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Residential lawns are a dominant and growing feature of US residential landscapes, and the resource-
intensive management of this landscape feature presents major potential risks to both humans and the 
environment. In recent years, scientists and policymakers have been increasingly calling for large-extent 
measures of lawns and other similar landscape features. Unfortunately, the production of such datasets 
using traditional, remotely sensed measurement approaches can be prohibitively expensive and time 
consuming. This study uses two statistical prediction methods to extrapolate the quantity and spatial 
distribution of residential lawns from a sample of mapped lawns in a large study area in suburban Boston, 
Massachusetts. The goal is to find an inexpensive, broad-coverage dataset that will provide useable 
estimates of landscape features in places where we do not have direct measurements of those 
landscape features. The first estimation method uses OLS regression in conjunction with the sample of 
mapped lawns and freely available US Census data representing theoretically informed social driver 
variables. The second, simpler, and less computationally intensive estimation method allocates the mean 
of the sample of mapped lawns uniformly across the study area. Both estimation methods are performed 
1000 times in a Monte Carlo framework where the sample is drawn randomly each realization, to assess 
the sensitivity of the prediction results to the selection of CBGs in each simple random sample. The 
outputs of each estimation method are then compared to a reference map where the quantity and spatial 
allocation of lawns is known for each spatial unit of analysis. Results indicate that the OLS prediction 
method specified with the independent social driver variables performs better than a uniform prediction 
method when both are compared to the full-study area reference map. 

Keywords Keywords 
lawns, land-change science, Monte Carlo simulation, quantity and allocation disagreement, 
suburbanization, Boston 
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INTRODUCTION 
 

Residential lawns are one major and growing feature in many US suburban landscapes, and the 
resource-intensive management of this landscape feature presents potential risks to society and 
environment, with important implications for local water quality, quantity, and human health 
(Alig et al. 2004; Groffman et al. 2004; Law et al. 2004; Steinberg 2006; Robbins 2007; Larson 
et al. 2009; Cook et al. 2011; Roy Chowdhury et al. 2011).  Consequently, there has been an 
increased interest among scientists, policymakers, and planners in mapping both the quantity and 
location of US lawns, and associated resource-intensive lawn management practices (Robbins 
and Birkenholtz 2003; Milesi et al. 2005).  However, the fine-scaled and spatially heterogeneous 
nature of the suburban landscape presents a number of fiscal, personnel, and computational 
challenges for comprehensively mapping lawns (Milesi et al. 2005; Mathieu et al. 2007).  This 
article attempts to mitigate these challenges, examining to what degree the quantity and spatial 
distribution of residential lawns can be estimated using straightforward, transferable methods and 
readily-available socio-economic data.     
 
          In this paper, we use Monte Carlo simulation to calibrate two statistical prediction models 
from samples of mapped lawns in a suburban watershed (1143 km2) outside of Boston, MA, to 
predict the quantity and allocation of lawns in the unsampled areas of the study area.  The 
performance of the two prediction models was assessed by comparing their respective outputs to 
a study area reference map where the measures of lawns are known with high confidence (Polsky 
et al. 2012).  In Section 2, we discuss the importance of mapping the spatial extent and 
distribution of lawns and review previous attempts at mapping lawns and other turf grasses.  
Sections 3 and 4 cover the data, methods, and results of our modeling effort.  We conclude the 
article in Sections 5 and 6 with a discussion of our findings and a summary of major conclusions. 
 

LITERATURE REVIEW 
 

Why map lawns? 

 

The recent interest among geographers, urban planners, environmental scientists, and decision-
makers in mapping the spatial extent and distribution of lawns is based on three main factors.  
First, lawns are an increasingly common feature of the American suburban landscape.  
Suburbanization is one of the greatest processes driving land-use and land-cover change in the 
US today (Jackson 1985; Otto et al. 2002; Hanlon et al. 2010).  Based on recent growth 
projections for urban/suburban areas in the US (Alig et al. 2004), we can assume that increased 
growth in suburban areas will mean increased growth in the extent of the lawn landscape.     
 
          Second, lawns are features that are largely created, maintained, and managed by humans.  
Although short herbaceous turf grasses occur naturally in some areas, the golf-course style, 
mono-species residential lawn requires extensive human inputs in the form chemicals and water, 
especially in areas where local soils do not provide essential nutrients for growth, where local 
climate conditions provide insufficient precipitation for growth, or where undesirable weeds, 
insects, fungi, or bacteria threaten the mono-species lawn aesthetic (Robbins and Birkenholtz 
2003; Robbins and Sharp 2003).  There is also a non-trivial carbon input from the polluting two- 
and four-stroke engine equipment required for the lawn cutting (Steinberg 2006).  Based on the 
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high-input characteristics of lawns in terms of both chemicals and water, the lawn landscape is 
associated with a number of ecological implications, both positive and negative.  On the positive 
side, lawns can provide critical urban/suburban ecosystem functions such as carbon sequestration 
(Townsend-Small and Czimczik 2010), increased water infiltration in areas dominated by 
impervious surfaces (Brabec et al. 2002), and mitigation of urban heat island effects (Sproken-
Smith et al. 2000; Gober et al. 2009).  On the negative side, the chemical fertilizers used to 
facilitate lawn growth and greenness are one of the main contributors to overall nitrogen 
pollution in urban and suburban watersheds, and can lead to the reduction of vital soil nutrients, 
loss of biological diversity, and acidification of soils and local surface water (Carrico et al. 
2012).  Additionally, increased nitrogen loads contained in storm water runoff can potentially 
affect surface water biochemistry, increasing the risks of estuarine eutrophication and loss of 
marine biodiversity (Robbins and Birkenholtz 2003).  The chemical pesticides used to eliminate 
insects and weeds may also be harmful to the biological health of local waterways, threatening 
fish, macroinvertebrates, and other aquatic life (Robbins et al. 2001).   
 
          In addition to the environmental implications of lawn chemical use, there are a number of 
potential negative human implications, including: human exposure to chemicals tracked into 
homes via clothing or shoes, and the subsequent accumulation of these chemicals into house dust 
on surfaces and carpets, where children spend much of their time.  Recent research has suggested 
that chronic exposure of children to the neurotoxins and chlorpyrifos contained in some lawn 
chemicals is more dangerous than previously accepted (Zartarian et al. 2000; Robbins and Sharp 
2003).  As such, even though lawns provide some benefits to people and society, their associated 
ecological and human health risks suggest the need to explore them and their implications across 
large geographic areas. 
 
