
Mathematics, Statistics and Data Science 
Faculty Works Mathematics, Statistics and Data Science 

2019 

On the structure of Hom quandles On the structure of Hom quandles 

Alissa Crans 
Loyola Marymount University, acrans@lmu.edu 

Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac 

 Part of the Mathematics Commons 

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation 
Crans, Alissa, "On the structure of Hom quandles" (2019). Mathematics, Statistics and Data Science 
Faculty Works. 173. 
https://digitalcommons.lmu.edu/math_fac/173 

This Article is brought to you for free and open access by the Mathematics, Statistics and Data Science at Digital 
Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in 
Mathematics, Statistics and Data Science Faculty Works by an authorized administrator of Digital 
Commons@Loyola Marymount University and Loyola Law School. For more information, please contact 
digitalcommons@lmu.edu. 

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math
https://digitalcommons.lmu.edu/math_fac?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/math_fac/173?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


Journal of Pure and Applied Algebra 223 (2019) 5017–5029

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

On the structure of Hom quandles

Marco Bonatto a,1, Alissa S. Crans b,∗,2, Glen Whitney c

a Charles University Prague, Czechia
b Loyola Marymount University, United States of America
c Harvard University, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 August 2018
Received in revised form 21 
February 2019
Available online 15 March 2019
Communicated by C. Hacon

MSC:
57M27; 20N02

We continue the study of the quandle of homomorphisms into a medial quandle 
begun in [1]. We show that it suffices to consider only medial source quandles, 
and therefore the structure theorem of [10] provides a characterization of the Hom 
quandle. In the particular case when the target is 2-reductive this characterization 
takes on a simple form that makes it easy to count and determine the structure of 
the Hom quandle.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

It is natural to study the space of morphisms between two algebraic structures of the same kind. This
study is particularly rewarding when these “Hom-sets” themselves support the same algebraic structure as 
the objects they relate. In particular, this framework occurs in the study of quandles. In classical group 
theory, we know that the homomorphisms from G to H form a group under pointwise operations precisely 
when H is abelian. In [1], Crans and Nelson demonstrate the analogous phenomenon in the context of quan-
dles, that is, the target quandle must satisfy a certain sort of commutativity property (known as mediality) 
in order for the Hom-set to be a quandle. This concept of mediality (sometimes suitably generalized and/or 
under other names, such as entropicity) arises for various algebraic structures, in large part because of its 
connection with imposing a similar algebraic structure on Hom-sets under pointwise operations. See for 
example [14] or the work on quasigroups in [13].

Inspired by this fact, we sought to understand in more depth how the properties of quandles S and T
influence those of Hom(S, T ), when the latter is a quandle. Moreover, numerous papers in the literature 
study knot and link colorings, which are none other than homomorphisms from certain quandles fundamen-
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Table 1
Cardinalities of Hom(S, T ). Note that this table contains only medial targets while some sources are not medial.
S \ T I 2I 3I Q32 Q33 4I Q42 Q43 Q44 Q46 Q47 Q53 Q57 Q58 Q516 Q667 Q671

I 1 2 3 3 3 4 4 4 4 4 4 5 5 5 5 6 6
2I 1 4 9 3 5 16 12 10 8 8 4 19 13 13 13 18 12
3I 1 8 27 3 9 64 34 28 16 16 4 71 35 35 35 54 24
Q32 1 2 3 9 3 4 4 4 4 4 4 5 5 5 5 6 6
Q33 1 4 9 3 7 16 14 10 12 8 4 19 13 13 13 18 12
4I 1 16 81 3 17 256 96 82 32 32 4 271 97 97 97 162 48
Q42 1 8 27 3 9 64 36 28 16 16 4 71 35 35 35 54 24
Q43 1 4 9 3 5 16 12 13 8 8 4 22 19 19 13 18 12
Q44 1 8 27 3 11 64 36 28 24 16 4 71 35 35 35 54 24
Q45 1 4 9 3 5 16 12 10 8 8 4 19 13 13 13 18 12
Q46 1 4 9 3 9 16 16 10 16 16 4 19 13 13 13 18 20
Q47 1 2 3 3 3 4 4 4 4 4 16 5 5 5 5 6 6
Q53 1 8 27 3 9 64 34 28 16 16 4 74 35 35 35 54 24
Q57 1 8 27 3 9 64 34 31 16 16 4 74 47 41 35 54 24
Q58 1 8 27 3 9 64 34 28 16 16 4 71 35 41 35 54 24
Q516 1 4 9 3 7 16 14 13 12 8 4 22 19 19 19 18 12
Q652 1 4 9 3 5 16 12 10 8 8 4 19 13 13 13 18 12
Q667 1 4 9 3 5 16 12 16 8 8 4 25 25 25 13 36 12
Q671 1 4 9 3 9 16 16 10 16 16 4 19 13 13 13 18 28

