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ABSTRACT

We investigate the relationship between the quandle and biquandle coloring invari-
ant and obtain an enhancement of the quandle and biquandle coloring invariants using
biquandle structures.

We also continue the study of biquandle homomorphisms into a medial biquandle
begun in [Hom quandles, J. Knot Theory Ramifications 23(2) (2014)], finding biquandle
analogs of results therein. We describe the biquandle structure of the Hom-biquandle,
and consider the relationship between the Hom-quandle and Hom-biquandle.

Keywords: Quandle; biquandle; biquandle structure; Hom-biquandle; Hom-quandle.

Mathematics Subject Classification 2020: 57M27, 57M25

1. Introduction

Quandles and their generalizations, biquandles, are algebraic structures whose
axioms encode the Reidemeister, and oriented Reidemeister, moves from classi-
cal knot theory. Biquandle invariants provide a method for distinguishing between
certain virtual (and some nonvirtual) knots. In this paper, we study the relation-
ship between quandles and biquandles, with the goal of finding biquandle versions
of results pertaining to sets of quandle homomorphisms.

We begin in Sec. 2 with a brief review of basic quandle and biquandle def-
initions and facts together with fundamental examples. In Sec. 3, we recall the
notion of a biquandle structure introduced in [5] and provide examples of different
such structures one can place on the same quandle. We further present proper-
ties that a biquandle does, and does not, inherit from its associated quandle. We
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consider mediality and commutativity of biquandles and biquandle structures. We
turn our focus to connections with knot theory in Sec. 4, by exploring the relation-
ship between the quandle and biquandle coloring invariant, illustrating this with
two concrete examples that demonstrate how the richness of biquandle structures
on a given quandle can improve the strength of (bi)quandle representation invari-
ants. We define an enhancement of quandle and biquandle coloring invariants based
on biquandle structures. In Sec. 5, we continue the study of biquandle homomor-
phisms into a medial biquandle begun in [3], finding biquandle analogs of results
therein. We describe the biquandle structure of the Hom-biquandle, and consider
the relationship between the Hom-quandle and Hom-biquandle, adding some sam-
ple calculations. We conclude in Sec. 6 with questions for future investigation.

2. Preliminaries

We begin by recalling definitions and examples of quandles and biquandles. We
refer the reader to [2, 6, 7, 11] for more details.

Definition 2.1. A quandle is a set Q equipped with a binary operation ∗ : Q×
Q→ Q that satisfies the following three axioms:

• x ∗ x = x for every x ∈ Q;
• the map Ry : Q→ Q given by Ry(x) = x ∗ y is a bijection for every y ∈ Q; and
• (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for every x, y, z ∈ Q.

On any set Q, we can define a trivial quandle using the binary operation x∗y = x

for every x, y ∈ Q. Given two quandles (Q, ∗) and (K, ◦), a map f : Q→ K is called
a quandle homomorphism if f(x∗ y) = f(x)◦ f(y) for every x, y ∈ Q. Note that
the third axiom above implies that each Ry is a quandle homomorphism.

Two particularly important examples of quandles include the following.

(a) On any group G, we may define a quandle operation by g ∗ h = hg−1h for any
g, h ∈ G. This gives what is known as the core quandle, Core (G).

(b) For an abelian group G and a chosen group automorphism φ ∈ Aut(G), the
binary operation g ∗ h = φ(g) + (1 − φ)(h) defines an Alexander quandle
(that is sometimes called an affine quandle) Aff (G,φ).

We can generalize the notion of a quandle as follows:

Definition 2.2. A biquandle is a setX with two binary operations ∗, ∗ : X×X →
X that satisfy the following axioms:

• x∗x = x∗x for every x ∈ X ;
• the maps αy, βy : X → X and S : X × X → X × X , given by αy(x) = x∗y,
βy(x) = x∗y and S(x, y) = (y∗x, x∗y) are bijections for every y ∈ X ; and
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• the exchange laws

(x∗y)∗(z∗y) = (x∗z)∗(y∗z)
(x∗y)∗(z∗y) = (x∗z)∗(y∗z)
(x∗y)∗(z∗y) = (x∗z)∗(y∗z)

hold for every x, y, z ∈ X .

We note that if x∗y = x for any x, y ∈ (X, ∗, ∗), then (X, ∗) is a quandle. Thus
biquandles are a generalization of quandles. In fact, any biquandle (X, ∗, ∗) has
an associated quandle, Q(X) = (X, ∗), defined by the operation x∗y = β−1

y (x∗y),
and this induces a functor Q from the category of biquandles to the category of
quandles [1, 5, 10, Lemma 3.1].

The biquandle analogs of our quandle examples are:

(a′) For every group G, the binary operations g∗h = h−1g−1h and g∗h = h−2g

define a biquandle that is called the Wada biquandle. Its associated quandle is
the core quandle Core (G).

(b′) Let G be an abelian group and choose two automorphisms φ, ψ ∈ Aut(G). The
operations g∗h = ψ(φ(g)) + (ψ − ψφ)(h) and g∗h = ψ(g) define a biquandle
whose associated quandle is the Alexander quandle Aff (G,φ).

In addition, given two quandles (Q, ∗) and (K, ◦), the product Q×K is a biquandle
with the operations (x, y)∗(z, w) = (x ∗ z, y) and (x, y)∗(z, w) = (x, y ◦−1 w).