          The implications listed above are responsible for the third main reason why mapping the 
lawn landscape is important: mapping the lawn landscape represents the first step in quantifying 
and understanding both the social processes driving the transformation of this landscape (ct. 
Robbins and Birkenholtz 2003; Grove et al. 2006a; Troy et al. 2007; Zhou et al. 2009; Boone et 
al. 2010; Giner et al. 2013) and the socio-ecological implications resulting from it (ct. Groffman 
et al. 2004; Law et al. 2004; Milesi et al. 2005: Larson et al. 2009).  Maps that describe the 
spatial extent and distribution of lawns will help researchers to understand the social processes 
responsible for the creation of these landscapes, and to develop reliable estimates of their socio-
ecological implications, which in turn will allow planners and policymakers to respond to and 
mitigate these implications (Robbins and Birkenholtz 2003; Milesi et al. 2005).   
 
Previous attempts at mapping the lawn landscape 

 

There are only a small number of published studies that characterize the spatial extent and 
distribution of lawns or other turf grasses.  The methods used in those studies fall into two broad 
categories: direct mapping methods and inferential mapping methods.  Direct mapping methods 
involve the detailed, full-study area mapping of lawns through photogrammetric, remote sensing, 
field-based, or survey methods.  In these methods, researchers map each individual lawn in the 
given study area such that the population of lawns is known.  Inferential mapping methods also 
produce a full-study area map of lawns; however, the lawn measurements in an inferential map 
are inferred from a sample of mapped lawns within the study area.  In the inferential case, the 
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researchers map only a sample of lawns in the study area, and then use this sample to calibrate a 
predictive model that estimates lawns in locations where lawns have not been mapped.  The 
following two sub-sections highlight recent research using both direct and inferential mapping 
methods.  For the purposes of this literature review, we include methods that map any form of 
turf grass, which may include residential lawns, grass on golf courses or other athletic fields, 
highway medians, public rights-of-way, corporate office complexes, parks, and cemeteries.  For 
our particular study, we focus solely on residential lawns, which we define as any turf grass on 
household parcels located within residential land uses. 
 

Direct mapping methods 

 

Within the last ten years, researchers in the Baltimore Ecosystems Study (BES) Long-Term 
Ecological Research (LTER) Site have used direct mapping methods to produce a series of full 
study area, fine-resolution land-cover datasets for use in socio-ecological and remote sensing 
research (see Grove et al. 2006a; Grove et al. 2006b; Troy et al. 2007; Zhou et al. 2008b; Zhou et 
al. 2009).  The first of these datasets came from the Strategic Urban Forests Assessment (SUFA) 
for Baltimore City, Maryland, a 240 km2 study area.  This dataset contained four land-cover 
categories—developed, grass, forest, and water—which were extracted from pan-sharpened, 1m 
multispectral IKONOS imagery from 2001 using texture-based, remote sensing methods (Irani 
and Galvin 2003).  Zhou and Troy (2008) produced a similar, full-study area land-cover dataset 
for the 171.5 km2 Gwynns Falls Watershed, which contains portions of Baltimore City and 
Baltimore County, MD.  This land-cover dataset was extracted using object-based image analysis 
(OBIA) methods from 0.6m aerial imagery acquired in 1999, and contains five land-cover 
categories—buildings, pavement, bare soil, coarse textured vegetation such as trees and shrubs, 
and fine textured vegetation such as grass.  Their results indicated that the total quantity of grass 
vegetation was 48 km2, which is roughly 30% of the study area.  Mathieu et al. (2007) used 
OBIA methods to create a full-study area map of urban gardens in the 36 km2 study area of 
Dunedin City, New Zealand, from 4m IKONOS imagery.  Their land-cover dataset contained 
three garden categories, one of which was defined as containing greater than 70% lawn.  The 
overall quantity of lawn of this category was 7.5 km2, which is just over 20% of the study area.  
In another study using direct mapping methods, Farag et al. (2011) used a pixel-based, maximum 
likelihood methodology to classify fine-resolution (<1m) aerial photographs into eight 
categories—grass, trees and shrubs, concrete, asphalt, bare soil, shadow, water, and meadow—in 
three separate Salt Lake City, Utah suburbs.  Urban vegetation (i.e. grass, trees and shrubs) was 
then identified from these eight categories, and combined with local evapotranspiration data to 
estimate household-specific irrigation demands.  These estimated irrigation demands were then 
compared to the actual household-level water use data, such that systematic water over-users can 
be identified.   Although the authors do not make the explicit distinction between lawns and all 
other turfgrass in the Farag et al. (2011) study, they do present an innovative approach to 
quantifying turfgrass under tree canopy using multi-temporal, leaf-off / leaf-on aerial imagery. 
 
          The most recent example of mapping lawns using direct mapping methods is by a research 
team at Clark University, who mapped 1143 km2 of land cover in the Plum Islands Ecosystem 
(PIE) LTER site, Massachusetts (Polsky et al. 2012).  This research team used OBIA methods to 
derive a seven-category land-cover map from 0.5m aerial photographs acquired over the study 
area in 2005.  The results of their study indicate that there are 79 km2 of lawn in PIE, accounting 
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for about 7% of the study area.  Of all the direct mapping methods reviewed above, the Polsky et 
al. (2012) research was the only one to make the explicit distinction between lawns and other turf 
grasses.  To make this distinction, turfgrasses within residential-use tax assessor’s parcels (i.e. 
lawns) were isolated from all other turfgrasses such as golf courses, athletic fields, cemeteries, 
parks, and public rights-of-way.   
 
          The direct mapping methods are appealing to researchers because they produce a census of 
detailed observations, but these methods can be costly, resource intensive, time-consuming 
(Milesi et al. 2009), and often impractical for medium to large size cities, particularly because 
urban turfgrasses and lawns are fine-scaled and occur on spatially heterogeneous landscapes 
(Mathieu et al. 2007).  Imagery of sufficient resolution to identify lawns—typically less than 4m 
spatial resolution (Jensen and Cowen 1999; Zhou et al. 2008a)—can cost up to $17 US per km2 
(Giner and Rogan 2012), and processing it using either photogrammetric or remote sensing 
methods can require intensive computational power.  As an example, it cost over $20,000 US for 
the satellite imagery, GIS data, and computer hardware to complete the SUFA project in 
Baltimore City (Irani and Galvin 2003).  Additionally, direct mapping methods can also require 
hundreds of personnel hours, especially in large study areas.  Mathieu et al. (2007) found that 
their urban garden mapping research in Dunedin City, New Zealand, took roughly two months to 
map 36 km2 using 4m spatial resolution pixels.  For a large study area such as the PIE LTER, 
Mathieu et al. (2007)’s time estimate would translate to nearly 5.5 years.  
 
