.

Next we turn to the adèlic triple (L2(QA),WA(zA),UA(tA)), where L2(QA) is given by
(4.18) and UA(tA) by (4.20). Following suit, we have that

WA(zA) = WA((z∞; z p)p) = W∞(z∞)


p
Wp(z p), (4.41)

and, for the adèlic Weyl representation,

(zA, aA) = ((z∞; z p)p, (a∞; ap)p)

−→ χ∞(a∞)W∞(z∞)


p
χp(ap)Wp(z p), (4.42)

while we have as the adèlic counterpart to (4.26) and (4.31) the identity

WA(zA)WA(z
′

A) = χA


1
2

B(zA, z′

A)


WA(zA + z′

A). (4.43)

Regarding (4.27) and (4.32), the adèlic counterpart reads

WA(zA)(ψA(xA)) = χA
κAqA

2
+ κAxA


ψA(xA + qA), (4.44)
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and the local data (4.28), (4.33) leads to

UA(tA)(ψA(xA)) =


QA

KtA(xA, yA)ψA(yA)dyA, (4.45)

with ψA ∈ L2(QA). Naturally,

KtA(xA, yA) = Kt∞(x∞, y∞)


p
Ktp (x p, yp) (4.46)

and, as already mentioned above,

UA(tA) = U∞(t∞)


p
Up(tp).

In view of convergence questions it should be noted that these formulas have to be
interpreted in the sense of distributions. Additionally, with the local data given by (4.38) in
place, it should be the case that

KtA+t ′A
(xA, yA) =


QA

KtA(xA, zA)Kt ′A
(zA, yA)dzA, (4.47)

and this is indeed so, provided the right side is not regarded naı̈vely as a product of the
respective right sides of (4.38). Dragovich notes simply (p. 14 of [17]) that this “would be
inconsistent with the adèlic approach”, and the upshot is that one must require that, due
to the fact that for any adèle its coordinates live in a Zp for all but a finitely many p, and
accordingly have p-adic norm ≤1, the corresponding non-archimedean local contributions
to (4.47) reduce to

∥z p∥p≤1
Ktp (x p, z p)Kt ′p (z p, yp)dz p = Ktp+t ′p (x p, yp). (4.48)

This maneuver is standard; see e.g. [54,64].
Presently we will require a path integral formulation of quantum mechanics in relation

to local and adèlic versions of (3.37) for the number field k, as we have already abundantly
indicated above.

If the very subject of non-archimedean quantum mechanics is novel, the sub-case of
adèlic quantum mechanics is even more so, and it is reasonable to say a few words about it
now. Indeed, we take the liberty of developing quantum mechanics over QA at this stage,
to the point of being able to formulate what should subsequently occur for kA. According
to Section 4.1, phase integrals, which unfortunately occur in the aforementioned results
in an obviously rather involved form, are fundamentally tied to the time evolution of
the quantum mechanical systems they purport to describe, so it is very important to do
justice to the operators UA(tA). In the present context of the adèlic harmonic oscillator,
the stipulation concerning adèlic time is that we should have t∞ ∈ R, ∥t2∥2 ≤

1
4 , and for

p > 2, ∥tp∥p ≤
1
p . In keeping with what happens locally, this collective data cuts out

an additive subgroup of QA. Moreover, we will have occasion later to examine the adèlic
counterparts to (3.37) from the perspective of the interplay between adèlic generalizations
of the operators U (t, t0; H) occurring there, these being the putative instances of the
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present U∞(t∞), and the corresponding players contributing to the development of the
Weil–Kubota 2-cocycles cp and cA. As we have taken pains to disclose in Section 2, the
local 2-cocycles’ behavior is intimately connected to the representation-theoretic dividends
derived from the Stone–von Neumann theorem, and it is therefore proper to note (also for
completeness) that the data (4.30), (4.34) adèlizes to the relation

UA(tA)WA(zA) = WA(TtA(zA))UA(tA). (4.49)

We can complete the description of adèlic quantum mechanics in this exemplar by
mentioning that, to be sure, the eigenfunctions of the adèlic harmonic oscillator satisfy
the right equations when compared with what happens in the real case (viz. (4.21): the
adèlization takes place in the standard manner). As these eigenfunctions’ appearance in
the non-archimedean case is rather involved and we have no need for them in our present
considerations, we take the liberty merely to cite their occurrence in [17], Sections 3, 4,
covering respectively the local and adèlic cases. The main point is that, also adèlically,
the time evolution operators, which are of course at the heart of Weyl quantization (where
they are defined by means of integrating kernels as per (4.28), (4.33), and (4.45)), should
be compatible with the eigenvalue problem for the Schrödinger wave equation, when the
latter makes sense. Dragovich takes great pains in [17] to demonstrate that this is truly the
case.