Given two biquandles (X, ∗, ∗) and (Z,�,�), a map f : X → Z is called a
biquandle homomorphism if f(x∗y) = f(x)� f(y) and f(x∗y) = f(x)� f(y) for
every x, y ∈ X .

3. Biquandle Structures on Quandles

The algebraic structures of quandles and biquandles are closely intertwined. As
mentioned in Sec. 2, every biquandle X has an associated quandle Q(X). On the
other hand, on a given quandle, we may impose several nonequivalent structures
that define biquandles. In this section, we present the notion of a ‘biquandle struc-
ture’ and discuss which properties of biquandles are inherited from the properties
of their associated quandle.

Definition 3.1. Let (Q, ∗) be a quandle. A biquandle structure on (Q, ∗) is a
family of quandle automorphisms {βy : Q→ Q| y ∈ Q} ⊂ Aut(Q) that satisfies the
following conditions:

(1) ββy(x∗y) ◦ βy = ββx(y) ◦ βx for every x, y ∈ Q, and
(2) the map defined by y �→ βy(y) is a bijection of Q.
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By [5], every biquandle structure defines a biquandle, and every biquandle arises
as a biquandle structure on its associated quandle.

Theorem 3.2 ([5, Theorem 3.2]). Let {βy | y ∈ Q} be a biquandle structure on
a quandle (Q, ∗). Define two binary operations on Q by x∗y = βy(x ∗ y) and x∗y =
βy(x) for every x, y ∈ Q. Then X = (Q, ∗, ∗) is a biquandle and Q(X) = (Q, ∗).
Theorem 3.3 ([5, Theorem 3.4]). Let X = (Q, ∗, ∗) be a biquandle and let
Q(X) = (Q, ∗) be its associated quandle. Then the family of maps {βy | y ∈ Q} is a
biquandle structure on Q(X).

Nonisomorphic biquandle structures on quandles of order 2 and 3 are listed
below. We follow the standard notation of denoting the elements of a finite quandle
(Q, ∗) of order n by numbers 1, 2, . . . , n and its operation table by an n× n matrix
whose (i, j)th entry is i ∗ j, see [9]. A biquandle structure {βy | y ∈ Q} ⊂ Aut(Q)
on such a quandle will be represented by the n-tuple (β1, . . . , βn), where the auto-
morphism βi is written as an element of the symmetric group Sn in disjoint cycle
notation. All computations were performed using Python.

Example 3.4. There exists one quandle of order two, namely, the trivial quandle
with operation table

[1 1
2 2

]
. On this quandle, we may impose two nonisomorphic

biquandle structures: (id, id) or ((12), (12)).

Example 3.5. There are three nonisomorphic quandles of order three.

(a) On the trivial quandle with operation table
[
1 1 1
2 2 2
3 3 3

]
there are 5 nonisomor-

phic biquandle structures: (id, id, id), (id, id, (12)), (id, (23), (23)), ((23), (23),
(23)) and ((123), (123), (123)).

(b) On the quandle with operation table
[
1 1 1
3 2 2
2 3 3

]
, there are 4 nonisomorphic

biquandle structures: (id, id, id), (id, (23), (23)), ((23), id, id) and ((23), (23),
(23)). We note that this quandle is not an Alexander quandle.

(c) On the quandle with operation table
[
1 3 2
3 2 1
2 1 3

]
, there are 6 nonisomorphic

biquandle structures: (id, id, id), (id, (123), (132)), ((23), (23), (23)), ((23), (13),
(12)), ((12), (23), (13)) and ((123), (123), (123)). We remark that this is an
Alexander quandle.

A biquandle structure {βy | y ∈ Q} is called constant if βy = βz for every y, z ∈ Q.
By [5, Corollary 3.8], the number of nonisomorphic constant biquandle structures
on a quandle Q is the number of conjugacy classes of Aut(Q). The automorphism
groups of the quandles in Example 3.5 (a) and (c) are isomorphic to S3, thus, they
admit 3 nonisomorphic constant biquandle structures. The automorphism group of
the quandle in (b) is Z2, which admits only two nonisomorphic constant biquandle
structures.
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Certain properties of biquandles are inherited from their associated quandles
while others are not; we discuss examples of both in the remainder of this section.

Lemma 3.6. In a biquandle X, the equality x∗y = x∗y holds for every x, y ∈ X if
any only if Q(X) is a trivial quandle.

Proof. By Theorems 3.2 and 3.3, the biquandle operations are given by x∗y =
βy(x ∗ y) and x∗y = βy(x) for any x, y ∈ X . Since βy is a bijection for every y ∈ X ,
the equivalence follows.

Recall that a quandle Q is connected if for any x, y ∈ Q there exist elements
z1, . . . , zn ∈ Q and ε1, . . . , εn ∈ {1,−1}, such that y = (. . . ((x∗ε1z1)∗ε2z2) . . .∗εnzn).
For example, the quandle in Example 3.5 (c) is connected.

Definition 3.7. Given a biquandle X , consider the equivalence relation ∼c gen-
erated by x ∼c x∗y and x ∼c x∗y for every x, y ∈ X . The equivalence classes are
called connected components, and the biquandle is called connected if there is
only one class.

