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ABSTRACT

We compute Cayley graphs and automorphism groups for all finite n-quandles of
two-bridge and torus knots and links, as well as torus links with an axis.
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1. Introduction

Associated to every oriented knot and link L is its fundamental quandle Q(L).
Except for the unknot and Hopf link, these quandles are infinite, but for each integer
n > 1, a certain quotient of Q(L), called the n-quandle of L, and denoted by Qn(L),
may be finite. From results of Joyce [8, 9] and Winker [13], if the n-quandle Qn(L) is
finite, then M̃n(L), the n-fold cyclic branched cover of S3 branched over L, has finite
fundamental group. It was conjectured by Przytycki, and recently proven by Hoste
and Shanahan [6], that the converse is also true. Using this result, together with
Dunbar’s [2] classification of all geometric, non-hyperbolic 3-orbifolds, a complete
list of all knots and links in S3 with finite n-quandle for some n was given in [6].
The links are listed in Table 1 (reproduced from [6]) as they are given by Dunbar
and include all two-bridge links, some torus links, some torus links with “axis,” and
some Montesinos links. This paper is the second in a series of papers, beginning
with [5], to give detailed descriptions of these finite n-quandles with the ultimate
goal being a tabulation of all finite quandles that appear as n-quandles of links
for some n. Here, we describe the Cayley graphs and automorphism groups of the
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finite n-quandles associated to the two-bridge links, torus links, and torus links with
axis. These links correspond to the links in the first three rows and the first entry
in the fourth row of Table 1. (We warn the reader that it is not obvious that the
first entry in the fourth row of this table represents all possible 2-bridge links.) The
Montesinos links considered in [5] appear as the third entry in the fourth row. The
four remaining links in Table 1 are infinite families which, like the Montesinos links,
require substantially more analysis than the cases considered here. We intend to
consider these families in future work.

Table 1. Links L ∈ S3 with finite Qn(L).

1950028-2



March 22, 2019 14:50 WSPC/S0218-2165 134-JKTR 1950028

Finite n-quandles of torus and two-bridge links

2. Link Quandles

We begin with a review of the definition of the fundamental quandle of a link and
its associated n-quandles. We refer the reader to [4, 8, 9, 13] for more detailed
information.

A quandle is a set Q equipped with two binary operations � and �−1 that
satisfy the following three axioms:

(A1.) x� x = x for all x ∈ Q.
(A2.) (x� y) �−1 y = x = (x�−1 y) � y for all x, y ∈ Q.
(A3.) (x� y) � z = (x� z) � (y � z) for all x, y, z ∈ Q.

Each element x ∈ Q defines a map Sx : Q → Q by Sx(y) = y � x. The axiom
A2 implies that each Sx is a bijection and the axiom A3 implies that each Sx is
a quandle homomorphism, and therefore, an automorphism. We call Sx the point
symmetry at x.

It is important to note that the operation � is, in general, not associative.
In order to clarify the ambiguity caused by lack of associativity, we adopt the
exponential notation introduced by Fenn and Rourke in [4] and denote x� y as xy

and x�−1y as xȳ . With this notation, xyz will be taken to mean (xy)z = (x�y)�z
whereas xy

z

will mean x� (y � z).
The following lemma from [4], which describes how to re-associate a product in

an n-quandle given by a presentation, will be used repeatedly in this paper.

Lemma 2.1. If au and bv are elements of a quandle, then

(au)(b
v) = auv̄bv and (au)(bv) = auv̄b̄v.

Using Lemma 2.1, elements in a quandle given by a presentation 〈S |R〉 can
be represented as equivalence classes of expressions of the form aw, where a is a
generator in S and w is a word in the free group on S (with x̄ representing the
inverse of x).

If n is a natural number, a quandle Q is an n-quandle if xy
n

= x for all x, y ∈ Q,
where by yn we mean y repeated n times. In other words, each point symmetry Sx
has order dividing n. A trivial quandle is one where xy = xȳ = x for all x, y ∈ Q

or, equivalently, a trivial quandle is a 1-quandle. A 2-quandle is also called an
involutory quandle. Note that a quandle is involutory if and only if � = �−1, that
is, each point symmetry is an involution.

