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Several nonparametric tests exist to test for differences among alternatives when using ranked data. Testing
for differences among alternatives amounts to testing for uniformity over the set of possible permutations
of the alternatives. Well-known tests of uniformity, such as the Friedman test or the Anderson test, are
based on the impact of the usual limiting theorems (e.g. central limit theorem) and the results of different
summary statistics (e.g. mean ranks, marginals, and pairwise ranks). Inconsistencies can occur among
statistical tests’ outcomes – different statistical tests can yield different outcomes when applied to the same
ranked data. In this paper, we describe a conceptual framework that naturally decomposes the underlying
ranked data space. Using the framework, we explain why test results can differ and how their differences
are related. In practice, one may choose a test based on the power or the structure of the ranked data. We
discuss the implications of these choices and illustrate that for data meeting certain conditions, no existing
test is effective in detecting nonuniformity. Finally, using a real data example, we illustrate how to construct
new linear rank tests of uniformity.

Keywords: tests of uniformity; nonparametric; rankings; Friedman test; Anderson test; effective space

1. Introduction

Spurred by Friedman’s (1937) paper, several nonparametric tests have been proposed to address
the problem of n rankings – the problem of determining whether m alternatives that have been
fully ranked by a sample of n judges are significantly different. In each case, the null hypothesis
of uniformity over the set of all permutations of the m alternatives is tested.

Widely used statistics to test for uniformity include Kendall’s (1938) and Kendall and Smith’s
(1939) concordance statistic, Spearman’s (1904) correlation coefficient, Cayley’s (1849) distance
statistic, Friedman’s (1937) randomised block statistic, Anderson’s (1959) marginals statistic,
and the pairwise statistic associated with Wilcoxon’s (1945) test. Several of these statistics (e.g.
Friedman 1937; Wilcoxon 1945;Anderson 1959) can be realised as linear rank statistics as defined
in Hajek, Sidak, and Sen (1999).
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Interestingly, as noted in Marden (1995), different tests of uniformity can lead to conflicting
results when applied to the same data set. For example, consider the rankings of 60 judges
comparing three alternatives {A, B, C} resulting in the following ranked data set:

Ranking Number of judges
ABC 6
ACB 10
BAC 6
BCA 10
CAB 14
CBA 14

(1)

These data led the Friedman test (Friedman 1937) to reject the null hypothesis of uniformity,
whereas using the Anderson test (Anderson 1959) leads to a failure to reject.

Building off the ideas found in Marden (1995, chap. 3), this paper explains why different
linear rank tests of uniformity can yield inconsistent test outcomes. Our approach describes a
conceptual and unifying framework for understanding well-known linear rank tests of uniformity
while also allowing us to highlight practical guidelines and straightforward motivation for the
construction of new linear rank tests of uniformity. As such, we believe our results will be of
interest to theoreticians and application-driven researchers alike.

Section 2 introduces the framework to discuss the tests considered throughout this paper.
Section 3 defines the class of linear rank statistical tests which Section 4 connects to a set of
natural summary statistics computed from the ranked data. A natural decomposition of the data
space characterising all inconsistencies among test outcomes is then presented in Section 5.
Section 6 connects the decomposition to the power of a test. Sections 7 and 8 provide motivation
for constructing new tests while Section 9 uses a real data example to show how to construct a
new test. The last sections provide insights as to when certain tests are more desirable to use than
others and discusses the implications and extensions of the choice of test.

2. Distributions defined on rankings

In this and in Section 3, we follow closely the ideas and notation presented in Marden (1995,
chap. 3).

Suppose m alternatives A1, . . . , Am are fully ranked by n judges from the most preferred to the
least preferred. Thus, if we denote the set of all possible rankings by Sm, then each judge is being
asked to choose a single element Y from Sm. Furthermore, suppose these data are generated as n
independent and identically distributed replicates of Y ∼ P, where P is a probability distribution
on Sm.

We can encode the probability distribution P as a vector in Rm!, where if yi is the ith permutation
in Sm, then the ith entry of P is

P[Y = yi].
The resulting data vector or profile p can also be encoded as a vector in Rm! where the ith entry
of p is the number of judges who chose the ranking yi.

For example, if m = 3, and the rankings of the alternatives are ordered lexicographically, then
the profile

p = [8, 16, 6, 18, 10, 8]t

encodes the situation where 8 judges chose the ranking A1A2A3, 16 chose A1A3A2, 6 chose A2A1A3,
and so on.
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Given a profile p, a natural question to ask when comparing alternatives is whether the
distribution P is the uniform distribution defined on Sm. In other words, is it the case that
P[Y = yi] = (1/m!) for all yi ∈ Sm? We will denote the null hypothesis that the distribution
P is uniform on Sm by H0.