Proposition 3.8. If Q is a connected quandle, then for every biquandle structure
on Q the induced biquandle is also connected.

Proof. Suppose {βy | y ∈ Q} ⊂ Aut(Q) is a biquandle structure on Q. We denote
the induced biquandle by B = (Q, ∗, ∗). Choose any x, y ∈ B. Since Q is a con-
nected quandle, there exist z1, . . . , zn ∈ Q and ε1, . . . , εn ∈ {−1, 1}, such that
y = (. . . ((x ∗ε1 z1) ∗ε2 z2) . . . ∗εn zn). We prove that x ∼c y by induction on n.
If n = 1, it follows that either y∗z1 = x∗z1 (when ε1 = 1) or y∗z1 = x∗z1 (when
ε1 = −1), and thus x ∼c y. Now suppose that x ∼ (. . . ((x∗ε1 z1)∗ε2z2) . . .∗εn−1zn−1)
for some n. Denoting w = (. . . ((x∗ε1 z1)∗ε2 z2) . . .∗εn−1 zn−1), we obtain y = w∗εn zn

and it follows that either y∗zn = w∗zn or y∗zn = w∗zn, which implies y ∼c w and
thus x ∼c y.

Definition 3.9. A quandle Q is called medial if the equality (x ∗ y) ∗ (z ∗ w) =
(x ∗ z) ∗ (y ∗ w) holds for every x, y, z, w ∈ Q. (All three quandles in Example 3.5
are medial.) A biquandle X is called medial if the equalities

(x∗y)∗(z∗w) = (x∗z)∗(y∗w)

(x∗y)∗(z∗w) = (x∗z)∗(y∗w) and

(x∗y)∗(z∗w) = (x∗z)∗(y∗w)

hold for every x, y, z, w ∈ X .

Lemma 3.10. If Q is a medial quandle, then for every constant biquandle structure
on Q, the induced biquandle is also medial.
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Proof. Let Q be a medial quandle and f ∈ Aut(Q). We denote the biquandle
induced by the constant biquandle structure {f} on Q by B = (Q, ∗, ∗). Using the
mediality of Q, the computations:

(x∗y)∗(z∗w) = f(f(x ∗ y) ∗ f(z ∗ w)) = f2((x ∗ z) ∗ (y ∗ w)) = (x∗z)∗(y∗w)

(x∗y)∗(z∗w) = f(f(x ∗ y)) = f(f(x) ∗ f(y)) = (x∗z)∗(y∗w) and

(x∗y)∗(z∗w) = f(f(x)) = (x∗z)∗(y∗w)

imply that B is a medial biquandle.

Commutativity is a possible, but not very common property of quandles. As the
following result shows, a commutative quandle cannot be associated to a commu-
tative biquandle.

Lemma 3.11. Let Q be a commutative quandle of order ≥ 2. Then there exists no
commutative biquandle X with Q(X) = Q.

Proof. Let (X, ∗, ∗) be a biquandle given by a biquandle structure {βx |x ∈ Q} ⊂
Aut(Q) on a commutative quandle Q. Suppose X is commutative. Then the equa-
tions x∗y = y∗x imply that βy(x) = βx(y) for every x, y ∈ X . Moreover, the equal-
ity x∗y = y∗x implies that βy(x) ∗ βy(y) = βy(x ∗ y) = βx(y ∗ x) = βx(y) ∗ βx(x).
Since Q is commutative, it follows that βy(y) ∗ βy(x) = βx(x) ∗ βx(y) and therefore
βy(y) = βx(x) for every x, y ∈ X . Then (2) of Definition 3.1 implies that X is of
order ≤ 1.

Lemma 3.12. Let X be a commutative biquandle given by a biquandle structure
{βx |x ∈ Q} on a quandle Q. Then the automorphism βxβ

−1
y ∈ Aut(Q) is of order

2 for every x �= y ∈ Q.

Proof. The equation x∗y = y∗x implies that βy(x) = βx(y) for every x, y ∈ X .
Moreover, by x∗y = y∗x, we have that βy(x ∗ y) = βx(y ∗ x) and by (1) of Defi-
nition 3.1, it follows that βxβ

−1
y = βyβ

−1
x = (βxβ

−1
y )−1. Therefore (βxβ

−1
y )2 = id.

If βaβ
−1
b = id for some a, b ∈ X , then the equations βa(a) = βb(a) = βa(b) imply

that a = b.

4. Coloring Invariants of Links

An important motivation behind the study of quandle-like structures lies in their
natural connection with knot theory. In this section, we investigate the relationship
between the quandle and biquandle coloring invariant.

Let DL be an oriented link diagram of a (classical or virtual) link L. We
denote the set of arcs and the set of crossings of DL by A(DL) and C(DL),
respectively. Figure 1 depicts the quandle crossing relation at a crossing of the
diagram DL.
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x

y x ∗ y

Fig. 1. The quandle crossing relation.

x

y x∗y

y∗x y

x y∗x

x∗y

Fig. 2. Biquandle crossing relations.

The fundamental quandle of the link L is the quandle Q(L) given by the
quandle presentation

〈A(DL) | quandle crossing relation at every c ∈ C(DL)〉

It is easy to see that two diagrams of the same link yield equivalent presentations
and thus the fundamental quandle defines a link invariant. For more details, we
refer the reader to [6].