Inferential mapping methods 

 

Vinlove and Torla (1995) present the first peer-reviewed methods to map lawn cover.  They 
extrapolated state-level, survey-based estimates of lawn acreage from ten states (Illinois, 
Montana, New Jersey, Maryland, North Carolina, Oklahoma, Kentucky, Michigan, Ohio, 
Pennsylvania) to the remaining 38 lower-United States through the use of ancillary data from the 
US Census Bureau and the Federal Housing Authority (FHA) for the period of 1977-1989.  
These state lawn acreage surveys were conducted at different years per-state from this period of 
time.  For example, the Illinois survey was conducted in 1977, the Montana survey in 1983, and 
the Ohio survey in 1989.  Their method consisted of deriving two household-scale lawn size 
estimates from the state surveys, then multiplying these lawn size estimates by the total number 
of single-family housing units in the US.  Their results suggest that the total lawn area in the US 
ranges from 56,600-105,000 km2, with a conservative estimate of about 73,000 km2.  It is 
important to note that Vinlove and Torla (1995) is the only indirect mapping study reviewed in 
this section that does not rely on remotely sensed data. 
 

More recently, Robbins and Birkenholtz (2003) estimated, through aerial photo-
interpretation and photogrammetric methods, that lawns cover about 23% of the total land cover 
in the ~1400 km2 study area of Franklin County, Ohio.  The authors photo-interpreted 1:600 
scale black-and-white aerial photography and hand-digitized lawn cover on a sample of 63 
spatially stratified tax assessor’s parcels to develop a lawn coefficient value, which was 
multiplied by the non-built area of the unsampled assessor’s parcels to predict the lawn area in 
each of the 79,894 unsampled parcels in the study area.  This measure was then summarized to 
the US census tract level, for further analysis using socio-economic data.  
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 Milesi et al. (2005) employed a remote sensing approach to estimate total turf grass in 
the lower-48 States as of the year 2000.  Turf grass and impervious surface proportions were 
hand-digitized on a set of fine-spatial resolution aerial photographs covering a sample of 80, 1 
km2 grid cells across 13 major US urban centers (Atlanta, Boston, Chicago, Denver, Houston, 
Las Vegas, Miami, Minneapolis, New York, Phoenix, Portland, Sacramento, Seattle).  The 
proportion of impervious surface derived from the aerial photographs was regressed against a 
national-scale, National Oceanic and Atmospheric Administration (NOAA)-derived impervious 
surface proportion estimate calculated at the 1 km pixel level from a combination of year 2001 
radiance calibrated nighttime lights, a 1 km TIGER road density grid, and Landsat-derived urban 
land-cover categories (Elvidge et al. 2004).  This regression equation was then applied to the 
lower-48 States to produce a nationwide impervious surface estimate at the 1 km pixel level.  
This impervious estimate was then regressed against the turf grass proportion value derived from 
the sample of aerial photographs to produce a nationwide estimate of 163,800 km2 of turf grass.  
In 2009, the authors revised their previous national-scale turf grass estimate using the aerial 
photograph-derived turf grass data in conjunction with a new impervious surface proportion data 
set from the United States Geological Survey (USGS).  The new estimate of lower-48 turf grass 
was 111,700 km2, which is more than 50,000 km2 less than the 2005 estimate.  In an attempt to 
isolate lawns from other turf grasses, Milesi et al. (2009) built upon Vinlove and Torla (1995)’s 
methods using FHA and US Census data to develop national-scale lawn estimates, which range 
from 73,000 to 99,500 km2 (Milesi et al. 2009).   

 
The most recent research using inferential mapping methods is by Runfola (2012), who 

compared five methods for predicting turf grass in the Plum Island Ecosystems LTER site in 
northeastern Massachusetts.  As a first step, the author aggregated the Polsky et al. (2012) 0.5m 
turf grass data to 120m cells, such that the proportion of turf grass in each 120m cell is known.  
Next, a simple random sample of 2.5% of the 120m cells was drawn and used to calibrate four 
interpolation models—polygonal, inverse distance weighting (IDW), ordinary kriging (OK), and 
mean allocation—to predict the proportion of turf grass in each unsampled 120m cell.  The 
predicted turf grass values generated by each interpolative method were compared to the known 
turf grass values from the Polsky et al. (2012) PIE map to assess prediction error.  This process 
was repeated 499 more times using Monte Carlo simulation, such that a total of 500 random 
samples were taken, generating 500 prediction maps for each inferential method, and thus 500 
error measurements.  The author also conducted a sensitivity analysis to assess how sample sizes 
of 2.5%, 5%, 7.5%, and 10% of the study area influence the error of the inferential model 
predictions.  Results indicated that IDW performed the best in the study area for all sample sizes 
except for 10% of the study area, in which polygonal interpolation performed best.  The overall 
estimate of PIE turf grass from the best performing model was 146 km2, roughly 13% of the 
study area.  

 
          Although these inferential approaches may avoid some of the disadvantages of using direct 
mapping methods in terms of time, cost, and computational requirements, they too exhibit a few 
limitations.  First, in both the Vinlove and Torla (1995) and Milesi et al. (2005; 2009) studies, 
the turf grass estimates rely on coarse-resolution data.  Therefore, direct statements about 
household-level or neighborhood-level lawn cover are not possible because of the resolution 
mismatch between the fundamental pixel size (i.e. 1km2 or 250 acres in the Milesi et al. studies) 
and the typical household parcel size (< 1 acre), of which lawns are only a portion.  Additionally, 
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the coarse-resolution, nationwide lawn estimates in Vinlove and Torla (1995) did not rely on 
spatially explicit data, which means that their estimation models were not informed by any 
geographic characteristics of existing lawns such as distance, adjacency, or proximity, etc.  Such 
a limitation can preclude many types of analyses – for example, the previously mentioned Farag 
et al. (2011) study hinged on having reliable estimates of land-cover on each residential property 
in their study area to identify systematic water over-users. 
 