Testing for differences among alternatives amounts to testing the null hypothesis H0. To do so,
a starting point to consider is the estimated probabilities vector

P̂ = 1
n

p

that encodes the proportion of judges who choose each ranking in Sm. If P̂ is far from the constant
vector (1/m!)[1, . . . , 1]t , then the judges would be favouring certain rankings and thus the null
hypothesis H0 of homogeneity would be rejected. Section 3 describes how this idea can be made
precise and generalised, giving rise to many straightforward and useful tests of uniformity.

3. Linear rank tests of uniformity

Several nonparametric statistics exist to test the null hypothesis

H0 : P = Uniform (Sm).

Widely used tests include concordance tests, distance tests, and summary statistics tests (Cayley
1849; Friedman 1937; Kendall 1938; Kendall and Smith 1939; Wilcoxon 1945; Anderson 1959).
A broad and important subclass of such tests are those whose test statistic is a function of the
product MP̂, where M is a k × m! matrix. Such tests are referred to as linear rank tests, the general
construction of which we describe here.

Denote the data space Rm! by D. Let D0 be the subspace of D that is orthogonal (with respect
to the usual dot product) to the subspace spanned by the all-ones vector [1, . . . , 1]t ∈ D. In other
words, D0 is the subspace of vectors in D whose entries sum to zero.

Consider S, a nonzero subspace of D0. If d ∈ D, then we denote the projection of d onto S
by dS . Thus, if P̂ is an estimated probabilities vector in D, then the closer P̂ is to uniform, the
closer the projection P̂S is to the zero vector. As such, a natural statistic to consider for a test
of uniformity is the length ‖P̂S‖ of the projection of P̂ onto S. The following is Theorem 3.1 in
Marden (1995):

Theorem 1 Let S be a nonzero subspace of D0. If P̂ = (1/n) p, and p is generated from a uniform
distribution on Sm using n judges, then as n → ∞, we have nm!‖P̂S‖2 → χ2

dim(S).

Thus, if n is large enough, the null hypothesis H0 is rejected when nm!‖P̂S‖2 > χ2
dim(S),α for

a significance level α. We will refer to this test as the linear rank test of uniformity associated
with S.

In practice, the subspace S is often associated with a specific summary statistic. In particu-
lar, suppose a summary statistic (e.g. mean ranks) can be computed via a linear transformation
M defined on D. We might then define S to be the projection of ker(M)⊥ (i.e. the orthogonal
complement of the kernel of M) onto D0 and apply Theorem 1. A rejection of H0 could then be
explained using the computed summary statistic M(P̂) because, by construction, M(P̂) captures
all of the information necessary to compute ‖P̂S‖2. For convenience, we will refer to ker(M)⊥ as
the effective space of M (Daugherty, Eustis, Minton, and Orrison 2009).

Note that if the linear transformation M is encoded as a matrix (with respect to the usual basis
of Rm!), then ker(M)⊥ is simply the subspace of D = Rm! spanned by the rows of M, and the
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summary statistic is simply the matrix–vector product MP̂. In general, however, computing the
associated test statistic nm!‖P̂S‖2 may be unwieldy when m is large because M and P̂ are large.
Fortunately, there are simple shortcuts for some popular summary statistics that allow one to
compute nm!‖P̂S‖2 directly from the entries in the vector MP̂ (see Marden 1995, chap. 3). We
describe three such popular summary statistics in Section 4.

4. Linear summary statistics

If asked to analyse rank data such as P̂, a natural first step might be to compute some simple
but potentially informative summary statistics. For example, the marginals summary statistic
computes, for each alternative, the proportion of times that alternative is ranked first, second, third,
and so on. The means summary statistic computes the average rank obtained by each alternative.
The pairs summary statistic, on the other hand, computes for each ordered pair (Ai, Aj) of distinct
alternatives, the proportion of judges who ranked Ai above Aj.

As noted in Section 3, well-known linear rank tests of uniformity are often associated with such
summary statistics. For example, the Friedman test (Friedman 1937) uses the means summary
statistic, and the Anderson test (Anderson 1959) uses the marginals summary. As such, we will
refer to the Friedman test as the means test, and we will refer to the Anderson test as the marginals
test. The means, marginals, and pairs tests are described in depth in Chapter 3 of Marden (1995).