If L is an oriented knot or link in S3, then a presentation of its fundamen-
tal quandle, Q(L), can be derived from a regular diagram D of L. See Joyce [9].
This process mimics the Wirtinger algorithm. Namely, assign a quandle generator
x1, x2, . . . , xn to each arc of D, then at each crossing introduce the relation xi = x

xj

k

as shown in Fig. 1. It is easy to check that the three Reidemeister moves do not
change the quandle given by this presentation so that the quandle is indeed an
invariant of the oriented link.
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Fig. 1. The relation xi = x
xj

k at a crossing.

The fundamental quandle of a link depends on the choice of orientation. If L is
an oriented link, let −L be its reverse obtained by reversing the orientation of all of
its components and let L∗ be its obverse, the mirror image of L. The inverse of L
is defined to be −L∗. If D is a diagram of an oriented link and D′ is obtained from
D by both reflecting through a plane perpendicular to the plane of projection and
reversing all orientations, then it is not hard to see that both D and D′ produce
exactly the same presentation for the fundamental quandle. Thus, the fundamental
quandle is the same for an oriented link L and its inverse −L∗.

Given an oriented link L and a presentation 〈S |R〉 ofQ(L), a presentation of the
quotient n-quandle Qn(L) is obtained by adding the relations xy

n

= x for every pair
of distinct generators x and y. As with the fundamental quandle, Qn(L) depends
on the choice of orientation but Qn(L) = Qn(−L∗). In the case n = 2, the relation
xi = x

xj

k is equivalent to the relation xk = x
xj

i . Hence, the 2-quandle does not
depend on the orientation of the link, so Q2(L) = Q2(−L) = Q2(L∗) = Q2(−L∗).
In general, one should expect a significant loss of information in passing from Q(L)
to Qn(L).

The following result is a simple corollary of the main theorem of [6].

Proposition 2.2. The fundamental quandle of an oriented link L is finite if and
only if L is either the unknot or the Hopf link with any orientation. In these cases,
the quandle is trivial of order 1 or 2, respectively.

Proof. Suppose the fundamental quandle Q(L) of the link L is finite. Hence, every
quotient of Q(L) is finite and so Qn(L) is finite for all n > 1. From the classification
of links with finite n-quandles given in [6], the only non-trivial link for which this
is true is the Hopf link. A simple computation completes the proof.

Given a presentation of an n-quandle, one can try to systematically enumerate
its elements and simultaneously produce a Cayley graph of the quandle. Such a
method was described in a graph-theoretic fashion by Winker in [13]. The method
is similar to the well-known Todd-Coxeter process for enumerating cosets of a sub-
group of a group [12] and has been extended to racks in [7]. (A rack is more general
than a quandle, requiring only axioms A2 and A3.) We provide a brief description of
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Winker’s method applied to the n-quandle of a link since it will be used extensively
in this paper. Suppose Qn(L) is presented as

Qn(L) = 〈x1, x2, . . . , xg |xw1
j1

= xk1 , . . . , x
wr

jr
= xkr 〉n,

where each wi is a word in the free group on {x1, . . . , xg}. Throughout this paper

presentations of n-quandles will not explicitly list the n-quandle relations x
xn

j

i = xi
(nor the relations given by the quandle axioms) although we are implicitly assuming
they hold. To avoid confusion we append the subscript n to presentations of n-
quandles.

If y is any element of the quandle, then it follows from the relation xwi

ji
= xki

and Lemma 2.1 that ywixji
wi = yxki , and so

ywixji
wixki = y.

Winker calls this relation the secondary relation associated to the primary rela-
tion xwi

ji
= xki . He also considers relations of the form yx

n
j = y for all y and

1 ≤ j ≤ g. These relations are equivalent to the secondary relations of the n-
quandle relations. In order to see this, notice that the secondary relation of the
n-quandle relation x

xn
j

k = xk is y = yx̄
n
j xkx

n
j x̄k for all elements y. Now given any

z, if we let y = zx
n
j in this secondary relation, then zx

n
j = zx

n
j x̄

n
j xkx

n
j x̄k = zxkx

n
j x̄k .

Hence, zx
n
j xk = zxkx

n
j for all elements z. In a similar manner we find zx

n
j x̄k = zx̄kx

n
j

for all z. Now given any y we have y = xwi for some 1 ≤ i ≤ g and, by what we just
observed, we can commute xnj with w in the exponent of xi. Therefore,

yx
n
j = x

wxn
j

i = x
xn

j w

i = xwi = y.