The upshot is that we indeed have in the foregoing a prototype for adèlic quantum
mechanics, specifically the adèlization of local quantum mechanics in the presentation of
Hermann Weyl (cf. [65]), with the archimedean case corresponding to what is currently
accepted in physics as descriptive of physical reality at the Planck scale. Procedurally, as
we have just seen, one starts with R as only one option for completing Q (where to be
sure actual physical measurements take their values) relative to a valuation, and stipulates
that the non-archimedean valuations should be given equal time, and then one develops
local quantum mechanics for all valuations of Q. Thereafter one systematically adèlizes
the given data to get quantum mechanics over QA. As far as our objectives go, then, the
next order of business is dictated by what we have done in Sections 2 and 3: we proceed,
as promised, to delineate a generalization of quantum mechanics to kA, where, as above, k
is an algebraic number field, i.e. a finite extension of Q.

In any event, under the present circumstances, we have, at least in principle, sufficient
material in place with which to effect an extension of (3.37). First, given that we are now
working with Weyl quantization and without a Hamiltonian as such (Vladimirov, Volovich,
and Zelenov do use ersatz non-archimedean Hamiltonians as “heuristics”— cf. p. 208
of [59]), we recast (3.37) as

c∞R(σ, σ
′)U(t∞R)

0,σ ( f (x))U(t∞R)
σ,σ ′σ (g(y))U(t∞R)

σ ′σ,0(h(z))

= F∞R(c∞R(σ, σ
′))


R3n

ei{S∞R (x,x
′)+S∞R (y,y

′)+S∞R (z,z
′)}

× f (x′)g(y′)h(z′)dx′dy′dz′, (4.50)

also changing the notation for the time-dependency of the given unitary operators in the
obvious way to get a match with the according notations in the present section. Now
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p-adicization entails the stipulation

cp(σ, σ
′)U(tp)

0,σ ( f (x))U(tp)
σ,σ ′σ (g(y))U(tp)

σ ′σ,0(h(z))

= F p(cp(σ, σ
′))


Q3n

p

ei{Sp(x,x′)+Sp(y,y′)+Sp(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′ (4.51)

for all σ, σ ′
∈ Sp(2n,Qp), and Q-adèlization entails the stipulation that

cA(σ, σ
′)U(tA)0,σ ( f (x))U(tA)σ,σ

′σ (g(y))U(tA)σ
′σ,0(h(z))

= FA(cA(σ, σ
′))


Q3n

A

ei{SA(x,x′)+SA(y,y′)+SA(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′ (4.52)

for all σ, σ ′
∈ Sp(2n,QA). Of course in each of the two immediately preceding cases

it is understood that the variables x, y, z, and x′, y′, z′, as well as the functions f ,
g, and h, are to be regarded as, respectively, p-adic and k-adèlic objects, with the
earlier adèlization conventions and formulas in place, for example, xA = (x∞; x p)p,
dxA = dx∞dx2dx3 · · · dx p · · · , and similarly for y, z, x′, y′, z′, and tA, and then
UA(tA) = U∞(t∞)


p Up(tp), with similar product formulas defining all the other players

in (4.52), specifically cA, FA, and the SA. There is indeed a lot of preparation hiding in the
shadows, largely topological and measure-theoretic: see the preceding section, as well as
earlier remarks in the present section.