The matrices needed to compute the means, marginals, and pairs summary statistics are
relatively easy to construct. For example, if the rankings are listed lexicographically, P̂ =
1

60 [6, 10, 6, 10, 14, 14]t , and

Mmrg =





1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 0 0 1 1
0 1 0 1 0 0
1 0 1 0 0 0





,

then the entries in the product MmrgP̂ are the marginal summary statistics:

MmrgP̂ =





1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 1 0 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 0 0 1 1

0 1 0 1 0 0

1 0 1 0 0 0









1
60





6
10
6

10
14
14








=





16
60
20
60
24
60
16
60
20
60
24
60
28
60
20
60
12
60





A ranked first

A ranked second

A ranked third

B ranked first

B ranked second

B ranked third

C ranked first

C ranked second

C ranked third
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Similarly, for the means summary statistics, we can use the matrix

Mmns =




1 1 2 3 2 3
2 3 1 1 3 2
3 2 3 2 1 1





to compute the average rank of each alternative, and for the pairs summary statistic, we can use

Mprs =





1 1 0 0 1 0
0 0 1 1 0 1
1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 1 0 0
0 1 0 0 1 1





to compute the proportion of judges who ranked a given alternative above another.

5. Inconsistent test outcomes

In this section, we explain why different linear rank tests of uniformity can yield inconsistent test
outcomes. Because of their popularity, we begin by considering the means, marginals, and pairs
tests. Remarkably, if m ≥ 3, then the effective spaces of the means, marginals, and pairs maps
are related by a single orthogonal decomposition of the data space D. The following theorem
describes this decomposition.

Theorem 2 The data space D = Rm! may be orthogonally decomposed as

D = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5, (2)

where

(1) W1 is the space spanned by the all-ones vector,
(2) W1 ⊕ W2 is the effective space of the means matrix Mmns,
(3) W1 ⊕ W2 ⊕ W3 is the effective space of the marginals matrix Mmrg,
(4) W1 ⊕ W2 ⊕ W4 is the effective space of the pairs matrix Mprs, and
(5) dim(W1) = 1, dim(W2) = m − 1, dim(W3) = (m − 1)(m − 2), dim(W4) = (m − 1)

(m − 2)/2, and dim(W5) = m! − (3m2 − 7m + 6)/2.

Because the effective spaces for the means, marginals, and pairs summary statistics share some
of the Wi, the results of one of the associated tests of uniformity can have implications for the
other tests. To see why this is true, let ti = nm!‖P̂Wi‖2. Because the decomposition in Equation (2)
is an orthogonal decomposition, it follows that

nm!‖P̂‖2 = t1 + t2 + t3 + t4 + t5.

Furthermore, because D0 = W2 ⊕ W3 ⊕ W4 ⊕ W5, the test statistic for the means test is simply t2,
for the marginals test it is t2 + t3, and for the pairs test it is t2 + t4. Thus, the ti characterise those
data vectors that lead to inconsistent results when using any combination of the means, marginals,
and pairs tests of uniformity.
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Theorem 3 Consider level α linear tests of uniformity, where γd,α is the critical value for d
degrees of freedom.

(1) If the means and marginals tests disagree, then either t2 > γm−1,α and t2 + t3 ≤ γ(m−1)2,α or
t2 ≤ γm−1,α and t2 + t3 > γ(m−1)2,α .

(2) If the means and pairs tests disagree, then either t2 > γm−1,α and t2 + t4 ≤ γm(m−1)/2,α or
t2 ≤ γm−1,α and t2 + t4 > γm(m−1)/2,α .

(3) If the marginals and pairs tests disagree, then either t2 + t3 > γ(m−1)2,α and t2 + t4 ≤
γm(m−1)/2,α or t2 + t3 ≤ γ(m−1)2,α and t2 + t4 > γm(m−1)/2,α .

Given the decomposition in Equation (2), finding data vectors for which different tests of uni-
formity disagree is now relatively straightforward. To do so, find data vectors whose probabilities
vectors satisfy at least one of the conditions on t2, t3, t4 described in Theorem 3. As an example,
let m = 3 and α = 0.05, and consider the data vector

p =





6
10
6

10
14
14





ABC
ACB
BAC
BCA
CAB
CBA

for the three alternatives A, B, and C. Using the means test, the p-value is 0.0408, thus the null
hypothesis is rejected. On the other hand, the p-values for the marginals and pairs tests are 0.1712
and 0.0937, respectively, which both fail to reject the null hypothesis when using either test.

To see why the inconsistencies in test results occur, decompose the profile as p = p1 + p2,
where pi ∈ Wi, and p1 = [10, 10, 10, 10, 10, 10]t and p2 = [−4, 0, −4, 0, 4, 4]t . Thus, the data
vector p is composed of vectors in just W1 and W2, which together form the effective space of
the means summary statistic. In particular, the spaces W3 and W4 are not needed to construct p.
They are needed, however, to form the effective spaces of the marginals and pairs maps, which
explains the larger p-values for the marginals and pairs tests.