 Second, some of these studies rely on extrapolation of turf grass and lawn from small 
sample surveys, i.e. ten states in Vinlove and Torla, (1995), a transect sample of aerial 
photographs from each of 13 metropolitan areas in Milesi et al. (2005), or a sample of less than 
1% of study area households in Robbins and Birkenholtz (2003).  The use of such a small 
number of samples for calibration might lead to imprecise estimates due to within-city 
heterogeneity, or to regional variation across the country.   
 
          Third, these estimates, with the exception of Robbins and Birkenholtz (2003), include all 
turf grass, such as commercial and institutional grass cover, golf courses, athletic fields, parks, 
and lawns (Milesi et al. 2005).  As such, using these turf grass datasets to make statements about 
only residential lawn landscapes is not possible.      
 
          In this paper, we use a combined remote sensing and inferential approach to estimate the 
quantity and spatial allocation of lawns in the PIE LTER site, Massachusetts, to answer two 
research questions: 1) how well do social driver variables predict lawns at the Census block 
group (CBG)-level when compared to a lawn map derived using direct mapping methods, and 2) 
how well does a simpler, less computationally intensive baseline uniform prediction method 
predict lawns at the CBG-level when compared to a lawn map derived using direct mapping 
methods?  To our knowledge, this is the first large-study area, fine-resolution inferential lawn 
mapping exercise that uses theoretically-informed independent variables to proxy the social 
processes driving lawn landscapes.  
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Figure 1. Study area: The 26 towns of the Plum Island Ecosystems LTER that intersect the Ipswich and 
Parker River watersheds, Massachusetts.  The total area of the 26 towns is 1143 km2 (Polsky et al. 2012). 

 
 

METHODS 
 

Study area 

 

The study area for this research is the US National Science Foundation-funded Plum Island 
Ecosystems (PIE) LTER site, located about 20 miles northeast of Boston, Massachusetts (see 
http://ecosystems.mbl.edu/pie/).  This 1143 km2 contiguous study area includes 26 towns that 
intersect the Ipswich and Parker River watersheds (Figure 1).  In 2000, PIE housed 
approximately 460,000 people with an average of three people per household (US Census 
Bureau 2000).  The PIE study area ranges from coastal wetland areas in the eastern portion of the 
study area to relatively densely populated, suburban residential, commercial, and industrial areas 
in the southern and western portions.  The dominant land uses in PIE are forests and forested 
wetlands (47% of the landscape) followed by medium- and low-density residential areas (17%) 
(MassGIS 2011).   
 
          PIE is a compelling study area for this research for three main reasons.  First, the Ipswich 
and Parker River watersheds drain into a large salt marsh—the largest wetland-dominated 
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estuary in New England.  This estuary is highly biologically productive, which makes it of 
considerable ecological, commercial, and social value.  Second, PIE is located within the Greater 
Boston metropolitan area, one of the most rapidly sprawling US regions in recent years, despite 
modest population growth (Otto et al. 2002).  Third, our paper adds to a growing body of 
research literature focused on understanding the interactions between humans and the 
environment in PIE (see Harris et al. 2012a; Harris et al. 2012b; Giner et al. 2013; Runfola et al. 
2013a; Runfola et al. 2013b). 
 
Lawn mapping data and methodology 

 

The full-study area PIE land-cover map (Polsky et al. 2012) was derived from 4-band 
(R,G,B,NIR), 0.5m spatial resolution aerial orthophotos acquired between 9 and 17 April 2005.  
The land-cover mapping methodology uses object-based image analysis (OBIA) methods (cf. 
Zhou and Troy 2008; Zhou et al. 2008a) to classify the aerial imagery into seven land-cover 
categories: bare soil, coniferous forest, deciduous forest, fine green turf grass, impervious 
surfaces, water, and wetlands.  Lawns were isolated from other turf grasses using GIS methods 
and data concerning tax assessor’s parcels and 2005 Massachusetts land-use.  Additional 
ancillary data included GIS layers of impervious surfaces, protected lands, and a Massachusetts 
Department of Environmental Protection (DEP) wetlands layer.  Data on the independent 
variables were provided by the US Census Bureau.  All imagery, ancillary GIS data, and US 
Census data were obtained from the Massachusetts Office of Geographic and Environmental 
Information (MassGIS 2011).  The unit of analysis for our regressions is the Census Block 
Group (CBG) (N=314). 
 
The dependent variable – Percent lawn  

 

The dependent variable for this study is Percent Lawn Cover, which we define as the ratio of 
lawn area in a given CBG to the total land area in that CBG.  Our lawn measure contains only 
residential grass, and does not include grass on athletic fields, golf courses, public rights-of-way, 
highway medians, office complexes, parks, or cemeteries.   
 
The independent variables and expected relationships with percent lawn 

 

We select our independent variables for the regression model calibration following the nested, 
theoretical approach of Troy et al. (2007).  This approach has been applied in research examining 
the social drivers of urban vegetation patterns in Baltimore (Grove et al. 2006a; Grove et al. 
2006b; Troy et al. 2007; Zhou et al. 2008b; Zhou et al. 2009; Boone et al. 2010) and more 
recently in the Boston suburbs (Giner et al. 2013).  This approach argues that there are three 
major socio-economic processes that influence the biophysical features of residential landscapes. 
Population Density is specified to reflect the likely landscape processes associated with 
increasing numbers of people per unit area.  Recent research has shown that in the PIE study 
area, increasing population density leads to increasing lawn cover.  It is important to note that 
this relationship is reflective of the largely low-density, suburbanized nature of the PIE study 
area (Giner et al. 2013).  Previous research has revealed that in high-density urbanized areas such 
as Baltimore (Troy et al. 2007) and Denver (Mennis, 2006), the opposite relationship holds 
true—that higher population density correlates with less lawn cover.  Social Stratification refers 
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to a process that highlights the importance of factors such as income, level of education, 
ethnicity, and housing age as strong correlates with preferences for residential landscape 
features.  Social stratification theory hypothesizes that the level of socio-economic status of a 
neighborhood reflects that neighborhood’s ability to invest in both public and private greening 
initiatives, such as lawn maintenance and tree planting.  This theory also suggests that residents 
of higher socio-economic status may be drawn to neighborhoods where these greening initiatives 
are already in place (Troy et al. 2007).   Lifestyle Behavior refers to a process whereby household 
consumption patterns, such as those associated with residential landscape management, may be 
motivated by neighborhood group identity and by homeowners’ perceptions of social status and 
prestige that are associated with various lifestyles (Grove et al. 2006a; Zhou et al. 2009; Boone et 
al. 2010).  In this paper, we specify twelve independent variables: one variable for Population 