4.5. Quantum mechanics over kν and kA

Let (k : Q) = d = r1 + 2r2, meaning that we have r1 real Q-embeddings of k in C, and
2r2 complex ones, arranged in complex conjugate pairs. Thus, there are correspondingly
r1 real valuations on k, 2r2 complex ones, exhausting the set of archimedean places of k,
and as far as non-archimedean places go we obviously have a bijection between these and
the primes (or prime ideals) p of Ok . The adèle ring kA, of k, featured so prominently in
the earlier sections of this paper, is realized as a restricted direct product of the local fields
obtained by Cauchy-completing k with respect to these valuations, taken with respect to
the local rings Op ⊂ kp for p < ∞. This amounts to the following: continuing to write Vk
for the set of all valuations of k, but now writing ν ∈ Vk, archimedean or not, we have
r1 (resp. 2r2) instances of ν = ∞R (resp. ν ∈ ∞C) and a countable infinity of instances
where ν = p; consequently a k-adèle, i.e. an element of kA, looks like

aA = (a∞R; a∞C; ap)p = (aν)ν∈Vk (4.53)

subject to the requirements that there are r1 (resp. 2r2) real entries (resp. complex entries)
in the subvector a∞R (resp. a∞C ), and ∀p, ap ∈ kp, with ap ∈ Op a.e. p. Again, one cuts
out the multiplicative group of k-idèles and, inside this set, the principal k-idèles, in the
obvious manner.

Furthermore,

∥aA∥ =


ν∈Vk

∥aν∥ν, (4.54)
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but it is important to note that if ν is complex then ∥aν∥ν = |aν |2 = aνav , and for p < ∞

we have that ∥ap∥p = {Nk/Q(p)}−ε, where ap ∈ pεOp but ap ∉ pε+1 Op.

Next, with xA = (xν)ν (in keeping with (4.53)), stipulate that each dx∞R is Lebesgue
measure on R, each dx∞C is twice Lebesgue measure, and dxp is normalized Haar measure
on the locally compact abelian group kp such that

Op

dxp =
1

Nkp/Qp (dp)
, (4.55)

with dp being the discriminant of kp and p ∈ Z with p|p. Then Haar measure on the
topological ring kA is given by

dxA =


ν∈Vk

dxv =


dx∞R


dx∞C


dxp. (4.56)

Additionally, we obtain Haar measure on k×

A , the multiplicative group of k-idèles, by
setting dx×

∞ =
dx∞

∥x∞∥
in both the real and complex cases,

dx×
p =

1

1 −
1

Nk/Q(p)

·
dxp

∥xp∥
(4.57)

in the non-archimedean cases, and then again defining

dx×

A =


ν∈Vk

dx×
v . (4.58)

As far as characters are concerned, first, for each non-archimedean kp pick p ∈ Z
such that p|p and determine, to start with, λp : Qp → R by the recipe, for x p ∈ Qp,
pick a, n ∈ Z such that pa x p − n ∈ paZ, and set λp(x p) =

n
pa ; subsequently define

Λp(xp) = λp(T rkp/Qp (xp)) for all xp ∈ kp. With these conventions in place, define

χA((xν)ν) =


ν|∞

χν(xν)

p<∞

e2π iΛp(xp), (4.59)

taking care of the additive case.
Turning to the multiplicative case, recall from Tate’s thesis (specifically § 2.3 of [54])

that for any valuation ν ∈ Vk any continuous multiplicative mapping kν → C is, by
definition, a quasi-character, while the subclass of such mappings that map into C×

1 are the
conventional characters. Quasi-characters of k are unramified provided they are of the form
xν → ∥xν∥s

ν for some fixed s ∈ C. Generally, which is to say, including the ramified case
in our discussion, a ν-adic (multiplicative) quasi-character is a mapping k×

ν → C of the
form xν −→ ∥xν∥s

νcν(x ′
ν) for cν a character of the kernel Uν of the mapping xν −→ ∥xν∥ν

and x ′
ν given by the rule xν = x ′

νϱ, x ′
ν ∈ Uv , ϱ > 0, if ν|∞, and by the rule xν = x ′

νr
ε

where, again, x ′
ν ∈ Uv , but now ∥r∥ν = 1 (and ε is of no consequence for our purposes),

if ν < ∞. With the multiplicative characters taken care of in this manner, we may forego
any real coverage of idèlic characters per se given that we have no need for them in regard
to our goal of k-adèlizing the counterparts to (4.50) and (4.51). And this finally brings us
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back to our question of what a generalized quantum mechanics of this type should look
like: precisely what does it consist in?