Similarly, one can construct data vectors such that only the marginals uniformity test rejects the
null hypothesis. For example, the data vector p = [8, 16, 6, 18, 10, 8]t has p-values for the means,
marginals, and pairs tests that are 0.8338, 0.0375, and 0.8232, respectively. Similarly, the data
vector p = [15, 8, 7, 16, 17, 9]t rejects the null hypothesis for the pairs test, but not for the means
or marginals tests. The resulting p-values for the means, marginals, and pairs test are 0.8465,
0.9876, and 0.0396, respectively.

In order to further see why the inconsistencies occur, for each of the example data vectors, we
find the projections into the subspaces W1, W2, W3, W4, and W5. Table 1 provides an ANOVA-like
display to illustrate the squared lengths of the projections into each of these spaces as well as R2,
the ratio of the squared length to the sum of the squared lengths without considering the constant
space W1 (see, Marden 1995, for similar tables). As one can see from the table, the data vector
[6, 10, 6, 10, 14, 14] has a large projection into W2 thus causing the means test to reject, the data
vector [8, 16, 6, 18, 10, 8] has a large projection into W3 leading the marginals test to reject, and
the data vector [15, 8, 7, 16, 17, 9] has a large projection into W4 corresponding to the pairs test
rejecting.

The decomposition of the data space given in Theorem 2 explains how different data structures
affect the outcomes of the means, marginals, and pairs tests. Furthermore, Theorem 3 provides
the exact conditions a data profile must meet to lead to inconsistent results for these tests.

In general, given two distinct subspaces S and S′ of D0, there will always exist profiles for
which the linear rank tests of uniformity associated with S and S′ will disagree.
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Table 1. Data vector projections.

[6, 10, 6, 10, 14, 14] [8, 16, 6, 18, 10, 8] [15, 8, 7, 16, 17, 9]
Subspace Dim SS 100∗R2 SS 100∗R2 SS 100∗R2

W1 1 600 726 864
W2 2 64 1 4 0.0339 4 0.04
W3 2 0 0 108 0.9153 0 0
W4 1 0 0 6 0.0508 96 0.96

Theorem 4 Let S and S′ be nonzero subspaces of D0, and let 0 < α < 1. If S .= S′, then there
exist profiles p ∈ D such that the level α test of uniformity for P̂ associated with S will reject the
null hypothesis H0, while the test associated with S′ will fail to reject H0.

There do exist, however, profiles for which all possible linear rank tests of uniformity will
agree. The following theorem and corollary highlight this point.

Theorem 5 Let P̂ be a sample probabilities vector when n judges are asked to rank m alternatives.
Every level α linear rank test of uniformity associated with a d-dimensional subspace of D0 will
fail to reject H0 if and only if nm!‖P̂D0‖2 < γd,α .

Because γd,α ≤ γd′,α whenever d ≤ d ′, the following corollary provides a condition that the
data profile must satisfy to ensure that all possible linear rank tests of uniformity will reject the
null hypothesis.

Corollary 6 If nm!‖P̂D0‖2 < γ1,α , then every level α linear rank test of uniformity will fail to
reject H0.

It is not, however, possible to find a profile for which all linear rank tests of uniformity will
reject the null hypothesis.

Theorem 7 Let m ≥ 3, and let p ∈ D be a profile. Then there exists a subspace S of D0 such
that the associated linear rank test of uniformity will fail to reject the null hypothesis.

The results in this section highlight how linear rank tests of uniformity are related to their
associated effective spaces. Viewing the tests in this framework brings to light relationships
between different tests. Using only the effective spaces of tests, data profiles for which tests
will yield inconsistent results can be characterised, thus making it easy to construct examples of
profiles that cause disagreements.

6. Power

The most powerful linear rank tests of uniformity will be those whose associated subspaces S
have the property that the underlying probability distribution P (when viewed as a vector in D) is
contained in the subspace of D spanned by S and the all-ones vector. This is because the linear rank
test of uniformity associated with S will detect a deviation from uniformity only if the data profile p
generated by P is largely contained in S. The power of a test relative to a nonuniform distribution
is therefore related to whether the distribution P will yield profiles with large projections into
the test’s effective space. To illustrate this, Table 2 outlines the power results for three example
non-null distributions for the m = 3 case.
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Table 2. Power table.