Considering the link diagram DL as a 4-valent graph, every arc is divided into
two semiarcs that are incident at a vertex of the graph. We denote the set of
semiarcs of DL by S(DL). Figure 2 depicts the biquandle crossing relations at
a (positive or negative) crossing of the diagram DL. The fundamental biquandle
of the link L is the biquandle B(L) given by the biquandle presentation

〈S(DL) | biquandle crossing relations for every c ∈ C(DL)〉.

It is well known that the fundamental biquandle of a classical or virtual link does
not depend on the choice of a particular link diagram and thus defines a link
invariant [7].

Fundamental (bi)quandles of links are often compared by representations into
finite (bi)quandles. We denote the set of quandle (respectively biquandle) homomor-
phisms between the quandles (respectively biquandles) X and Y by HomQ(X,Y )
(respectively HomB(X,Y )).

Definition 4.1. Let Y be a finite quandle. The cardinality ΦY
Q(L) = |HomQ

(Q(L), Y )| is called the quandle coloring invariant of the link L with respect
to Y . For a finite biquandle Z, the cardinality ΦZ

B(L) = |HomB(B(L), Z)| is called
the biquandle coloring invariant of the link L with respect to Z.
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Example 4.2. Let Y be the quandle of order 4 with operation table

⎡
⎣1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

⎤
⎦.

This quandle Y admits 9 nonisomorphic biquandle structures s1, . . . , s9. We will
denote the biquandle corresponding to the biquandle structure si by Yi. The coloring
invariants of some knots with respect to Y and Yi are listed in the table below. We
use the standard knot enumeration from the Knot atlas [12].

Knot ΦY
Q (ΦY1

B , . . . ,ΦY9
B )

41 16 (16, 16, 4, 4, 4, 4, 0, 5, 4)

51 4 (4, 4, 4, 4, 1, 1, 0, 2, 0)

52 4 (4, 4, 4, 4, 4, 4, 4, 5, 4)

61 4 (4, 4, 4, 4, 1, 1, 0, 3, 0)

62 4 (4, 4, 4, 4, 4, 4, 4, 4, 4)

63 4 (4, 4, 4, 4, 4, 4, 4, 5, 4)

Observe that the quandle coloring invariant with respect to Y takes the same value
for nearly all knots in the table. Also, the biquandle coloring invariant with respect
to any one of the biquandles Y1, . . . , Y6 is not very effective in distinguishing knots.
The tuple of invariants (ΦY1

B , . . . ,ΦY9
B ), however, is able to distinguish all but two

of the knots under consideration.

Example 4.3. Let Y again be the quandle of order 4 from Example 4.2. The
coloring invariants of all 3-crossing virtual knots with respect to Y and Yi are
listed in the table below. The knot enumeration is taken from the Table of Virtual
Knots [8].

Virtual knot ΦY
Q (ΦY1

B , . . . ,ΦY9
B )

31 4 (4, 4, 4, 4, 1, 1, 4, 6, 0)

32 4 (4, 4, 4, 4, 1, 1, 0, 4, 0)

33 4 (4, 4, 4, 4, 4, 4, 0, 3, 0)

34 4 (4, 4, 4, 4, 1, 1, 0, 3, 0)

35 4 (4, 4, 4, 4, 1, 1, 4, 4, 4)

36 16 (16, 16, 16, 16, 16, 16, 16, 16, 16)

37 4 (4, 4, 4, 4, 1, 1, 4, 12, 4)

Observe that in contrast with the ordinary quandle and biquandle coloring invari-
ants, the tuple of biquandle coloring invariants (ΦY1

B , . . . ,ΦY9
B ) is able to distinguish

all virtual knots in the table. All computations were performed using Python. Our
code is available for interested readers upon request.
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The above examples indicate how the richness of biquandle structures on a given
quandle may improve the strength of (bi)quandle representation invariants. This
lays ground for a new coloring invariant.

Definition 4.4. Let Y be a finite quandle that admits k nonisomorphic biquandle
structures s1, . . . , sk. Denote by Yi the biquandle corresponding to the biquan-
dle structure si on Y . The k-tuple (ΦY1

B (L), . . . ,ΦYk

B (L)) is called the biquandle
structure coloring invariant of the link L with respect to the quandle Y .

It is clear that the biquandle structure coloring invariant represents an enhance-
ment of both the quandle and biquandle coloring invariants, and thus offers a new
way of distinguishing links.

5. Hom-Biquandles

In Sec. 4, we discussed representations of the fundamental (bi)quandle of a link
into finite (bi)quandles. The biquandle coloring invariant of a link L is defined by
the cardinality of the homomorphism set HomB(B(L), Y ) for a finite biquandle Y .
It turns out that for suitable choices of the target biquandle Y , this set allows an
additional structure.

For two biquandles X and Y, we can endow the morphism set

HomB(X,Y ) = {f | f : X → Y is a biquandle homomorphism}
with two operations ∗, ∗ : HomB(X,Y ) × HomB(X,Y ) → HomB(X,Y ) defined by
(f∗g)(x) = f(x)∗g(x) and (f∗g)(x) = f(x)∗g(x). A natural question arises as to
whether these two operations define a biquandle. The following result has already
been established in [3].