In point of fact, the answer to this question has already been foreshadowed a number
of times in the foregoing discussion: in a non-archimedean setting, including an adèlic
one, the right move is to postulate a quantum mechanics as a triple of the form “(Hilbert
(phase) space; Weyl quantization (a family of unitary operators); time-evolution operator)”,
as was done in the preceding section for the paradigm of k = Q. We are therefore led to
our k-adèlic quantum mechanics as the data (L2(kA),WA(zA),UA(tA)), modulo pending
generalizations of (4.41), (4.45) and (4.47). Beyond this, with our goal being to bring a
path integral formalism into play, it is important to note that it is the evolution operator that
readily introduces the desired integrals into the game.

Specifically, reverting briefly to the case of QA, we have from (4.47) and (4.33) that
UA = U∞


p Up where, suppressing a number of p’s,

Up(t)ψ(x) =


Qp

Kt (x, y)ψ(y)dy (4.60)

and, additionally, in the current more general context than that of the earlier harmonic
oscillator, it is indicated that we present Kt (x, y) as

Kt (x, y) =


P
χ


1
h

 t

0
L(q, q̇)dt


t

dq(t), (4.61)

following p. 207 of [59]. Here, L(q, q̇) is the attendant Lagrangian, and in accord with [58],
h ∈ Q, while q, t ∈ Qp; additionally, and perhaps most significantly, P is the set of
classical p-adic trajectories going between x = q(1) and y = q(0), noting that 0 ≤ t ≤ 1,
and it is here that we expressly encounter a Feynman integral properly so-called.

If we compare this presentation of the integrating kernel to how things are done in
quantum field theory, taking note of the fact (cf. [15]) that quantum mechanics can be
realized as a so-called (0 + 1)-QFT, it is clear that (4.61) can be recast in the evocative
form

Kt (x, y) =


P

e
i
h S(γ (t))D[γ (t)], (4.62)

where

S(γ (t)) =

 1

0
L(γ (t), γ̇ (t))dt (4.63)

realizes the critically important action functional for the system. Here γ (t) is a path from
x to y, i.e. an element of P, and D[γ (t)] is the much-embattled phantom measure involved
in Feynman’s path integral formulation of quantum mechanics. With this presentation of
Kt in place, however, we need only compare what we have here with our earlier (4.4) and
(4.5) to see that we are on the threshold of connecting the developments of the first parts
of this paper to Feynman’s formulation.

So, at this point there are two specific tasks before us, namely to explicate the data
(L2(kν),Wv(zv),Uν(tν)) for all ν ∈ Vk (resp. (L2(kA),WA(zA),UA(tA))) by generalizing
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(4.41), (4.42) and (4.47) to the case where kν is the base field (resp. kA is the base ring
(or topological space)) and to carry this extension over so as to yield counterparts to
(4.60) and therefore to (4.58) with kv taking the place of Qp (resp. kA taking the place
of QA). Thereafter what remains is the task of tying these generalizations into (4.4), (4.5),
and of course (3.37).

As we now set out to do this we should like to warn that, specifically in the local (as
opposed to adèlic) situation, we leave a few things undone, given that our coverage is
already rather baroque. In point of fact, concerning the local integrating kernels Kt as
per (4.35) and (4.36), it is clear already from the example given by Dragovich regarding
what happens in the relatively elementary case of the simple harmonic oscillator that
explicit renderings of these expressions are hard to come by. Interestingly, as they involve
the Legendre symbol when working over Qp (cf. (4.36)), one expects to encounter the
extended Legendre symbol, defined over the ring of integers of kν , in our more general
case. We leave this as an exercise however, and stipulate that such integrating kernels
are available over kν , and just note that we can render them in a form amenable to the
present non-archimedean path integral formalism conveyed by (4.62) and (4.63). After all,
even in classical quantum mechanics this is the case, lest Feynman’s entire approach were
compromised: an integrating kernel is always given in the form of (4.4).