Density (number of residents per square kilometer), six variables for Social Stratification 
(median household income, median home value, percent housing vacancy, percent high-school 
graduates, median house age, percent African-American), and five variables for Lifestyle 

Behavior (percent single-family detached homes, average household size, percent owner-
occupied housing, percent protected land, and percent married).  Recent research in the PIE 
study area shows that population density, percent single-family detached homes, average 
household size, and percent protected land are significant (p < 0.05) and explain 55% percent of 
the Census block group-level variation in lawn cover in PIE (Giner et al. 2013). 
 
The geospatial database 

 

The geospatial database used in the spatial lawn predictions contains information on the 
dependent variable and each of the twelve independent variables at the CBG-level (N=314).  The 
Polsky et al. (2012) 0.5m PIE lawn map was aggregated to the CBG-level such that each CBG 
contains a percent lawn value.  For the remainder of the text, this will be referred to as the 
“reference map”, which is the best available information concerning the density of lawns at the 
CBG-resolution.  The independent variables representing the three-theory approach were 
appended to the CBG-level PIE lawn database.  Table 1 lists the definition and summary 
statistics for the dependent variable and each of the twelve independent variables. 
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Table 1. Dependent and independent variable definitions and summary statistics where the observational 
unit is the US Census block group (CBG).  The number of CBGs is 314. 
 

            Theory           Variable Definition Mean StDev Median Min. Max. Source 

 
Dependent 
variable 

  
P_LAWN 

 
Proportion of land area in the 
CBG that is lawn 

11.13 6.33 9.94 1.06 37.89 1 

Independent 
variables 

Population 

density 

theory (one 

variable) 

 

POPD_SQKM Population density (people 
per km2) 

1152 1154 781 56 7169 2 

Social 

stratification 

theory (six 

variables) 

INC_MED_HS Median household income 
(2000$) 

68,293 20,271 66,478 13,790 146,981 2 

 VL_MED_OWN Median value of all owner-
occupied housing units 
(2000$) 

243,493 65,852 229,800 0 575,400 2 

 
PCT_VACANT Percent of housing vacant 2.17 2.9 1.81 0 28.69 2 

 
PCT_HSGRAD Percent high-school graduates  19.17 6.58 19.46 2.08 35.13 2 

 
HOUS_AGE Median house age 46.03 13.32 45 11 66 2 

 
PCT_AFAM Percent of population that is 

African-American 
0.80 1.50 0 0 8.90 2 

Lifestyle 

theory (five 

variables) 

PCT_SFDT Percent of housing that is 
single-family detached homes 

71.78 26.3 80.18 0 100 2 

 HSHLD_SIZE Average population of all 
housing units (number of 
people/housing unit) 

2.68 0.489 3 1 4 2 

 PCT_OWNOCC Percent of housing that is 
owner-occupied 

77 20.95 84.82 0 100 2 

 PCT_PROT Percent of land that is 
protected open space 

10.62 13.44 5.52 0 63.69 3 

 PCT_MARRIED Percent of households with a 
married couple 

62.36 15.17 64.25 15.79 95.23 2 

 

1 = Polsky et al. (2012) 
2 = US Census Bureau (2000) 
3 = MassGIS (2011) 

 

Methodology for spatial lawn prediction using social driver variables 
 

Steps 1-6 in the flowchart in Figure 2 show the methodology for creating the CBG-level percent 
lawn predictions using the 12 independent variables listed in Table 1.  After aggregating the 
0.5m lawn data to the CBG-level, step 1 is to draw a simple random sample of 30 CBGs, which 
is roughly 10% of the population of CBGs.  This step is designed to simulate a limited 
investment in turf grass mapping.  In step 2, we calibrate an ordinary least squares (OLS) 
regression model using the sample of 30 CBGs, where the dependent variable is percent lawn 
and all independent variables are entered together.  The equation generated from this OLS 
regression is then applied to the 284 unsampled CBGs, creating a percent lawn prediction value 
for each unsampled CBG (step 3).  Next, the predicted percent lawn values are combined with 
the observed percent lawn values drawn in the simple random sample, to create a full-study area, 
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combination sampled and predicted population map (N=314) (step 4).  Step 5 is to convert the 
314 percent lawn values to areas for error assessment.  Step 6 is to perform the error assessment 
by comparing the OLS prediction to the reference map such that the predicted lawn area value 
for each CBG is compared to the known lawn area value for the corresponding CBG in the 
reference map.  The above steps are repeated 999 more times using Monte Carlo simulation, 
such that a total of 1000 spatial lawn predictions are created.  The Monte Carlo method was 
chosen for this analysis to assess the sensitivity of the results of each prediction to the effect of 
simple random sampling – i.e. to simulate the likely outcome of a practitioner selecting 10% of 
the PIE study area at random to map (Ratick and Schwarz 2009).     
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Figure 2. Flowchart depicting the steps to create the OLS prediction and uniform prediction maps. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology for the uniform lawn prediction 

 

Steps 7-10 in the flowchart in Figure 2 show the methodology for creating the uniform allocation 
spatial lawn predictions.  After aggregating the 0.5m lawn data to the CBG-level and drawing the 
simple random sample of 30 CBGs (step 1 in the flowchart), step 7 is to calculate the mean 
percent lawn of the simple random sample.  Step 8 is to allocate this mean percent lawn value to 

8) Allocate the mean percent lawn  
of the sample uniformly to the 
population of CBGs, i.e. each out of  

sample CBG receives the mean  

percent lawn of the sample of 30 CBGs 

PIE CBG-level percent  
lawn map (N=314) 

1) Draw simple  
random sample  
(n=30) of CBGs 

2) Calibrate OLS  
regression for the  
sample of 30 CBGs 

7) Calculate  the 
mean percent lawn  
of the sample 

3) Apply sample  
regression equation  
to the unsampled CBGs  
(n=284)  

4) Combine percent lawn  
prediction values (n=284) with  
the sampled percent lawn value  
(n=30) 

5) Convert the percent lawn  
values in step 4 to areas  
(square kilometers) 

12) Calculate the average  

percent lawn of the 1000 

iterations for each CBG for  
display on the “average OLS  
prediction map”   

6) Compare the CBG-level lawn 

area predictions to the reference 

map lawn area values 

9) Convert the percent lawn  
values in step 3 to areas  
(square kilometers) 

10) Compare the CBG-level lawn 

area predictions to the reference 

map lawn area values 

Have 1000 Monte Carlo  
Iterations been performed? 