Non-null distribution Power

[ 6
60 , 10

60 , 6
60 , 10

60 , 14
60 , 14

60 ] Means: 0.995
Marginals: 0.986
Pairs: 0.992

[ 8
60 , 14

60 , 8
60 , 8

60 , 14
60 , 8

60 ] Means: 0.061
Marginals: 0.917
Pairs: 0.054

[ 13
60 , 7

60 , 7
60 , 13

60 , 7
60 , 13

60 ] Means: 0.047
Marginals: 0.06
Pairs: 0.956

Column 1 of the table specifies a non-null distribution and column 2 displays the power results
of the means, marginals, and pairs test for 200 judges and 1000 simulations. The non-null dis-
tributions listed in Table 2 were purposely constructed to be completely contained in W1 ⊕ W2,
W1 ⊕ W3, and W1 ⊕ W4, respectively.

For data in W1 ⊕ W2 ([ 6
60 , 10

60 , 6
60 , 10

60 , 14
60 , 14

60 ]), the means, marginals, and the pairs all yield high
power. This is because W2 is contained in the effective space of the matrices associated with
each of the tests. On the other hand, data contained only in W1 ⊕ W3 ([ 8

60 , 14
60 , 8

60 , 8
60 , 14

60 , 8
60 ]) will

produce high power for the marginals test but not the others because W3 is contained only in the
effective space of the marginals matrix. Because W4 is only contained in the pairs effective space,
we see high power for the pairs test but not the others when data are generated from a non-null
distribution completely contained in W1 ⊕ W4 ([ 13

60 , 7
60 , 7

60 , 13
60 , 7

60 , 13
60 ]).

The power results in Table 2 highlight the fact that when a non-null distribution produces data
whose projection into the effective space of a particular test is large, then that test has high power.
On the other hand, if the data substantially misses the effective space of a particular test, then that
test will have low power.

7. W5 and the probabilities test

By Theorem 2, the data space D can be decomposed as

D = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5,

where the subspaces W1, W2, W3, and W4 are directly related to the means, marginals, and pairs
tests. No vector in the subspace W5, however, is used by any of these popular tests. Thus, if P̂ has
a large projection into W5, the means, marginals, and pairs could fail to reject the null hypothesis
even though nonuniformity may be heavily present. This could be an issue because the dimension
of W5 eventually dwarfs the dimension of W1 ⊕ W2 ⊕ W3 ⊕ W4.

Theorem 8 If m = 3, then dim(W5) = 0. However, as m → ∞, then dim(W5)/dim(D) → 1.

To illustrate how rapidly W5 grows, Table 3 contains the values of the ratio dim(W5)/dim(D)

for m = 3 to m = 10 alternatives. As the table shows, even when m = 4, the means, marginals,
and pairs tests could easily fail to detect nonuniformity for many profiles.
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Table 3. The ratio dim(W5)/ dim(D).

m dim(W5)
dim(D)

3 0.000
4 0.458
5 0.808
6 0.950
7 0.990
8 0.998
9 0.999
10 1.000

As an example of such a profile when m = 4, consider the following data profile, where the
rankings are listed in a lexicographical order:

p = [30, 10, 10, 30, 30, 10, 10, 30, 30, 10, 10, 30, 30, 10, 10, 30, 30, 10, 10, 30, 30, 10, 10, 30]t .

This profile is completely contained in W1 ⊕ W5. Thus, the p-values for the means, marginals, and
pairs tests are all approximately 1, even though p appears to be the result of a highly nonuniform
distribution P.

One linear rank test that does take advantage of W5 is the probabilities test (Marden 1995,
chap. 3). This test considers the proportion of judges that choose each different ranking. Its
effective space is all of D0 = W2 ⊕ W3 ⊕ W4 ⊕ W5. The associated linear transformation M is
simply the identity map: MP̂ = P̂.

The probabilities test is straightforward to use, but for any underlying distribution P, it will
always be possible to construct a test that is more powerful than the probabilities test. Furthermore,
the number of judges n may not be big enough for the limiting distribution of the test statistic
to be close to χ2. Ideally, we would like to use a test whose associated subspace S captures
most of P, but whose dimension is not too large. The construction of new tests is addressed in
Sections 8 and 9.

8. Constructing new tests

The relatively large dimension of W5 suggests that it would be useful to be able to construct
new tests.

Theorem 1 showed that the distribution of the test statistic nm!‖P̂S‖2 is approximately χ2 with
degrees of freedom equal to the dimension of S. The question arises, however, about how large n
must be in order for the approximation to be accurate. The size of n will limit the tests that are
available. On the other hand, in the case where n is small, it might be worthwhile to use simulations
to estimate a p-value. Also, as Marden (1995, p. 93) suggests, the size of n may provide guidance
for which test to use:

I would tend to concentrate on the four general test statistics, using whichever the data can bear: If n ≥ 5 m!, the
Probabilities test; if n ≥ 5 m2, the Marginals test; if n ≥ 3 m2, the Pairs test, and if n ≥ 3 m, the Means test. These
recommendations are very conservative, based on having about five observations per degree of freedom.