Now, turning our attention specifically to our central result (3.37) and its proposed
appearance(s) when we go to the arbitrary number field k and effect, first, p- or more
precisely ν-adicization (with ν running over Vk) and, finally, k-adèlization, we evidently
get very similar results to (4.51) and (4.52). In the first place, locally we obtain

cν(σ, σ
′)U(tν)0,σ ( f (x))U(tv)σ,σ

′σ (g(y))U(tv)σ
′σ,0(h(z))

= Fν(cν(σ, σ
′))


k3n
v

ei{Sv(x,x′)+Sv(y,y′)+Sv(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′ (4.64)

where σ, σ ′
∈ Sp(2n, kv), and the indicated independent variables (or integration vari-

ables) range over kν (as a local field equipped with a Haar measure—see above). Subse-
quently, we get, k-adèlically,

cA(σ, σ
′)U(tA)0,σ ( f (x))U(tv)σ,σ

′σ (g(y))U(tA)σ
′σ,0(h(z))

= FA(cA(σ, σ
′))


k3n
A

ei{SA(x,x′)+SA(y,y′)+SA(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′, (4.65)

where we have that σ, σ ′
∈ Sp(2n, kA) and the integration variables are adèlic, ranging

over the topological ring kA, equipped with an adèlic Haar measure (as per (4.6)).

4.6. One more caveat regarding adèlization

There are a few final remarks in order as regards the processes of adèlization carried out
at the end of Section 4.4, culminating in (4.52), and at the end of Section 4.5, culminating
in (4.65). In each of these two cases we set about adèlizing local data of the form
c? = F?


χ? f? where ab initio we can replace ? consistently by some ν ∈ Vk , starting

off in Section 4.4 with k = Q In the paradigm case of ν = ∞R, with which the entire
first part of this article is of course concerned, we are guaranteed that (3.37) holds and that
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the left hand side data, c?, or more properly {cν}ν∈VQ , adèlizes into cA, which is nothing
more than the product, properly understood, of all the cν . We have argued in Section 4.4
that the right hand side data should adèlize in itself, given that we have compatible non-
archimedean quantum mechanics in place, including both the local and adèlic cases. Thus,
it is certainly possible to build an adèlic right hand side, which we might for the sake of
the present discussion denote most succinctly by (F


χ f )A. The question that needs to be

addressed is how we can justify that cA and (F

χ f )A coincide. The same construction

applies in the more general case, for an arbitrary k, of course, and the same question is
raised.

In sketching a resolution, we are guided by something of a parallel with what takes
place in the theory of sheaves, i.e. the procedure of sheafification. The idea is that at each
intermediate stage, so to speak, i.e. for ? replaced by each ν ∈ Vk , we have at least
in principle (given the present anything-but-explicit status of non-archimedean quantum
mechanics over k) a sensible identification cν = Fν


χν fν , and this carries with it that the

requirements that are already in place to guarantee that cA is well-defined apply also to the
data {Fν


χν fν}ν∈Vk , so that we certainly get that cA =


ν cv =


ν Fν


χν fν .

But it is not transparent that

ν Fν


χν fν and (F


χ f )A coincide. In order to decide

whether in fact they do, which would then completely legitimize (4.52) and (4.65), it is
necessary to carry out the detailed work of explicitly constructing the local factors going
into the Fν , χν , and fν , with ν ∈ Vk . This would take us quickly to the heavy labor of
generalizing certain of the earlier results by Souriau (Section 3.4) and even Leray, and
crafting explicit versions of k-local and k-adèlic quantum mechanics: tasks of such great
scope that we postpone them until later publications.

For now we present (4.52) and (4.65) in the indicated form, modulo future amendments
which, conjecturally, we claim should at worst amount to the introduction of compatible
adjustment factors. In other words, we propose that


ν Fν


χν fν and (F


χ f )A differ

only by an innocuous product of local factors, meaning that indeed, suitably understood,
we can write cA = (F


χ f )A.

5. Quadratic reciprocity revisited

5.1. Quadratic reciprocity in the language of Feynman integrals

We saw in Section 2.9 that the law of quadratic reciprocity for the algebraic number field
k redounds to (2.130), i.e. the statement that

cA|Sp(k)×Sp(k) ≡ 1,

and we have from (4.65) that with (σ, σ ′) ∈ Sp(2, kA) × Sp(2, kA), which is to say that
we set n = 1,

cA(σ, σ
′)U(tA)0,σ ( f (x))U(tA)σ,σ

′σ (g(y))U(tA)σ
′σ,0(h(z))

= FA(cA(σ, σ
′))


k3
A

ei{SA(x,x′)+SA(y,y′)+SA(z,z′)} f (x′)g(y′)h(z′)dx′dy′dz′.