No 

Yes 

11) Calculate the average  

percent lawn of the 1000 

iterations for each CBG for  
display on the “average  
uniform prediction map”   
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the population of 314 CBGs.  For example, if the mean percent lawn of the sample of 30 CBGs 
is 10% lawn, then each of the 314 CBGs is assigned a value of 10% lawn.  Step 9 is to convert 
the 314 percent lawn values to areas for error assessment.  Step 10 is to perform the error 
assessment by comparing the uniform prediction to the reference map such that the predicted 
lawn area value for each CBG is compared to the known lawn area value for the corresponding 
CBG.  The above steps are repeated 999 more times using Monte Carlo simulation, such that a 
total of 1000 uniform lawn predictions are created.  The final steps are to calculate the average 
percent lawn value of the 1000 OLS simulations for each CBG (Step 11) and the average percent 
lawn value of the 1000 uniform simulations for each CBG (Step 12) for display on maps.  We 
refer to these maps from here forward as the “average OLS prediction map” and the “average 
uniform prediction map”, respectively. 
 
Model assessment    

 

We conduct two map comparisons to answer our two research questions: 
 1) OLS prediction map versus Polsky et al. (2012) reference map, and 
 2) uniform prediction map versus Polsky et al. (2012) reference map.   
The first map comparison addresses our first research question and tests how the inferential OLS 
prediction model specified with the independent social driver variables performs in relation to 
the direct mapping method created using remotely sensed data and object-based image analysis 
methods.  The second map comparison addresses our second research question and tests how the 
computationally simpler, baseline inferential method of uniform prediction performs in relation 
to the direct mapping method.  By comparing the results of these two map comparisons, we will 
gain an understanding of the contribution of the independent variables to the accuracy of the 
CBG-level prediction of lawns.  We assess the performance of both inferential methods in 
relation to the direct mapping method in terms of the disagreement budget of lawn area.  The 
disagreement budget is split into two types of disagreement: quantity disagreement and 
allocation disagreement, which when summed equals the total disagreement between two maps 
(Pontius et al. 2008; Pontius and Millones 2011).  Quantity disagreement measures how much 
less than perfect a model assigns the quantity of lawn in the entire study area, while allocation 
disagreement measures how much less than perfect the model allocates this quantity of lawn 
spatially among the CBGs.  The total absolute disagreement between two maps is given as: 
 

�� � ∑ |�� � 	�|

���        Equation 1 

 
where �� is the total disagreement, B is the total number of census block groups, b is a unique 
identifier for each census block group, ��is the observed square kilometers of lawn within 
census block group b in the reference map, and 	� is the predicted square kilometers of lawn 
within census block group b in either the OLS-generated map or the uniform prediction map.  

The quantity disagreement �
 is calculated by equation 2: 

 

�
 � |∑ ��� � 	��

��� |       Equation 2 

 
Allocation disagreement �� is calculated by equation 3: 
 

�� �  �� � �
       Equation 3  
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where �� is allocation disagreement, �� is total disagreement, and �
 is quantity disagreement in 

square kilometers between the Polsky et al. (2012) reference map and the two inferential 
methods.  Because the disagreement statistics are calculated in units of area, all percent lawn 
maps are converted to square kilometers of lawn.  We generate the disagreement budget statistics 
for each of the 1000 Monte Carlo simulations for each inferential method.  Additionally, we 
compare the prediction results for each of the 1000 pairs of Monte Carlo simulations, where one 
pair consists of a single initial calibration sample that is then used to produce both an OLS 
prediction and uniform prediction.  This allows us to understand which of the two inferential 
methods predicted lawn areas more accurately on a paired simulation-by-simulation basis.  For 
example, the OLS prediction lawn area error for each CBG in simulation 1 is compared to the 
uniform prediction lawn area error for each CBG in simulation 1, followed by simulation 2, 3, 
and so on to the 1000th simulation.  To perform this comparison, we first calculate the difference 
between the observed value and the predicted value (for both inferential methods) for each CBG 
in each simulation, which gives the total error in units of area between the observed value and 
the predicted value.  We then subtract the total error for the OLS prediction from the total error 
for the uniform prediction to determine the area deviations between each simulation pair.  A 
positive deviation indicates that the OLS prediction method produced less error, while a negative 
deviation indicates that the uniform prediction method produced less error.   
 

RESULTS 
 

Direct and inferential mapping methods 

 

Figures 3a-c and Table 2 show the spatial results and summary statistics for the reference map, 
the average OLS prediction map, and the average uniform prediction map, respectively.  The 
Polsky et al. (2012) reference map produced by the direct mapping methods contains 78.41 km2 
of lawn, accounting for 7.13% of the study area (Figure 3a).  The average OLS prediction map 
has 89.79 km2 of lawn, which is 8.17% of the study area (Figure 3b), while the average uniform 
prediction map has 122.46 km2 of lawn, which is 11.13% of the study area (Figure 3c).  In both 
the reference map and the OLS prediction map, smaller CBGs in both the southern and 
southwestern portions of the study area have higher percentages of lawn than the larger CBGs in 
the eastern and north eastern portions.  The uniform prediction map has the same percentage of 
lawn assigned to each CBG. 
 
Table 2. Summary statistics for the three PIE lawn maps: 1) Polsky et al. (2012) reference map, 2) the 
average OLS prediction map, and 3) the average uniform prediction map.  The units are percentage of the 
CBG. 
 

Map Mean Stdev Median Min Max N 

Polsky et al. 2012 reference 11.13 6.34 9.94 1.07 37.89 314 
OLS prediction 11.38 4.72 10.98 2.87 26.32 314 
Uniform prediction 11.13 0 11.13 11.13 11.13 314 
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Figure 3a-c. The (a) Polsky et al. (2012) lawn map, (b) the average OLS prediction map (b), and (c) the 
average uniform prediction map.  All areal units are measured as “percent lawn,” i.e., the area of grass 
within residential land in the CBG. 