Proposition 5.1. Let X and Y be biquandles. If Y is medial, then
(HomB(X,Y ), ∗, ∗) is a medial biquandle.

Proof. Since Y is a biquandle, it is easy to see that the pointwise operations
on HomB(X,Y ) will always satisfy the first and third biquandle axioms from
Definition 2.2.

To show that (HomB(X,Y ), ∗, ∗) satisfies the second biquandle axiom, first,
consider the map αf : HomB(X,Y ) → HomB(X,Y ) given by αf (g) = g∗f . We
need to show that αf is invertible. Let h ∈ HomB(X,Y ). Since Y is a biquandle,
for every x ∈ X , there exists a g(x) ∈ Y such that h(x) = g(x)∗f(x). This defines a
mapping g : X → Y . Since f and h are biquandle homomorphisms and Y is medial,
we compute

g(x∗y)∗f(x∗y)= h(x∗y)=h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

= (g(x)∗g(y))∗f(x∗y)⇒ g(x∗y)= g(x)∗g(y)
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g(x∗y)∗f(x∗y) = h(x∗y) = h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

= (g(x)∗g(y))∗f(x∗y)
⇒ g(x∗y) = g(x)∗g(y)

and it follows that g is a biquandle homomorphism for which αf (g) = h.
Secondly, consider the map βf : HomB(X,Y ) → HomB(X,Y ) given by βf (g) =

g∗f . To show that βf is invertible, choose h ∈ HomB(X,Y ). Since Y is a biquandle,
for every x ∈ X there exists g(x) ∈ Y such that h(x) = g(x)∗f(x). This defines a
mapping g : X → Y . Using the mediality of Y , we compute

g(x∗y)∗f(x∗y) = h(x∗y) = h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

= (g(x)∗g(y))∗f(x∗y)
⇒ g(x∗y) = g(x)∗g(y)

g(x∗y)∗f(x∗y) = h(x∗y) = h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

= (g(x)∗g(y))∗f(x∗y)
⇒ g(x∗y) = g(x)∗g(y)

and thus, g is a biquandle homomorphism for which βf (g) = h.
Thirdly, consider the map S : HomB(X,Y ) × HomB(X,Y ) → HomB(X,Y ) ×

HomB(X,Y ). Let h, k ∈ HomB(X,Y ). Since Y is a biquandle, for any x ∈ X ,
there exist two elements f(x), g(x) ∈ Y such that (h(x), k(x)) = S(f(x), g(x)) =
(g(x)∗f(x), f(x)∗g(x)). We need to show that the maps f, g : X → Y are biquandle
homomorphisms. We have

g(x∗y)∗f(x∗y) = h(x∗y) = h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

f(x∗y)∗g(x∗y) = k(x∗y) = k(x)∗k(y) = (f(x)∗g(x))∗(f(y)∗g(y))
= (f(x)∗f(y))∗(g(x)∗g(y)).

The obtained equalities imply that S(f(x∗y), g(x∗y)) = S(f(x)∗f(y), g(x)∗g(y))
and since S : Y × Y → Y × Y is invertible, it follows that f(x∗y) = f(x)∗f(y) and
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g(x∗y) = g(x)∗g(y). Similarly, the equalities

g(x∗y)∗f(x∗y) = h(x∗y) = h(x)∗h(y) = (g(x)∗f(x))∗(g(y)∗f(y))

= (g(x)∗g(y))∗(f(x)∗f(y))

f(x∗y)∗g(x∗y) = k(x∗y) = k(x)∗k(y) = (f(x)∗g(x))∗(f(y)∗g(y))
= (f(x)∗f(y))∗(g(x)∗g(y))

imply that S(f(x∗y), g(x∗y)) = S(f(x)∗f(y), g(x)∗g(y)), and thus f(x∗y) =
f(x)∗f(y) and g(x∗y) = g(x)∗g(y). We have therefore shown that f, g ∈
HomB(X,Y ) and S(f, g) = (h, k).

Thus, the mediality of Y implies the mediality of HomB(X,Y ) with the point-
wise operations.

Definition 5.2. For biquandles X and Y , where Y is medial, the biquan-
dle (HomB(X,Y ), ∗, ∗) will be called the Hom-biquandle and denoted by
HomB(X,Y ).

Similarly, if Q1 is a quandle and Q2 is a medial quandle, the set of quandle
homomorphisms

HomQ(Q1, Q2) = {f : Q1 → Q2 | f is a quandle homomorphism}

forms a quandle with the operation (f ∗ g)(x) = f(x) ∗ g(x) for every x ∈ Q1 [3].
This quandle is called the Hom-quandle and will be denoted by HomQ(X,Y ).
Structure and properties of Hom-quandles were studied in [3, 4].

As we have seen, every biquandle arises by imposing a biquandle structure on
its associated quandle. A natural question is: What is the associated quandle of the
Hom-biquandle HomB(X,Y )? As a set, Q(HomB(X,Y )) = HomB(X,Y ) is the
set of biquandle homomorphisms. The quandle operation is given by

(f ∗ g)(x) = ((f∗g)∗−1g)(x) = (f(x)∗g(x))∗−1g(x) = f(x) ∗ g(x),

where ∗ on the right-hand side denotes the quandle operation on Q(Y ). It follows
that Q(HomB(X,Y )) is a subset of HomQ(Q(X),Q(Y )) — the associated quandle
of the Hom-biquandle is a subquandle of the Hom-quandle of associated quandles.
The characterization of this subquandle is given below.