Additionally, we note that Sp(k) = Sp(2, k) < Sp(2, kA). And these are all the ingredients
we require for the culmination:
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Theorem 5.1. The law of quadratic reciprocity for the number field k is equivalent to the
fact that for all (σ, σ ′) ∈ Sp(2, k)× Sp(2, k) we have that

U(tA)0,σ ( f (x))U(tA)σ,σ
′σ (g(y))U(tA)σ

′σ,0(h(z))

= FA(cA(σ, σ
′)|Sp(2,k)×Sp(2,k) ≡ 1)


k3
A

ei{SA(x,x′)+SA(y,y′)+SA(z,z′)}

× f (x′)g(y′)h(z′)dx′dy′dz′, (5.1)

where all the earlier provisos and conventions are in place and we have taken an obvious
notational license regarding the factor FA. �

5.2. Certain consequences

The philosophical thrust of (5.1) is that it engenders in its very structure the product
formula for the 2-Hilbert symbol for k, at the same time that the given integral is an
oscillatory integral, more specifically a proto-Feynman integral as yet free of the trap of an
improperly defined region of integration, and the data present the effects of three unitary
operators on functions f , g, h in the according Hilbert space. From the perspective of
physics, noting in particular that f , g, and h are, as it were, free variables, meaning that
(5.1) holds for all choices of f , g, and h modulo the relatively mild provisos in Section 3.4,
the most remarkable feature of this relation is that the factor FA(cA(σ, σ ′)) represents a
number of inner symmetries of the situation qua physics because of the defining relations
of second group cohomology, the locale for cA (cf. [26], for example).

Beyond this we should reiterate that the fact that the unitary operators on the left side of
(5.1) deal with time evolution of quantum mechanical systems is reflected in, or balanced
by, the fact that there are (adèlized) Maslov indices present in FA(cA(σ, σ ′)). Also, as
was already made clear in the context of Robbin–Salamon’s relation (3.32), as well as
Souriau’s essentially equivalent relation (3.31), these Maslov indices are intrinsically tied
to these time evolutions. This just underscores the importance of FA(cA(σ, σ ′)) in the
physical scheme of things.

From the complementary perspective of number theory, it can be observed from the
outset that true to form in the area of functional equations in analytic number theory, the
factor FA(cA(σ, σ ′)) is bound to carry all the secrets of these relations. It is appropriate
therefore to emphasize that FA(cA(σ, σ ′)) in and of itself ought to be the focus of future
investigations.

And then, where to go next, once FA(cA(σ, σ ′)) has been explicated? There are two
interlinked possibilities that come to mind right away. The first, coming from analytic
number theory, stems from the observation that ultimately (5.1) is connected to the proof
of quadratic reciprocity for k by Fourier analytic means, gratia Weil and Kubota, and
the question is immediately raised how one would generalize (5.1) to the setting of
higher reciprocity laws, e.g., n-Hilbert reciprocity. For this more general case Kubota
demonstrated [32] that such laws are equivalent to having n-fold covers of an adèlic
symplectic group again split on the rational points, but unlike in the quadratic case, there
is as yet no independent derivation of the latter by (generalized) Fourier analytic means,
and so the analytic proof of higher reciprocity remains an open problem (see e.g., [32,30],



207

and §7 of [3]). The relation (5.1) is emphatically analytic, of course, even as we have taken
matters in the direction of oscillatory integrals, and it stands to reason that generalizing it to
n-fold covers of symplectic groups would yield some insight on the aforementioned open
question, seeing that the presence of unitary operators is suggestive: these are after all the
central players in what Weil would perhaps refer to as abstract Fourier analysis, bordering
as it does on unitary group representation theory.

The other avenue to pursue is subsequently connected with a question that is in actuality
already present at this stage, viz. what is the physical meaning of relations like (5.1) (and
now its projected generalization to n-Hilbert reciprocity) within the context of adèlic
quantum mechanics? This is a very broad question, of course, that should already be
asked for (4.52), with kA = QA, where it partly redounds to whatever rationale would
be given by Dragovich, as well as by Vladimirov, Volovich, and Zelenov, for introducing
non-archimedean methods into quantum mechanics in the first place. Thus, this line of
thought is certainly tenuous and controversial as far as relevance to actual natural processes
goes: there is a lot of philosophy to be done. For our part, therefore, we take our refuge in
mathematics and offer these results as fundamentally number theoretic considerations.
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