 

 
 

    
 

     
 

          In addition to the 1000 lawn predictions produced by the 1000 Monte Carlo simulations of 
each respective inferential method, the Monte Carlo simulations of the OLS prediction method 
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produced 1000 coefficients for each independent variable.  Figure 4 shows histograms of the 
coefficient estimates for the 1000 Monte Carlo simulations in the OLS prediction method.  The 
figure also contains values for the percentage of the 1000 simulations in which the algebraic sign 
of the estimated coefficient is positive or negative.  As Figure 4 illustrates, the only independent 
variable that consistently had a non-zero coefficient value (i.e. was statistically significant) was 
population density.  In 100% of the 1000 OLS predictions, the algebraic sign of the coefficient 
for the population density variable is positive. 
 
Figure 4. Histograms of the independent variable coefficient estimates for the 1000 Monte Carlo 
simulations. 

 

 
 

Global model assessment results 

 

The results of the global model assessment in terms of the disagreement budget statistics for the 
1000 OLS prediction maps and the 1000 uniform prediction maps are presented in Figures 5a 
and 5b, respectively.  In each figure, the y-axis represents square kilometers of total 
disagreement, split between quantity (black) and allocation (gray) disagreement.  The x-axis 
shows the Monte Carlo simulation, ordered from smallest to largest total disagreement for both 
inferential methods.  When the figures are compared qualitatively, the OLS prediction method 
produces less total disagreement and less quantity disagreement than the uniform prediction 
method.  The average total disagreement for the 1000 OLS predictions is 39.67 km2, with an 
average of 13.63 km2 of quantity disagreement and 26.04 km2 of allocation disagreement.  The 
average total disagreement for the 1000 uniform predictions is 59.80 km2, with an average of 
44.05 km2 of quantity disagreement and 15.75 km2 of allocation disagreement.  The lowest total 
disagreement (38.54 km2) from the 1000 uniform predictions is nearly two square kilometers 
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greater than the average total disagreement (36.67 km2) for the entire set of 1000 OLS 
predictions.   
 

Figure 5a-b. Distribution of the disagreement budgets in terms of total disagreement, quantity 
disagreement, and allocation disagreement across the 1000 Monte Carlo simulations, for (a) OLS 
prediction maps compared to the reference map, and (b) uniform prediction maps versus the reference 
map.  The simulations are ordered by total disagreement from smallest to largest total disagreement.  

 

 

  
      
          Figure 6 shows the results of pairwise differences between the uniform prediction error 
and the OLS prediction error for each of the 1000 Monte Carlo simulation pairs.  The y-axis 

0

10

20

30

40

50

60

70

80

90

100

D
is

a
g
re

em
en

t 
(s

q
u

a
re

 k
il

o
m

et
er

s)

Allocation disagreement 

Quantity disagreement

0

10

20

30

40

50

60

70

80

90

100

D
is

a
g
re

em
en

t 
(s

q
u

a
re

 k
il

o
m

et
er

s)

Allocation disagreement

Quantity disagreement

Average total disagreement = 39.67 km2 

Average quantity disagreement = 13.63 km2 
Average allocation disagreement = 26.04 km2 

Average total disagreement = 59.80 km2 

Average quantity disagreement = 44.05 km2 
Average allocation disagreement = 15.75 km2 

Average total disagreement = 39.67 km2 

Average quantity disagreement = 13.63 km2 
Average allocation disagreement = 26.04 km2 

Average total disagreement = 39.67 km2 

Average quantity disagreement = 13.63 km2 
Average allocation disagreement = 26.04 km2 

17

Giner et al.: Mapping lawns without classifying remotely-sensed imagery

Published by Digital Commons at Loyola Marymount University and Loyola Law School, 2014



shows the square kilometers of error produced by the uniform prediction method minus the error 
produced by the corresponding OLS prediction method that is based on the same sample.   
Averaged across the 1000 Monte Carlo simulations, the uniform prediction method produced 
0.06 square kilometers more error than the OLS prediction method on a pairwise basis, which 
suggests that the errors in the uniform prediction method are systematically larger than errors in 
the OLS prediction.  Additionally, the OLS prediction method produced less error than the 
uniform prediction method in 966 of the 1000 simulations. 
 
Figure 6. Distribution of the difference in total error between the uniform prediction and OLS prediction 
for the 1000 Monte Carlo samples.  The box plot shows that the error in the uniform prediction is 
systematically larger than the error in the OLS prediction.  The OLS prediction method produced less 
error than the uniform prediction method in 966 of the 1000 simulations. 

 

 
 

Local model assessment results 

 

Figures 7a-b show the average deviations in percent lawn between the reference map versus the 
average OLS prediction and average uniform prediction maps, respectively.  Generally speaking, 
both inferential methods tend to over-predict percent lawn in the largest CBGs of the study area 
and under-predict percent lawn in the smallest CBGs, with the uniform prediction method over- 
and under-predicting more severely.   
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Figure 7a-b.  Maps showing the percent lawn deviation between the Polsky et al. (2012) reference map 
compared to (a) the average OLS prediction map and (b) the average uniform prediction map. Both maps 
show over-prediction in larger CBGs and under-prediction in smaller CBGs; this bias is more severe in 
the uniform prediction. 
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DISCUSSION 
 

Assessment of methods and limitations 

 

The results presented above illustrate the differences in the amount of lawn in PIE produced by 
the Polsky et al. (2012) direct mapping method and the two inferential methods—OLS prediction 
and uniform prediction.  The results also provide answers to our two research questions: 1) how 
well do the social driver variables predict lawns at the Census block group (CBG)-level when 
compared to a lawn map derived using direct mapping methods, and 2) how well does a simpler, 
less computationally intensive baseline uniform prediction method predict lawns at the CBG-
level when compared to a lawn map derived using direct mapping methods?  When we compare 
the results of the two inferential methods to the reference map, we find that on average, the OLS 
prediction method performed better than the uniform prediction method in terms of both total 
disagreement and quantity disagreement across the 1000 Monte Carlo simulations.   
 