tally associated to these objects. Our focus here is primarily on the algebraic aspects. Crans and Nelson 
demonstrated, for example, that Hom(S, T ) inherits the properties of being commutative and involutory 
from the quandle T . One initial point of curiosity concerned the orders of S, T , and Hom(S, T ). To that 
end, we generated a table (using the RIG package in GAP [16]) of the cardinalities of all Hom quandles 
for small S and T . A portion of this table is reproduced as Table 1. The non-trivial quandles of size n are 
labeled as Qni where i is an index number. For quandles of size less than six, we use the ordering from [7]
reading their tables in Figures 3 and 4 in row-major order. For the quandles of order six, we use the index 
from the list in Table 2 of [3].

We immediately notice that some columns (corresponding to specific target quandles) exhibit more 
variation than others. It’s perhaps not surprising that the entries with trivial targets (I, 2I, 3I, . . ., see 
Section 2 for precise definitions) are all powers of the size of the target, but which powers are they? Certain 
numbers seem to appear much more frequently in the table than others. We explain these observations via 
the results in this paper.

We begin in Section 2 with a brief review of basic quandle definitions and facts, primarily to establish 
the notational conventions of this paper. We continue in Section 3 with a study of the structure of Hom 
quandles. We begin by explaining the relationship between components of the source and components of 
the target. Next, in Section 3.1 we add to the collection of properties in [1] that Hom(S, T ) inherits from 
T and count the number of homomorphisms with trivial image. In Section 3.2 we have our main result, 
Theorem 3.14, relating the homomorphism quandle to group homomorphisms between the components of 
the source and target. We continue in Section 3.3 by showing that for a wide class of identities, every 
homomorphism into a quandle satisfying those identities factors through a quotient of the source, where the 
quotient also satisfies those identities. We put these ingredients together in Section 3.4 in Corollary 3.24, 
which precisely counts and characterizes Hom(S, T ) for T a 2-reductive quandle and arbitrary S. Concrete 
examples illustrating these results within Table 1 appear throughout.

2. Preliminaries

We begin by reviewing definitions and well-known facts about quandles.
A quandle is a set Q equipped with a binary operation � that satisfies the following three axioms:

• x � x = x for all x ∈ Q (idempotency),
• for each y, z ∈ Q, there exists a unique x ∈ Q such that y � x = z (left divisibility), and
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• x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ Q (self-distributivity)

Each element a ∈ Q defines a map La : Q → Q by La(x) = a � x. Then, the left divisibility axiom
implies that each La is a bijection and self-distributivity implies that each La is a quandle homomorphism,
and therefore an automorphism. The inner automorphism group of Q, denoted by Inn(Q), is the normal 
subgroup of Aut(Q) generated by the inner automorphisms La.

A quandle Q is trivial if x � y = y for all x, y ∈ Q. Up to isomorphism, there is a unique trivial quandle 
of a given order. We denote the one-element trivial quandle by I and the n-element one by nI. Numerous 
examples of non-trivial quandles (Alexander, dihedral, Latin, etc.) can be found in the literature [4,11,5,15].

The orbits with respect to the action of Inn(Q) on Q are called the components, or orbits, of Q. Note 
that a quandle is trivial if and only if every component is a singleton. A quandle with only one component 
is called connected. We will refer to a set consisting of one representative from each component as a set 
of base points of Q. We denote by c(Q) the set of the components, which when convenient we think of as 
endowed with the trivial quandle structure. We note that the map cQ : Q −→ c(Q) defined by a �→ aInn(Q)

is a homomorphism of quandles. Accordingly, we will denote the component of a ∈ Q by cQ(a) rather than
aInn(Q) for brevity.

3. Quandle homomorphisms

We commence our investigation of quandle homomorphisms with a relatively simple observation.

Lemma 3.1. Let S and T be quandles and h : S → T be a quandle homomorphism. If a and b are in the 
same component of S, then h(a) and h(b) are in the same component of T .