Conversely, if yx
n
j = y for all y, then clearly x

xn
j

i = xi as well.
Winker’s method now proceeds to build the Cayley graph associated to the

presentation as follows:

(1) Begin with g vertices labeled x1, x2, . . . , xg and numbered 1, 2, . . . , g.
(2) Add an oriented loop at each vertex xi and label it xi. (This encodes the

axiom A1.)
(3) For each value of i from 1 to r, trace the primary relation xwi

ji
= xki by introduc-

ing new vertices and oriented edges as necessary to create an oriented path from
xji to xki given by wi. Consecutively number (starting from g+1) new vertices
in the order they are introduced. Edges are labeled with their corresponding
generator and oriented to indicate whether xi or xi was traversed.

(4) Tracing a relation may introduce edges with the same label and same orienta-
tion into or out of a shared vertex. We identify all such edges, possibly leading
to other identifications. This process is called collapsing and all collapsing is
carried out before tracing the next relation.

(5) Proceeding in order through the vertices, trace and collapse each n-quandle
relation yx

n
j = y and each secondary relation (in order). All of these relations

are traced and collapsed at a vertex before proceeding to the next vertex.

1950028-5
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The method will terminate in a finite graph if and only if the n-quandle is finite.
The reader is referred to Winker [13] and [7] for more details.

Associated to every quandle Q is its automorphism group Aut(Q). The inner
automorphism group of Q, denoted by Inn(Q), is the normal subgroup of Aut(Q)
generated by the point symmetries Sx. The transvection group of Q, denoted by
Trans(Q), is the subgroup of Inn(Q) generated by all products SxS−1

y . The subgroup
Trans(Q) is normal in both Aut(Q) and Inn(Q). Moreover, Trans(Q) is abelian if
and only if

(xy)(z
w) = (xz)(y

w) (2.1)

for all elements x, y, z, w ∈ Q. Quandles that satisfy the property (2.1) are called
medial or abelian. See [9] for more details.

Some results in this paper, were obtained using the RIG package for GAP. The
Cayley graph of a finite quandle Q can be used to produce the operation table
for � which is encoded in a matrix MQ. In RIG, a rack (or quandle) can then be
defined using the command Rack(MQ). Once the quandle is entered into RIG, the
built-in commands AutomorphismGroup, InnerGroup, and Transvections-

Group will compute Aut(Q), Inn(Q), and Trans(Q), respectively. Finally, the GAP
command StructureDescription will determine the structure of the group, such
as Z2 × S4. No additional special code is required to reproduce our results.

3. Two-Bridge Links

In this section, we consider the involutory quandle of the non-trivial 2-bridge link
Lp/q. Because the 2-fold cyclic cover of S3 branched over a non-trivial two-bridge
link is a lens space with finite fundamental group, these quandles are finite. We can
easily find a presentation for the fundamental quandle of Lp/q, where gcd(p, q) =
1 and 0 < p < q using the Schubert normal form (see, for example, [1, 10]).
As an example, consider the Schubert normal form of the figure-eight knot L3/5

with orientation shown in Fig. 2. The fundamental quandle for this knot has the

Fig. 2. The Schubert normal form of the two-bridge link L3/5.

1950028-6
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presentation

Q(L3/5) = 〈a, b | abāb̄a = b, bab̄āb = a〉,
where the generators a and b are the arcs of the two-bridges.

For the involutory quandle, we may ignore the orientation of the link. Thus, the
involutory quandle of L3/5 (with any orientation) is presented by

Q2(L3/5) = 〈a, b | ababa = b, babab = a〉2 = 〈a, b | ababa = b〉2,
where the two presentations are equivalent because, in the involutory quandle, the
second relation is equivalent to the first relation. In general, the presentation of
Q2(Lp/q) depends only on the number of undercrossings along one bridge in the
Schubert normal form, which is equal to q − 1. We have two cases, depending on
whether q is odd or even (i.e. whether Lp/q is a knot or a link, respectively).

If q = 2t+ 1 is odd, then a presentation of the involutory quandle is

Q2(Lp/q) = 〈a, b | a(ba)t

= b〉2.
The secondary relation associated to the primary relation a(ba)t

= b, is x(ab)2t+1
= x.

Tracing the primary relation by Winker’s method gives the diagram in Fig. 3 (where
the vertex x1 represents the element a and x2t+1 the element b).