The difference between the value 5m! and the values 5 m2, 3 m2, and 3 m is sizable, even for small
m. So another reason for wanting to construct a new test is when you have a data set where the
number of judges is more than 5 m2 but much less than 5 m!.

There may also be a specific type of nonuniformity that is captured particularly well by a
specific subspace S. In this case, one could conservatively plan on sampling 5(dim S) judges to
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collect your data profile. For example, suppose m = 3 and that you believe the nonuniformity of
P will easily be captured by focusing on the number of times an alternative is ranked in first place.
One could then let S be the projection into D0 of the subspace spanned by the three vectors





1
1
0
0
0
0




,





0
0
1
1
0
0




,





0
0
0
0
1
1





ABC
ACB
BAC
BCA
CAB
CBA

The first vector corresponds to judges ranking alternative A in first place, the second vector does
the same for alternative B, and the third for alternative C. Therefore, the subspace spanned by
these three vectors will capture nonuniformity among the number of times each alternative is
ranked in first place.

Finally, when constructing a linear rank test of uniformity, it seems natural to require that it be
label independent. In other words, it should not be the case that swapping any of the labels of the
alternatives might reverse the outcome of the test. For example, if p = [8, 16, 6, 18, 10, 8]t and we
swap the labels for A and B, then the resulting profile would be p′ = [6, 18, 8, 16, 8, 10]t . As such,
we would want to use only subspaces S of D0 with the property that ‖pS‖ = ‖p′S‖. The means,
marginals, pairs, and probabilities tests, as well as the first place test suggested in this section are
all label-independent.

It should be noted that other subspaces of the data space D that grow slowly in dimension have
been well studied. More specifically, Diaconis has written about subspaces of D that naturally
generalise the effective space of the marginals summary statistic. Examples include subspaces
that capture the number of times a subset (of two or more) alternatives has occupied a particular
subset of positions in the rankings. See Diaconis (1988, 1989) for details concerning the resulting
spectral decomposition of D.

Another well-studied decomposition of D is often referred to as the inversion decomposition,
which is discussed in Grossman and Minton (2009) and McCullagh (1993). The associated sub-
spaces in this case naturally generalise the effective space of the pairs summary statistic, and
are based on summary statistics concerning triples of alternatives, quadruples of alternatives,
and so on. For an overview and comparison of the spectral decomposition and the inversion
decomposition, see Marden (1995, chap. 2).

In general, there are two issues to consider when discussing the choice of a linear test of
uniformity. The first issue is to make sure the dimension of the subspace relates well to the number
of observations one has available. The second issue is to determine the type of nonuniformity that is
interesting to uncover. The subspaces in the spectral and inversion decompositions grow relatively
slowly and thus do not have the large gaps in dimensionality like the decomposition on which we
have been focusing. However, the motivation for using the spectral and inversion decompositions
(which is based on an understanding of the type of nonuniformity the decompositions uncover)
currently seems to be lacking. Thus, this paper focuses on the decomposition described because
the use of the associated tests is so prevalent.

In summary, to construct a new test, one should consider the number of observations available
in the data set to ensure accurate approximation of the limiting distribution of the test statistic. A
very conservative test will have at most n/5 degrees of freedom. In addition, one must define a
set of functions that will define and span the space S. In order to choose these functions, it may
prove useful to consider the type of nonuniformity that is believed to exist in the data and one is
wanting to uncover. The following section illustrates the construction of a new test using a real
data example.
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9. Example

To illustrate the ideas presented in the previous sections, we use ranking data collected in 2006
at the College of Education at the University of Missouri (Rohs 2007). A set of 58 inservice
teachers were administered the Early Childhood Belief Survey aimed at gauging early childhood
teacher beliefs about what influences teacher lesson planning and instruction. Teachers were asked
to provide full rankings of seven items from least influential to most influential on their lesson
planning and their instruction. The items were parents, school system policy, principal, teacher,
state regulations, other teachers, and school advisory council.

The researcher administering this survey was interested in the influence on curriculum planning
by people and policies. The specific subset of items of interest were parents, A; school system
policy, B; teacher, C; and state regulations, D . These items naturally split into two categories,
individual items and policy items. An interesting test of uniformity to construct would thus be
one that might determine whether teachers recognise the split. In general, we answer: do teachers
believe the four items influence curriculum planning in different ways?