Proof. Since b is in the same component as a, then b = a1 � (a2 � . . . (an � a)) for some ai ∈ S. Then,
h(b) = h(a1) � (h(a2) � . . . (h(an) � h(a))), so h(b) is in the same component as h(a). In the case of infinite
quandles, we must also consider elements produced by the inverse operation of �, but the same computation 
applies in that case. �

In fact, the above argument shows that h(a) and h(b) are in the same orbit with respect to the subgroup 
of Inn(T ) generated by the image of h.

Lemma 3.1 already illuminates some of the patterns we saw in Table 1. Since the components of a trivial 
target are singletons, Lemma 3.1 implies that the power of the size of the target in the entries for trivial 
targets 2I, 3I, etc. should be the number of components of the source, a fact which easily can be verified 
through inspection of those columns. The remainder of this section is devoted to making this observation 
precise and generalizing it.

If f is a quandle homomorphism from S to T , we can define an equivalence relation ∼ on S by a ∼ b if 
and only if f(a) = f(b) for all a, b ∈ S. This equivalence relation is called the kernel of f . We say ∼ is a 
congruence if whenever a ∼ b and c ∼ d, then a � c ∼ b � d, and further if a � x = c and b � y = d, then 
x ∼ y. The kernel of any homomorphism is a congruence. Given a quandle S and a congruence, we can form 
the quotient quandle S/∼ whose elements are the equivalence classes with the induced operation and this 
is well-defined by the congruence property.

In the case of the homomorphism cQ from Section 2, ker(cQ) is the minimal congruence such that the
quotient is trivial. That is to say, for any congruence α, Q/α is trivial if and only if ker(cQ) ⊆ α. On the
other hand for congruences contained in ker(cQ) we have:

Proposition 3.2. Let Q be a quandle and α ⊆ ker(cQ) a congruence on Q. Then cQ(a) = cQ(b) if and only
if cQ/α([a]α) = cQ/α([b]α) and hence |c(Q)| = |c(Q/α)|.
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Proof. We will show that we have a bijection between c(Q) and c(Q/α). The following diagram commutes:

Q
πα

cQ

Q/α

cQ/α

c(Q)
φ

c(Q/α)

where φ(cQ(a)) = cQ/α([a]α). Moreover, since α ⊆ ker(cQ), the following diagram also commutes:

Q

cQ

πα

Q/α

cQ/α

c(Q) c(Q/α)
ψ

where ψ(cQ/α([a]α)) = cQ(a). Thus, the maps φ and ψ are inverses of one another. �
Now, suppose T satisfies an identity p(x1, . . . , xn) = q(x1, . . . , xn) and h ∈ Hom(S, T ). Then, for any

x1, . . . , xn ∈ S,

h(p(x1, . . . , xn)) = p(h(x1), . . . , h(xn))

h(q(x1, . . . , xn)) = q(h(x1), . . . , h(xn)).

Therefore, (p(x1, . . . , xn), q(x1, . . . , xn)) ∈ ker(h).
For any collection of identities K, we will denote by Cg(K) the congruence generated by K. That is, 

Cg(K) is the minimal congruence such that a ∼ b whenever there exist x1, . . . , xn such that a = p(x1, . . . , xn)
and b = q(x1, . . . , xn) with p = q being an identity in K. Now, we have the following result.

Theorem 3.3. Let S and T be quandles and let K be the set of identities satisfied by T . Then Hom(S, T ) ∼=
Hom(S/Cg(K), T ) as sets.

Proof. Let α = Cg(K). The remark above shows that for every h ∈ Hom(S, T ), α ⊆ ker(h). Thus, by the 
First Homomorphism Theorem, there exists a unique h̃ ∈ Hom(S/α, T ) such that h = h̃ ◦ πα. Thus, the
map:

ψ : Hom(S, T ) → Hom(S/α, T ), h �→ h̃,

is a bijection with inverse given by f �→ f ◦ πα for every f ∈ Hom(S/α, T ). �
Example 3.4. Let T be a trivial quandle, S be a quandle and h ∈ Hom(S, T ). Then, since h(a � b) =
h(a) � h(b) = h(b), for a, b ∈ S, h is constant on each of the components of S. So, we have that h factors 
through S/ ker(cS) = c(S), that is, h corresponds to a map from c(S) to T . Hence, Hom(S, T ) ∼= T c(S).