Notice from Fig. 3 that

x
(ab)t

i =

{
x1, i = 2t+ 1,

x2t+2−i+(−1)i , 1 ≤ i < 2t+ 1.
(3.1)

It is now straightforward to check that the secondary relation is satisfied at each
vertex. For example, if 1 ≤ i < 2t+ 1 is odd, then by (3.1) we have

x
(ab)2t+1

i = x
(ab)t(ab)tab
i = x

(ab)tab
2t+1−i = xabi+2 = xi.

The remaining cases are similar. Therefore, Fig. 3 gives the Cayley graph of
Q2(Lp/q). The number of elements in the quandle is 2t+ 1 = q.

If q = 2t is even, then a presentation of the involutory quandle is

Q2(Lp/q) = 〈a, b | a(ba)t−1b = a, b(ab)
t−1a = b〉2.

In this case, there are two primary relations. However, the secondary relations
associated to the two primary relations are the same: x(ab)2t

= x. Tracing the

Fig. 3. The Cayley graph for Q2(Lp/q) with q = 2t + 1.

1950028-7
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Fig. 4. The Cayley graph for Q2(Lp/q) with q = 2t and t odd.

primary relations gives the diagram in Fig. 4 when t is odd (where the vertex x1

is the element a and y1 is the element b). It is once again straightforward to check
that the secondary relation is satisfied at each vertex, so this diagram is the Cayley
graph of the involutory quandle. Notice that there are two algebraic components
of the quandle, each given by a connected component of the Cayley graph. This
reflects the fact that Lp/q with q even is a 2-component link. In general, the number
of link components is equal to the number of algebraic components of its quandle
(see [9]). The number of elements in each algebraic component of Q2(Lp/q) is t, and
so the total number of elements is 2t = q. A similar analysis applies to t even.

In summary, for any non-trivial two-bridge knot or link, the involutory quandle
Q2(Lp/q) has order q. In fact, Q2(Lp/q) is isomorphic to the dihedral quandle which
is the set Rq = Z/qZ with quandle operations defined by ij = ij̄ = 2j− i (mod q).

Proposition 3.1. If Lp/q is a non-trivial two-bridge knot or link, then Q2(Lp/q)
is isomorphic to the dihedral quandle Rq.

Proof. There are two cases depending on whether q is even or odd. We present
only the odd case; the remaining case is similar. Assume q = 2t + 1. From above
we have the presentation

Q2(Lp/q) = 〈a, b | a(ba)t

= b〉2.
Define a map φ : Q2(Lp/q) → Rq by defining φ on the generators by φ(a) = 0 and
φ(b) = 1 and then extending the map over Q2(Lp/q) using the quandle operation.
(That is, if φ(x) = i and φ(y) = j, then define φ(xy) = ij.) To verify that φ is
well-defined, it suffices to check that the image of the relation a(ba)t

= b is satisfied
in Rq. Notice that if φ(x) = i, then,

φ(xba) = (i1)0 = i− 2 (mod q).

It then follows that

φ(a(ba)t

) = −2t = 1 = φ(b) (mod q).

The map φ is a homomorphism by definition. Moreover, it is surjective because
φ(a) = 0 and φ(b) = 1 generate Rq. This follows inductively from the observation

1950028-8
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Table 2. The automorphism groups of Q2(Lp/q).

Qn |Qn| Aut Inn Trans
Q2(Lp/q) q Zq � Z∗

q Dq/ gcd(2,q) Zq/ gcd(2,q)

that ii+1 = i + 2 (mod q) for all i ∈ Rq. Finally, since |Q2(Lp/q)| = |Rq| = q, we
have that φ is an isomorphism.

In [3], Elhamdadi, MacQuarrie, and Restrepo prove that Aut(Rn) is the semi-
direct product Zn � Z

∗
n and Inn(Rn) is the dihedral group Dn of order 2n if n is

odd and Dn/2 if n is even. Here, Z
∗
n is the multiplicative group of units in Zn, and

the semidirect product is given by the homomorphism φ : Zn → Aut(Zn) defined
by φ(a)(x) = ax. Thus, we obtain the results given in Table 2. We further note that
Trans(Q2(Lp/q)) is generated by a rotation in Inn(Q2(Lp/q)).