Proposition 5.3. Let (Q, ∗) and (K, �) be quandles. Suppose {αx|x ∈ Q} ⊂
Aut(Q) is a biquandle structure defining a biquandle X and {βy| y ∈ K} ⊂ Aut(K)
is a biquandle structure defining a biquandle Y . A quandle homomorphism f : Q→
K lifts to a biquandle homomorphism f̃ : X → Y if and only if fαx = βf(x)f for
every x ∈ Q.
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Proof. For any z, x ∈ X , we have

f̃(z∗x) = f(αx(z ∗ x)) and f̃(z)∗f̃(x) = βf(x)(f(z) � f(x)) = βf(x)(f(z ∗ x))
f̃(z∗x) = f(αx(z)) and f̃(z)∗f̃(x) = βf(x)(f(z)).

Proposition 5.4. Let X be a biquandle defined by a biquandle structure {αx|x ∈
Q(X)}. Let Y be a medial biquandle, defined by a biquandle structure {βy| y ∈
Q(Y )}. Then Q(HomB(X,Y )) is the subquandle

{f ∈ HomQ(Q(X),Q(Y )) | fαx = βf(x)f for every x ∈ Q(X)}
The biquandle structure of HomB(X,Y ) is given by {β∗

g | g ∈ HomB(X,Y )}.

Proof. The first statement follows directly from Proposition 5.3 together with the
discussion preceding the Proposition. For the second statement, observe that

(f∗g)(x) = f(x)∗g(x) = βg(x)(f(x) ∗ g(x)) and

(f∗g)(x) = f(x)∗g(x) = βg(x)(f(x))

for any f, g ∈ HomB(X,Y ) and x ∈ X .

Example 5.5. Consider nonisomorphic biquandles of order 3, listed in Exam-
ple 3.5. Table 1 lists cardinalities of the Hom-biquandle for every pair of biquandles
of order 3. We denote by Ai (respectively Bi or Ci) the biquandle, corresponding to
the ith biquandle structure in Example 3.5 (a) (respectively (b) or (c)). Compare
this to Table 2 that lists cardinalities of the Hom-quandle of associated quandles.

Table 1 shows that the Hom-biquandles HomB(B2, B2) and HomB(B2, A3)
share the same order. Calculation reveals that HomB(B2, B2) = {(1, 1, 1), (1, 2, 3),

Table 1. Cardinalities of HomB(X, Y ), where X and Y are biquandles of order 3.

X\Y A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 C3 C4 C5 C6

A1 27 17 9 9 0 9 1 9 1 3 1 1 3 0 0
A2 9 9 3 3 0 5 1 5 1 3 1 1 3 0 0
A3 27 17 9 9 0 9 1 9 1 3 1 1 3 0 0
A4 27 17 9 9 0 9 1 9 1 3 1 1 3 0 0
A5 9 7 7 9 9 5 5 5 5 3 1 1 3 0 0

B1 9 7 3 3 0 7 3 7 3 3 1 1 3 0 0
B2 9 7 3 3 0 7 3 7 3 3 1 1 3 0 0
B3 9 7 3 3 0 7 3 7 3 3 1 1 3 0 0
B4 9 7 3 3 0 7 3 7 3 3 1 1 3 0 0

C1 3 3 1 1 0 3 1 3 1 9 1 3 3 0 0
C2 3 3 1 1 0 3 1 3 1 3 3 1 3 0 0
C3 3 3 1 1 0 3 1 3 1 9 1 3 3 0 0
C4 3 3 1 1 0 3 1 3 1 3 1 1 9 0 0
C5 3 3 1 1 0 3 1 3 1 3 1 1 3 3 0
C6 3 3 1 1 0 3 1 3 1 3 1 3 3 0 3
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Table 2. Cardinalities of HomQ(Q1, Q2),
where Q1 and Q2 are quandles of order 3.

Q1\Q2 Q(Ai) Q(Bi) Q(Ci)

Q(Ai) 27 9 3

Q(Bi) 9 7 3

Q(Ci) 3 3 9

(1, 3, 2)} and HomB(B2, A3)= {(1, 1, 1), (1, 2, 2), (1, 3, 3)}. Taking into account the
biquandle operations, it is easy to check that HomB(B2, B2)∼=B2 and HomB

(B2, A3)∼=A3, thus, the Hom-biquandles are not isomorphic.

By Proposition 5.4, the associated quandle of HomB(X,Y ) depends on the
biquandle structures of both biquandles X and Y . The biquandle structure of the
Hom-biquandle, however, is determined solely by the biquandle structure of Y . This
fact is reflected in Lemma 5.6 and Proposition 5.8. Recall that a biquandle Y is
called involutory if the equalities

x∗(y∗x) = x∗y, x∗(y∗x) = x∗y, (x∗y)∗y = x and (x∗y)∗y = x

hold for every x, y ∈ Y .

Lemma 5.6. Let X be a biquandle and let Y be a medial biquandle.

(a) If Y is involutory, then HomB(X,Y ) is also involutory.
(b) If Y is commutative, then HomB(X,Y ) is also commutative.