To answer the research question, the full seven alternative data set is reduced and re-ranked to
only include the four items of interest. There are 24 possible ranking outcomes which create a
profile p ∈ R24. The data are summarised in Table 4.

To construct a test of uniformity, we consider the number of observations available in the data
set as well as the specific interest of the researcher. Based on the relatively small number of
observations in the data set (58), the data can only bear a test that is at most 12 or 13 dimensional.
Because the researcher is interested in picking up differences among four items that group into
two natural categories, we construct a test that determines whether teachers rank pairs of items
together. As such, we define functions that pick up whether the alternatives are split into two
subsets in all possible ways and ranked in all possible ways. There are thus 18 natural functions
to consider. An example function with the alternatives listed lexicographically is

[1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

This function counts the number of times the pair of alternatives A (parents) and B (school system
policy) are ranked simultaneously in the first and second spots. The first two ones in the vector
represent when A is ranked first and B is ranked second, while the second set of two ones captures
when A is ranked second and B is ranked first. Another function to consider would be:

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0].

In this case, this function still considers the pair A and B, but it can be used to count the number
of times A and B are ranked in the second and third position. In this sense, the space S spanned by
the 18 vectors of this type captures all of the possible ways to partition the alternatives into two

Table 4. Inservice teacher data.

No. of teachers Ranking No. of teachers Ranking No. of teachers Ranking

1 1234 7 2314 1 3412
0 1243 0 2341 1 3421
7 1324 1 2413 0 4123
3 1342 2 2431 3 4132
6 1423 2 3124 1 4213
0 1432 1 3142 8 4231
1 2134 3 3214 4 4312
1 2143 4 3241 1 4321
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groups of two. The linear rank test of uniformity associated with this subspace S yields the p-value
0.00002 and thus rejects the null. This test therefore detects nonuniformity present in these data.
In particular, the nonuniformity can be described by teachers grouping sets of two items together.

Knowing that teachers believe that these alternatives are significantly affecting curriculum
planning in different ways, a researcher may use this as a springboard to unpack the data set
and perform post hoc analysis to uncover specific relationships. This analysis is similar to the
analysis done in Diaconis (1989). For example, Tables 5 and 6 provide the joint distributions of
the individual and the policy alternatives.

From the joint distributions, we see that it is common for teachers to either rank both individual
items together or both policy items together. For example, there are 21(13 + 8) teachers who
rank parents and teachers as their top two alternatives and another 16(11 + 5) teachers who rank
them as their bottom two alternatives. Thus, a total of 37 teachers keep the individual items
together as a pair – either ranking them high or low. These same 37 teachers rank the policy
items together as well. This means that not only do teachers split the items into groups of two,
but they split according to the two natural sets. This suggests a polarisation among the teachers
– individual driven and policy driven. The researcher viewed the two sets as essentially being
opposite. Individual items are those closest to a teacher, while policy items are the most global
and farthest from the teacher’s nucleus. The main scope of the researcher in the College of
Education was to determine the most effective ways to affect curricular change. The results here
suggest that change may be implemented through policy for some teachers and through individual
support for others. A next step for this researcher would then be to determine if there are factors
that predict a teacher type.

Using these same data, we also ran the means, marginals, pairs, and probabilities tests. These
tests yield p-values of 0.7979, 0.1312, 0.6468, and 0.0002, respectively. Table 7 illustrates the
projection breakdown into each of the subspaces of the decomposition. Interestingly, only the
probabilities test picks up nonuniformity. However, for these data, the probabilities test has 23
degrees of freedom and thus one must question the appropriateness of its use in this scenario.
Although the other three tests are usable with degrees of freedom 3, 9, and 5, respectively, they do
not reject the null and fail to pick up nonuniformity. It is clear from looking at the joint distribution
tables, however, that nonuniformity is present.

Table 5. Joint distribution of parents and teacher.

Teacher

Parents 1 2 3 4

1 0 13 1 3
2 8 0 3 1
3 4 3 0 5
4 5 1 11 0

Table 6. Joint distribution of school system policy and
state regulations.

State

School 1 2 3 4

1 0 4 1 3
2 12 0 1 4
3 1 7 0 14
4 3 1 7 0
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Table 7. Example data vector projection.

Vector

Subspace Dim SS 100∗R2

W1 1 140.1667
W2 3 2.4500 0.0183
W3 6 30.8000 0.2301
W4 3 7.7500 0.0579
W5 11 92.8333 0.6936

This section thus provides a concrete example of how to construct a new test. In addition, the
construction process highlights how to utilise the researcher’s knowledge about the nature of the
items to uncover nonuniformity. For the real data example presented in this section, if one used
the means, marginals, or the pairs test, the nonuniformity would not have been picked up.