4. Torus Links

As mentioned in the introduction, the n-quandle of a link L is finite if and only
if the n-fold cyclic branched cover of S3 branched over L has finite fundamental
group. These covers, in the case where L is the torus link Tp,q, were classified by
Milnor in [11] and as a result, Qn(Tp,q) is finite if and only if 1

p + 1
q + 1

n > 1. The
inequality holds for the following values of p, q, and n given in the following table.

Since T2,q is a two-bridge link, the links T2,q with n = 2 in Table 3 were consid-
ered in the previous section. For each of the remaining cases, it is a simple matter
to derive a presentation from a link diagram and then employ Winker’s method to
create a Cayley graph of the associated quandle. Diagrams for T2,q and T3,q with
choice of orientation and quandle generators are shown in Fig. 5. In the case of
T2,q, the box labeled q contains q right handed half twists. The remainder of this

Table 3. Values of p, q, and n for which Qn(Tp,q) is finite.

(p, q) (2, 2) (2, 3) (2, 4) (2, 5) (2, q), q > 5 (3, 3) (3, 4) (3, 5)
n n > 1 2, 3, 4, 5 2, 3 2, 3 2 2 2 2

Fig. 5. The oriented links T2,q and T3,q with choice of generators.

1950028-9
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Fig. 6. Cayley graphs of Qn(T2,q) with n > 2.

Fig. 7. Cayley graphs of Q2(T3,q).

1950028-10
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Table 4. Order and automorphism groups of finite torus link
n-quandles.

Qn |Qn| Aut Inn Trans
Q2(T2,q) q Zq � Z∗

q Dq/gcd(2,q) Zq/gcd(2,q)

Q3(T2,3) 4 A4 A4 Z2 × Z2

Q4(T2,3) 6 S4 S4 A4

Q5(T2,3) 12 A5 A5 A5

Q3(T2,4) 8 S4 A4 A4

Q3(T
+−
2,4 ) 8 Z2 × A4 A4 Z2 × Z2

Q3(T2,5) 20 S5 A5 A5

Q2(T3,3) 6 Z2 × S4 Z2 × Z2 Z2 × Z2

Q2(T3,4) 12 Z2 × S4 A4 A4

Q2(T3,5) 30 Z2 × S5 A5 A5

section lists the results. Note that only in the case of the two-component link T2,4

with n = 3 does orientation matter. We denote by T+−
2,4 the oriented link obtained

from T2,4 by reversing the orientation of the second component (the one labeled b).
Cayley graphs of these quandles are given in Figs. 6 and 7. In these graphs, solid,

dashed, and dotted edges correspond to the generators a, b and c, respectively. The
automorphism groups were computed using GAP and are given in Table 4.

5. Torus Links with Axis

Given the torus link Tp,q lying on the torus F that separates S3 into two solid
tori, an axis of Tp,q is the core of either solid torus. In this section, we consider the
oriented torus links with axis shown in Fig. 8. As in the last section, q represents
q right handed half twists. For each torus link T2,q, we adjoin the axis A with
linking number +2 (as opposed to +q). In the case of the trefoil, we also include
the oriented axis B with linking number +3. Only the involutory quandles of these
links are finite, hence the orientations are immaterial. Since T2,−q ∪A = (T2,q ∪A)∗

and T2,1 ∪ A is the 2-bridge link L1/4, we may further assume q > 1. A choice of
generators for each link is given in the figure.

First, we consider the link T2,3∪B. After deriving a presentation for Q2(T2,3∪B)
from the diagram and employing Winker’s method, we obtain the Cayley graph

Fig. 8. The oriented links T2,q ∪ A and T2,3 ∪ B with choice of generators.

1950028-11
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Fig. 9. The Cayley graph of Q2(T2,3 ∪ B).

shown in Fig. 9. Solid, dashed, and dotted edges correspond to the generators a, b,
and c, respectively, in the figure. Using GAP to compute the automorphism groups
of this quandle we find that Aut(Q2(T2,3∪B)) ∼= Z2×Z2×S4, Inn(Q2(T2,3∪B)) ∼= S4

and Trans(Q2(T2,3 ∪B)) ∼= S4.
Now we analyze the infinite family T2,q ∪A. There are two cases depending on

whether q is even or odd. Assume q = 2t + 1 with t > 0. A presentation of the
involutory quandle in this case is

Q2(T2,q ∪A) = 〈a, b, c | cab = c, a(ba)tbc = b, b(ab)
tc = a〉2.