Proof. This follows from a straightforward computation.

A biquandle X is called a constant action biquandle if x∗y = x∗y = σ(x)
for some bijection σ : X → X .

Lemma 5.7. Any constant action biquandle is medial.

Proof. Let X be a constant action biquandle in which x∗y = x∗y = σ(x) for some
bijection σ : X → X . By Lemma 3.6, its associated quandle Q(X) is trivial and thus
medial. Since X is defined by the constant biquandle structure {σ} ⊂ Aut(Q(X)),
it is medial by Lemma 3.10.

Proposition 5.8. Let X be a biquandle. If Y is a constant action biquandle, then
HomB(X,Y ) is a constant action biquandle.

Proof. Let Y be a constant action biquandle. There exists a bijection σ : Y → Y

such that x∗y = x∗y = σ(x) for every x, y ∈ Y . It follows that

(f∗g)(x) = f(x)∗g(x) = f(x)∗g(x) = (f∗g)(x) = σ(f(x))

for every f, g ∈ HomB(X,Y ) and every x ∈ X . Define a map σ∗ : HomB(X,Y ) →
HomB(X,Y ) by σ∗(f) = σ ◦ f . Since σ is injective, it follows that σ∗ is injective.
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It remains to show that σ∗ is surjective. Let g ∈ HomB(X,Y ). Since σ is surjec-
tive, for every x ∈ X there exists a ψ(x) ∈ Y such that σ(ψ(x)) = g(x). This defines
a function ψ : X → Y . We need to show that ψ is a biquandle homomorphism. We
have

ψ(x1∗x2) = σ−1(g(x1∗x2)) = σ−1(g(x1)∗g(x2)) = σ−1(σ(g(x1))) = g(x1) and

ψ(x1)∗ψ(x2) = (σ−1 ◦ g)(x1)∗(σ−1 ◦ g)(x2) = σ−1(g(x1))∗σ−1(g(x2))

= σ(σ−1(g(x1))) = g(x1).

Therefore ψ(x1∗x2) = ψ(x1)∗ψ(x2), and an analogous calculation shows that
ψ(x1∗x2) = ψ(x1)∗ψ(x2). We have thus found a biquandle homomorphism ψ : X →
Y for which g = σ∗(ψ). Therefore σ∗ is a bijection on HomB(X,Y ) and f∗g =
f∗g = σ∗(f) for every f, g ∈ HomB(X,Y ), which shows that HomB(X,Y ) is a
constant action biquandle.

Proposition 5.9. HomB(−, Z) is a functor from the category of biquandles to
the category of medial biquandles for any medial biquandle Z. HomB(A,−) is an
endofunctor of the category of medial biquandles for any biquandle A.

Proof. Let Z be a medial biquandle. For any biquandles X and Y, HomB(X,Z)
and HomB(Y, Z) are biquandles by Proposition 5.1. For a biquandle homo-
morphism h : X → Y, the map h∗ : HomB(Y, Z) → HomB(X,Z) is given by
h∗(f) = f ◦ h. To see that h∗ is a biquandle homomorphism, we compute

h∗(f∗g)(x) = ((f∗g) ◦ h)(x) = f(h(x))∗g(h(x)) = (h∗(f)∗h∗(g))(x),
and similarly for the other operation.

Let A be a biquandle. For any medial biquandles X and Y , HomB(A,X) and
HomB(A, Y ) are medial biquandles by Proposition 5.1. For a biquandle homo-
morphism h : X → Y , the map h∗ : HomB(A,X) → HomB(A, Y ) is given by
h∗(f) = h ◦ f . To check that h∗ is a biquandle homomorphism, we compute

h∗(f∗g)(x) = (h ◦ (f∗g))(x) = h(f(x))∗h(g(x)) = (h∗(f)∗h∗(g))(x),
and similarly for the other operation.

For a finitely generated biquandle X and a medial biquandle Y , biquandles
Y and HomB(X,Y ) are also related via subbiquandle inclusions. The following
statement generalizes an analogous result about Hom-quandles, see [3, Theorem 8].

Proposition 5.10. Let X be a finitely generated biquandle and let Y be a medial
biquandle. Then HomB(X,Y ) is isomorphic to a subbiquandle of Y k, where k is
the size of a minimal generating set for X.

Proof. Let {x1, . . . , xk} be a minimal generating set for X . Define a map
j : HomB(X,Y ) → Y k by j(f) = (f(x1), . . . , f(xk)).
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Every biquandle homomorphism in HomB(X,Y ) is completely determined by
its values on the generating set, thus, j is injective. For two homomorphisms f, g ∈
HomB(X,Y ), we have

j(f∗g) = ((f∗g)(x1), . . . , (f∗g)(xk)) = (f(x1)∗g(x1), . . . , f(xk)∗g(xk))

= (f(x1), . . . , f(xk))∗(g(x1), . . . , g(xk))

= j(f)∗j(g)
and similarly for the other operation. It follows that j is a biquandle monomorphism,
and thus, HomB(X,Y ) is isomorphic to Im(j) ≤ Y k.