10. Conclusion

Several types of nonparametric tests exist to analyse ranked data of the form of repeated mea-
sures for a set of m alternatives. The problem of n rankings asks whether or not m fully ranked
alternatives by a sample of n judges are significantly different. In order to answer this question,
the null hypothesis of uniformity over the set of permutations of the m alternatives is tested. A
popular class of such tests is linear rank tests of uniformity. These tests are often associated with
common summary statistics making them particularly natural options for testing the null hypoth-
esis. However, the results in this paper highlight that different tests can lead to different results.
In addition, we show that the current existing tests may actually not be feasible for examining
specific data sets and data structures.

By decomposing the ranked data space, we show that all of these discrepancies among test
outcomes are due to the manner in which each test uses the data. If the data are largely present in a
test’s associated effective space, then the test will be able to pick out nonuniformity. However, in the
case where the data lie in other parts of the data space, the test will not capture the nonuniformity.
In addition, our results make clear the relationship between the effective space, the test outcome,
and the power of a test. This work therefore makes explicit a conceptual framework to better
understand linear rank tests of uniformity discussed in Marden (1995).

Finally, we gave a concrete example illustrating the process of constructing a new test. In
particular, to ensure an accurate approximation of the limiting distribution of the test statistic,
one should consider the dimension of S. Ultimately, constructing a new test amounts to defining
a set of functions that span a desired subspace. The choice of functions may rely on the type of
nonuniformity the researcher believes that may exists in the data. As explained in the previous
section, the construction of new linear rank tests of uniformity is straightforward and worthwhile.

11. Proofs

Proof of Theorem 2 The statements in Theorem 2 follow directly from the discussions found in
Sections 6 and 7 of Daugherty et al. (2009), Section 8B in Diaconis (1988), and Section 2.6.1
in Marden (1995). In particular, Marden (1995, eq. (2.78)) shows that the data space D can be
decomposed orthogonally as

D =
⊕

λ

Vλ,
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where the direct sum is over all partitions of m, and the Vλ (to use the notation found in Marden
(1995)) form the canonical decomposition of D (see Theorem 1 in Section 8B of Diaconis (1988)).
Therefore, in Theorem 2, V (m) = W1, V (m−1,1) = W2 ⊕ W3, and V (m−2,1,1) ⊃ W4. Furthermore, if
we denote the effective space of a matrix M by E(M), then W2 = E(Mmns) ∩ V (m−1,1), W3 =
W⊥

2 ∩ V (m−1,1), and W4 = E(Mprs) ∩ V (m−2,1,1). (See, for example, Theorem 6 in Daugherty et al.
(2009)). !

Proof of Theorem 3 In order for two selected tests to disagree, one test must have a statistic
larger than the critical value while the other must have a statistic smaller than the critical value for
a fixed significance level α and their associated degrees of freedom. Letting ti = nm!‖P̂Wi‖2 and
by Theorem 2, the statistics for the means, marginals, and pairs tests are t2, t2 + t3, and t2 + t4,
respectively. Thus, by comparing the means and the marginals test outcomes in (1), disagreement
will occur when either t2 is larger than the critical value γm−1,α and t2 + t3 is smaller than the
critical value γ(m−1)2,α or vice versa. Statements (2) and (3) follow in a similar manner. !

Proof of Theorem 4 If S is not a subspace of S′, then there exist vectors in S that are not in
S′. Thus, for any a, b ∈ R such that 0 < a < b, there exist profiles p such that ‖pS‖ > b and
‖pS′ ‖ < a. For these profiles, if b is large enough and a is small enough, then the test associated
with S will reject H0 but the test associated with S′ will not.

On the other hand, suppose S is a subspace of S′. Then for any profile p, we have that pS ∈ S′.
Because S .= S′, however, we know that dim S < dim S′. Thus, the critical value associated with
S is less than the critical value associated with S′. In this case, we simply choose profiles p so that

γdim S,α < ‖pS‖ < γdim S′,α .

As before, for these profiles the test associated with S will reject H0 but the test associated with
S′ will not. !

Proof of Theorem 5 This follows directly from the fact that, for all subspaces S of D0, ‖P̂S‖ ≤
‖P̂D0‖. !

Proof of Theorem 7 Let S be the orthogonal complement in D0 of the space spanned by pD0 .
Then ‖pS‖ = 0, and the test associated with S will therefore fail to reject H0. !

Proof of Theorem 8 By Theorem 1, the dimension of W5 is m! − (3m2 − 7m + 6)/2, thus
dim(W5)/dim(D) = m! − (3m2 − 7m + 6)/2/m! which as m → ∞ clearly equals 1. !
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