In order to make Winker’s method simpler, we change to the equivalent presentation

Q2(T2,q ∪A) = 〈a, b, c | {c(ab)i

= c}2t
i=1, a

c(ba)t

= b,

a(ba)tc = b, acac = a, bcbc = b〉2.
To see that the presentations are equivalent, we need to show that each set of rela-
tions can be derived from the other. Let P1, P2, and P3 be the relations in the first
presentation and S, R2, R3, R4, and R5 be the relations in the second presentation
in the order given. The relations c(ab)

i

= c in the set S follow from induction and
relation P1. The relation R2 follows immediately from P3. The secondary relation
associated to P1 implies xcba = xbac for all x and thus xc(ba)

j

= x(ba)jc for j ≥ 1
follows by induction. Similarly, we have xc(ab)

j

= x(ab)jc for j ≥ 1. The relation
R2 now follows from this observation and P3. The relation R4 is then derived as
follows:

acac
P3= b(ab)

tac = bb(ab)
tac = b(ba)

t+1c = bc(ba)
t+1 P2= aa = a.

The derivation of R5 is similar,

bcbc
R3= a(ba)tbc P2= b.

In a similar manner, P1, P2, and P3 can be derived from S, R2, R3, R4, and R5.
We now proceed with the diagramming method. We begin with three vertices

x1 = a, y2t+1 = b and z1 = c and loops labeled a, b and c, respectively, at each
vertex. We next trace the 2t + 4 primary relations which introduces the vertices

1950028-12
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Fig. 10. The primary relation graph for Q2(T2,q ∪ A) with q = 2t + 1.

z2, y1, . . . , y2t, x2, . . . , x2t+1 in that order. Tracing the primary relations gives the
graph shown in Fig. 10.

Finally, we consider the secondary relations xwj = x for 1 ≤ j ≤ 5 where,

w1 = (ba)ic(ab)ic, 1 ≤ i ≤ 2t,

w2 = (ab)tcacb(ab)t,

w3 = c(ab)2tacb,

w4 = (ca)4,

w5 = (cb)4.

We trace the secondary relations at each vertex in the order the vertices were
introduced. Notice that the formulas in (3.1) from Sec. 3 apply to both xi and yi
in Fig. 10. Tracing the secondary relation w1 for 1 ≤ i ≤ 2t at vertex x1 introduces
2t−1 edges labeled c that connect the vertices xi to yi. At this point we claim that
all secondary relations are satisfied at vertices xi and yi for 1 ≤ i ≤ 2t+ 1. There
are several cases to consider. We will verify the relations xw2

i = xi and xw3
i = xi for

i 	= 1 and odd and leave the remaining cases to the reader. Using (3.1) and Fig. 10,
we have

x
(ab)tcacb(ab)t

i = x
cacb(ab)t

2t+1−i = x
(ab)t

2t+3−i = xi.

Similarly,

x
c(ab)2tacb
i = y

(ab)2tacb
i = y

(ab)tacb
2t+1−i = yacbi+2 = xi.

Finally, consider tracing the secondary relations at vertex z1. The relations zw1
1 = z1

for 1 ≤ i ≤ 2t are already satisfied. Tracing zw2
1 = z1 introduces a loop at z2 labeled

c. This gives the graph in Fig. 11. It is not hard to then verify that all remaining
secondary relations are satisfied at z1 and z2. Therefore, Fig. 11 is the Cayley graph
of Q2(T2,q∪A) with q odd. From this we see that Q2(T2,q∪A) with q odd has order
2q + 2. Notice that the graph has two connected components which was expected
since T2,q ∪A is a link of 2 components.
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Fig. 11. The Cayley graph for Q2(T2,q ∪ A) with q = 2t + 1.

If q = 2t is even and t > 0, then a presentation of the involutory quandle from
Fig. 8 is

Q2(T2,q ∪A) = 〈a, b, c | cab = c, a(ba)t−1bc = a, b(ab)
tc = b〉2.

As in the odd case, the Cayley graph is easier to produce using the following equiv-
alent presentation:

Q2(T2,q ∪A) = 〈a, b, c | {c(ab)i

= c}2t−1
i=1 , a

(ba)t−1c = a,

b(ab)
t−1c = b, acac = a, bcbc = b〉2.