Remark 5.11. We have shown that HomB(X,Y ) is isomorphic to the subbiquan-
dle Im(j):

{(f(x1), . . . , f(xk)) | f(xi∗xj) = f(xi)∗f(xj) and

f(xi∗xj) = f(xi)∗f(xj)∀ i, j ∈ {1, . . . , k}},
which is precisely the set of all biquandle colorings of {x1, . . . , xk} by the
biquandle Y .

In the remainder of this section, we investigate how the source biquandle X
of HomB(X,Y ) may be simplified and still yield the same Hom-biquandle. Our
results generalize the results about Hom-quandles from [4].

Definition 5.12. An equivalence relation ∼ on a biquandle X is called a con-
gruence if (x ∼ y and z ∼ w) implies (x∗z ∼ y∗w and x∗z ∼ y∗w) for every
x, y, z, w ∈ X .

For each congruence on X , the quotient set X/∼ forms a quotient biquandle
with the induced operations on equivalence classes.

Let I be a collection of identities on a biquandle X . We denote by Cg(I) the
minimal congruence such that a ∼ b, whenever there exist x1, . . . , xn such that
a = p(x1, . . . , xn) and b = q(x1, . . . , xn), where p = q is an identity in I. We call
Cg(I) the congruence, generated by I.

Proposition 5.13. Let X and Y be biquandles and let I be a set of identities,
satisfied by Y . Then HomB(X,Y ) ∼= HomB(X/Cg(I), Y ) as sets.

Proof. Denote by πCg(I) : X → X/Cg(I) the quotient homomorphism. For every
f ∈ HomB(X,Y ) and for any identity p = q in I, we have

f(p(x1, . . . , xn)) = p(f(x1, . . . , xn)) = q(f(x1, . . . , xn)) = f(q(x1, . . . , xn)),

therefore Cg(I) ⊆ Ker(f). By the First Isomorphism Theorem, there exists a unique
biquandle homomorphism f̃ : X/Cg(I) → Y such that f̃ ◦ πCg(I) = f . We define
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a map φ : HomB(X,Y ) → HomB(X/Cg(I), Y ) by φ(f) = f̃ . Then φ is a bijection
with inverse ψ : HomB(X/Cg(I), Y ) → HomB(X,Y ), given by ψ(g) = g ◦ πCg(I).

Definition 5.14. A biquandle X is called 2-reductive if the equalities

a∗(b∗c) = a∗b a∗(b∗c) = a∗b
a∗(b∗c) = a∗b a∗(b∗c) = a∗b

are satisfied for every a, b, c ∈ X .

For example, every constant action biquandle is 2-reductive.

Lemma 5.15. A 2-reductive biquandle is medial.

Proof. Choose elements a, b, c and d of a 2-reductive biquandle X . Using 2-
reductiveness and the third biquandle axiom, we compute

(a∗b)∗(c∗d) = (a∗b)∗c = (a∗b)∗(c∗b) = (a∗c)∗(b∗c) = (a∗c)∗b = (a∗c)∗(b∗d),
(a∗b)∗(c∗d) = (a∗b)∗c = (a∗b)∗(c∗b) = (a∗c)∗(b∗c) = (a∗c)∗b = (a∗c)∗(b∗d) and

(a∗b)∗(c∗d) = v(a∗b)∗c = (a∗b)∗(c∗b) = (a∗c)∗(b∗c) = (a∗c)∗b = (a∗c)∗(b∗d).

In a biquandle X , consider the relation

R = {(a∗(b∗c), a∗b), (a∗(b∗c), a∗b), (a∗(b∗c), a∗b), (a∗(b∗c), a∗b) | a, b, c ∈ X}
and denote the congruence generated by R by γX . Relation γX is the smallest
congruence such that the quotient X/γX is 2-reductive.

Proposition 5.16. Let X be a biquandle and let Y be a 2-reductive biquandle.
Then X/γX is 2-reductive and HomB(X,Y ) ∼= HomB(X/γX , Y ) as biquandles.

Proof. Since Y is 2-reductive, by Proposition 5.13, there exists a bijection
φ : HomB(X,Y ) → HomB(X/γX , Y ), which is given by φ(f) = f̃ , where f̃ ◦πγX =

f . For any f, g ∈ HomB(X,Y ), we have φ(f∗g) = (̃f∗g), such that (̃f∗g)(πγX (x)) =
(f∗g)(x) = f(x)∗g(x) = f̃(πγX (x))∗g̃(πγX (x)) = φ(f)(x)∗φ(g)(x). A similar cal-
culation shows that φ(f∗g) = φ(f)∗φ(g) and it follows that φ is a biquandle
isomorphism.

6. Directions for Future Investigation

We first wonder whether the analogs of the questions posed in the final section of
[3] hold for the Hom-biquandle. That is, what other properties, other than those
presented here, does the Hom-biquandle inherit from the source and target biquan-
dles? Given two connected biquandles, is the Hom-biquandle structure determined
by the counting invariant?
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In addition, we seek a relationship between the cardinalities of the source and
target biquandles and that of the Hom-biquandle. In particular, could the notion of
2-reductiveness lead to finding an analog of [4, Corollary 3.24], enabling us to count
and characterize the Hom-biquandle of a 2-reductive target and arbitrary source?

Finally, when considering a more complicated study of links (e.g., virtual links),
we sometimes must combine two or more different link invariants to obtain a
stronger invariant. What role can the Hom-biquandle play in these situations?
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