          Globally, both inferential methods tend to over-predict the quantity of lawn in the study 
area.  In the case of the uniform prediction method, the systematic over-prediction of lawn 
quantity can be attributed to the logic with which Census block group boundaries are drawn, 
which is an example of the Modifiable Areal Unit Problem (MAUP) (Openshaw 1984).  The US 
Census Bureau attempts to draw CBG boundaries to contain roughly 600 to 3,000 people, with 
an optimal size of 1,500 people (US Census Bureau 2000).  Their ultimate goal is to draw the 
CBG boundaries with as close to equivalent populations as possible.   As a result, dense clusters 
of people are collected into smaller CBGs, while sparse populations are drawn into larger CBGs, 
leading to high population densities in small CBGs and low population densities in large CBGs.  
The uniform prediction method assigns each CBG the same percent lawn value, so it over-
predicts lawn in large CBGs and under-predicts lawn in small CBGs, but overall, the uniform 
method predicts more total lawn than the reference lawn because the uniform method applies the 
sample average taken from a random sample of CBGs to all other CGBs, many of which are 
large (Figure 8b).  The OLS prediction method also globally over-predicts the quantity of lawn in 
the study area, but the OLS prediction method does this less severely than the uniform prediction 
method (Figure 8a).      
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Figure 8a-b.  Scatterplots depicting the relationship between CBG area and percent lawn deviation 
between the Polsky et al. (2012) reference map compared to (a) an OLS prediction map and (b) a uniform 
prediction map. Each point is a CBG. Both plots show how the prediction is systematically larger than the 
reference information for CBGs that are larger than 10 square kilometers, while this bias is more severe 
for the uniform prediction. 
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Transferability of methods  

 

Our results suggest that, as expected, a lawn area estimation that includes predictor variables 
leads to less total disagreement and less quantity disagreement, but greater allocation 
disagreement, than the uniform prediction method.  Although we specified twelve independent 
variables, the only variable that exhibited statistical significance across the 1000 Monte Carlo 
simulations was population density.  This is not to suggest that other variables should not be 
included in studies examining rapid mapping approaches for lawn grass—rather, this is reflective 
of our study area, which is generally characterized by low population and infrastructure 
densities.  It is important for practitioners to consider how such relationships may differ (or 
remain the same) for their individual case studies.  Further, practitioners seeking to map broader 
turf grass categories – i.e. other than lawns – may find different results, as certain correlations 
such as those between residential lawns and population may be weaker when vegetation found 
on surfaces other than residential properties is included. 
 
          Our research covered one study area in northeastern Massachusetts; it is a step in updating 
the national-scale lawn estimation of Vinlove and Torla (1995) and Milesi et al. (2005; 2009) at 
a finer spatial resolution and with explanatory variables that predict lawns with less total 
disagreement and less quantity disagreement than a baseline uniform prediction method.  The 
independent variable data used in this study are freely available at the CBG-level for the entire 
United States, so it is possible to test our methods in other study areas in the US, with the goal of 
creating a CBG-level lawn map for the US.  This would require some direct mapping approaches 
to map the sample of lawns used as the dependent variable in the regressions, but would not 
require the time, money, personnel, and computational resources for a comprehensive, full-study 
area mapping effort.  That said, the decision of which CBGs to map for the sample is key, and 
would require an intelligent sampling design. 
 
          More generally, the transferability of this inferential mapping method will be predicated 
on the purpose of a given study, the size of the study area, and the researchers’ access to data, 
time, and resources.  For example, broad-scope studies examining nitrogen balance in urban 
environments may be able to leverage this approach, pending the accuracy and scalar 
requirements needed.  Conversely, our results suggest that studies that require high levels of 
quantity and allocation accuracy will still need to rely on the more expensive, direct-mapping 
techniques. 
 
Future directions 

 

The findings in this study offer important opportunities for future research.  In this study, we 
used a simple random design to choose the sample of CBGs that calibrated the predictive 
models.  In the future, we may consider a different sample design such as weighted or stratified 
sampling, so we can account for the fact that CBG size is inversely related to lawn density.  
Regardless of sample design, it would also be interesting to conduct a sensitivity analysis to 
explore the impact of how adjusting the sample size influences the accuracy of the model 
predictions.  Additionally, it would be interesting to examine whether the disagreement results 
change if CBG size is included as an independent variable in the OLS prediction models, or if 
CBG size is used as a replacement for the population density variable.  Specifying the regression 
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models to include additional independent variables relating to land use policy (e.g. development 
standards in local zoning codes) or examining the interactions between variables could provide 
strong insights into the social dynamics behind lawn landscape management.  Incorporating 
information on spatial dependence in the prediction of lawns to enable predictive approaches 
such as Geographically Weighted Regression, which models the regression relationships 
between dependent and independent variables locally (Brunsdon et al. 1998; Ogneva-
Himmelberger et al. 2009; Gao and Li 2011; O’Loughlin and Witmer 2011; Tu 2011; Troy et al. 
2012) or regression kriging, which performs kriging on the spatially autocorrelated residuals of 
an OLS model and combines the kriged residual surface with the OLS-predicted values (Hengl 
2007; Hengl et al. 2007), may be fruitful avenues for future research.  Once maps of lawns are 
produced for broader-scopes than are currently available, more in-depth understandings of the 
tradeoffs between the positive and negative effects of lawns can be produced, and how these 
effects vary over space and context can be better understood. 
 

CONCLUSIONS   
 
In this paper, we assess the performance of two inferential methods for predicting the quantity 
and spatial allocation of residential lawns at the CBG-level in relation to a reference map derived 
using OBIA mapping methods.  The first inferential method uses OLS prediction calibrated with 
social driver variables to create the lawn predictions.  The second inferential method predicts 
lawns uniformly across the study area, and does not contain information on the social driver 
variables.  Our results indicate that the OLS prediction method produces less total disagreement 
and less quantity disagreement than the uniform prediction method.  Our results provide support 
for the usefulness of one of the theoretically-informed social driver variables—population 
density—as a predictor of lawn in this study area, and suggest that the OLS prediction method is 
a reasonable alternative to the more costly, time-consuming, and resource intensive direct 
mapping approaches when it comes to mapping lawns.  Our OLS prediction method also 
produces a finer-resolution lawn land-cover product than has been previously produced, and the 
freely available independent variable data encourages the application of this method to other 
locations in the United States. 
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