Applying the diagramming method to this presentation we find the Cayley graph
shown in Fig. 12. The edges labeled a(b) are a when t is even and b when t is odd
(and the reverse for the edges labeled b(a)). As in the odd case, the order of the
involutory quandle is 2k + 2.

We conclude by determining the automorphism groups for Q2(T2,q ∪A).

Fig. 12. The Cayley graph for Q2(T2,q ∪ A) with q = 2t.
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Proposition 5.1. For q ≥ 2, Aut(Q2(T2,q ∪ A)) ∼= Z2 × Aut(Q2(L1/2q)) ∼= Z2 ×
(Z2q � Z

∗
2q).

Proof. We will consider the case when q = 2t + 1 is odd; the case when q is
even is similar. From the presentation in Sec. 3, notice that there is a natural
inclusion η : Q2(L1/2q) → Q2(T2,q∪A) determined by η(a) = a and η(b) = b. Using
the relation xc(ab)

j

= x(ab)jc discussed in the derivation of second presentation of
Q2(T2,q ∪A) we see that

η(a(ba)2tb) = a(ba)2tb R3= bc(ba)
tb R5= bcb(ba)

tb = bc(ab)
t

= b(ab)
tc R2= acc = a = η(a).

In a similar manner, η preserves the second relation b(ab)
2ta = b of Q2(L1/2q). So,

η is a quandle homomorphism. Clearly, η is onto the set H = {x1, . . . , x2t+1,

y1, . . . , y2t+1} which has the same order, 2q, as Q2(L1/2q). Thus, η : Q2(L1/2q) → H

is a quandle isomorphism onto the subquandle H of Q2(T2,q ∪A). Notice that H is
the subquandle generated by {a, b} and that the set S = {z1, z2} = Q2(T2,q∪A)\H
is also a subquandle.

For any f ∈ Aut(Q2(L1/2q)), we define ϕf ∈ Aut(Q2(T2,q ∪ A)) by ϕf (a) =
η ◦ f(a), ϕf (b) = η ◦ f(b) and ϕf (c) = c (from now on, we will abuse notation
and use f in place of η ◦ f , as long as there is no confusion). We also define ψ ∈
Aut(Q2(T2,q ∪ A)) by ψ(a) = a, ψ(b) = b and ψ(c) = ca. We will show that
Aut(Q2(T2,q ∪A)) = 〈ψ, ϕf 〉 ∼= Z2 × Aut(Q2(L1/2q)).

It is clear that 〈ϕf 〉 ∼= Aut(Q2(L1/2q)). Also ψ2 = id, since ψ2(c) = ψ(ca) =
ψ(c)ψ(a) = caa = c, so 〈ψ〉 ∼= Z2. Finally, we compare φf ◦ ψ and ψ ◦ φf . Note that
since f(a) (respectively, f(b)) involves only the generators a and b, ψ(f(a)) = f(a)
(respectively, ψ(f(b)) = f(b)).

φf ◦ ψ(a) = f(a), ψ ◦ φf (a) = ψ(f(a)) = f(a),

φf ◦ ψ(b) = f(b), ψ ◦ φf (b) = ψ(f(b)) = f(b),

φf ◦ ψ(c) = φf (ca) = cf(a), ψ ◦ φf (c) = ψ(c) = ca.

f(a) = aw or bw, where w is a word in a and b. Without loss of generality,
suppose f(a) = aw. Then cf(a) = ca

w

= cw̄aw. Since the word w̄aw has odd length,
cw̄aw = ca. Hence, φf ◦ ψ = ψ ◦ φf for every φf . This implies that 〈ψ, φf 〉 ∼=
〈ψ〉 × 〈φf 〉 ∼= Z2 × Aut(Q2(L1/2q)).

Finally, suppose α ∈ Aut(Q2(T2,q ∪A)). Then α fixes H and S setwise, since H
is the only subquandle of order 2q. The restriction of α to H gives an automorphism
of Aut(Q2(L1/2q)); let f = α|H . Since α also fixes S, α(c) = c or ca. If α(c) = c, then
α = φf ; on the other hand, if α(c) = ca, then α = ψ ◦ φf . So every automorphism
is in 〈ψ, φf 〉. Hence, Aut(Q2(T2,q ∪A)) = 〈ψ, ϕf 〉 ∼= Z2 × Aut(Q2(L1/2q)).

Corollary 5.2. For q > 2, Inn(Q2(T2,q ∪ A)) ∼= D2q/gcd(2,q) and Trans(Q2(T2,q ∪
A)) ∼= Dq.
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Proof. We will first consider the case when q is odd. The inner automorphism
group is generated by the symmetries Sa, Sb, Sc. We consider the Cayley graph
from Fig. 11, and use the vertex labelings from that diagram. Then we can describe
the action of each symmetry as a permutation on the set of vertices of the Cayley
graph.

Sa = (x1)(x2x3)(x4x5) · · · (xq−1xq) · (y1)(y2y3)(y4y5) · · · (yq−1yq) · (z1z2),
Sb = (x1x2)(x3x4) · · · (xq−2xq−1)(xq) · (y1y2)(y3y4) · · · (yq−2yq−1)(yq) · (z1z2),
Sc = (x1y1)(x2y2) · · · (xqyq) · (z1)(z2).

These permutations correspond to symmetries of a regular 2q-gon. We embed the
vertices of the 2q-gon in the xy-plane, centered at the origin, and label them with
xi and yi as shown on the left in Fig. 13 (if q ∼= 1 (mod 4), then xq−1 and yq are on
the left side; if q ∼= 3 (mod 4), then xq−1 and yq are on the right). The vertices z1
and z2 are embedded on the z-axis above and below the polygon. Then the actions
of Sa and Sb are 180◦ rotations around the lines through {x1, y1} and {xq, yq},
respectively, and the action of Sc is the 180◦ rotation about the z-axis. Sa and
Sb generate the symmetries of a q-gon (the dotted polygon on the left in Fig. 13).
Combined with the half-turn rotation of Sc (since q is odd), this generates the group
of symmetries of the 2q-gon. So the inner automorphism group is isomorphic toD2q.

Similarly, when q is even, we consider the Cayley graph from Fig. 12. Once
again, we describe Sa, Sb and Sc as permutations of the vertices in the Cayley
graph.

Sa = (x1)(x2x3)(x4x5) · · · (xq−2xq−1)(xq) · (y1y2)(y3y4) · · · (yq−1yq) · (z1z2),
Sb = (x1x2)(x3x4) · · · (xq−1xq) · (y1)(y2y3)(y4y5) · · · (yq−2yq−1)(yq) · (z1z2),
Sc = (x1xq)(x2xq−1) · · · (xq/2xq/2+1) · (y1yq)(y2yq−1) · · · (yq/2yq/2+1) · (z1)(z2).

Fig. 13. Realizing Sa and Sb as symmetries for q odd (on left) and even (on right).
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Table 5. The automorphism groups of Q2(T2,3 ∪ A) and Q2(T2,3 ∪ B).

Qn |Qn| Aut Inn Trans
Q2(T2,q ∪ A) 2 + 2|q| Z2 × (Z2q � Z

∗
2q) D2q/gcd(2,q) Dq

Q2(T2,3 ∪ B) 18 Z2 × Z2 × S4 S4 S4

As before, we embed the vertices as the vertices of a 2q-gon embedded in the xy-
plane and centered at the origin, as shown on the right in Fig. 13 (once again, z1
and z2 are embedded on the z-axis; xq/2 is on the left side if q/2 is even, and on
the right if q/2 is odd). As in the odd case, Sa and Sb generate the symmetries of
the q-gon (the dotted polygon on the right in Fig. 13); however, in this case, the
half-turn rotation Sc is already in this group of symmetries. So when q is even, the
inner automorphism group is just Dq.

Since we are in an involutory quandle, each of Sa, Sb and Sc has order 2, and
the transvection group is generated by their products SaSb, SaSc, and SbSc (and
their inverses). Regardless of whether q is odd or even, SaSb is a rotation which
generates the rotation subgroup of Dq, and SaSc and SbSc are reflections that have
the same angle between their axes as Sa and Sb. So in both cases, these motions
generate the symmetries of a q-gon, and the transvection group is isomorphic
to Dq.

We summarize our results on automorphism groups of torus links with axes in
Table 5.

Remark. Aside from the 2-bridge links Lp/q, for which the involutory quandle
depends only on q, all of the links in this paper are distinguished by the finite
n-quandles described. This can be easily seen by comparing the data in Tables 2,
3, 4 and 5.
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