3.1. Hom quandles

Thus far we have only considered Hom(S, T ) as a set. In fact, it has a richer structure when T is medial, 
meaning that T satisfies the identity (x �y) �(z�w) = (x �z) �(y�w) for all x, y, z, and w. By Theorem 4.1 
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of [1], Hom(S, T ) is a medial quandle under the pointwise operation (h � k)(a) = h(a) � k(a) when T is 
medial. Furthermore, Theorems 4.7 and 4.8 of [1] tell us that T embeds into Hom(S, T ) and Hom(S, T )
embeds into T r where r is the minimal cardinality of a set of generators of S, respectively.

We begin by adding to the collection of properties in [1] that Hom(S, T ) inherits from T . Our first goal 
is to show that connectivity is such property, and to do so we need the following notion. A quandle is called 
Latin when for each y ∈ T , the map x �→ x � y is a permutation. (The operation tables for such quandles 
are Latin squares.)

Lemma 3.5. If T is a finite Latin quandle, then all subquandles of powers of T are Latin.

Proof. Since T is finite, each map Ry : x → x � y has finite order; let n be the least common multiple of
all such orders. We must show that for any index set I, every subquandle S of T I is Latin. For any element 
a = {yi : i ∈ I} ∈ S the map Ra : {xi : i ∈ I} �→ {xi � yi : i ∈ I} has order m ≤ n. We must show that
for every b ∈ S, the equation x � a = b has a unique solution. But, we have x � a = Ra(x) = b if and only
if x = R−1

a (b) = Rm−1
a (b) = ((b � a) � . . .) � a ∈ S. �

Lemma 3.6. Let T be a finite medial connected quandle. Then Hom(S, T ) is connected for every quandle S.

Proof. Since T is connected and medial, then it is Latin [12, Proposition 1]. By our previous lemma, so are 
all of its powers and their subquandles. Since Hom(S, T ) embeds into a power of T , then it is connected. �
Theorem 3.7. Let S be a quandle and T be a medial quandle. Then T satisfies an identity if and only if 
Hom(S, T ) does.

Proof. By Theorems 4.7 and 4.8 of [1], Hom(S, T ) is a subquandle of a power of T , and T is a subquandle 
of Hom(S, T ). Hence T satisfies an identity if and only if Hom(S, T ) does. �
Lemma 3.8. Let S, R be quandles, T be a medial quandle and h : S → R be a homomorphism. Then the map 
Hom(R, T ) → Hom(S, T ) given by k �→ k ◦ h is a quandle homomorphism.

Proof. Clearly if k ∈ Hom(R, T ), then k ◦ h ∈ Hom(S, T ). Moreover:

[(k � l) ◦ h](a) = (k(h(a)) � l(h(a)) = (k ◦ h)(a) � (l ◦ h)(a) = [(k ◦ h) � (l ◦ h)](a)

for every a ∈ S. �
Lemma 3.9. Let S be a quandle, T and U be medial quandles and h ∈ Hom(T, U). Then Hom(S, T ) →
Hom(S, U) given by k �→ h ◦ k is a quandle homomorphism.

Proof. Clearly if k ∈ Hom(S, T ), then h ◦ k ∈ Hom(S, U). Moreover:

h ◦ (k � l)(a) = h(k(a) � l(a)) = (h ◦ k)(a) � (h ◦ l)(a) = [(h ◦ k) � (h ◦ l)](a)

for every a ∈ S. �
The previous two lemmas could be restated as saying that Hom(−, T ) is a functor from the category of 

quandles to the category of medial quandles and Hom(S, −) is an endofunctor of the category of medial 
quandles. In particular, if U is a subquandle of T , then Hom(S, U) is a subquandle of Hom(S, T ).
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Lemma 3.10. Let S be a quandle and T be a medial quandle. Then

Triv(S, T ) = {h ∈ Hom(S, T ) : Im(h) is a trivial quandle}

is a subquandle of Hom(S, T ).

Proof. Let h, k ∈ Triv(S, T ). Then,

(h � k)(a) � (h � k)(b) = (h(a) � k(a)) � (h(b) � k(b)) = (h(a) � h(b)) � (k(a) � k(b))

= h(b) � k(b) = (h � k)(b)

for every a, b ∈ Q. So Im(h �k) is a trivial subquandle of T meaning Triv(S, T ) is closed under �. It remains 
to show that the elements required by the second quandle axiom lie in Triv(S, T ). Let l : S → T be the 
unique homomorphism such that h � l = k. We need to show that for every a, b ∈ S, l(a) � l(b) = l(b). 
Since l is a homomorphism, l(a) � l(b) = l(a � b), which is in turn the unique element in T such that 
h(a � b) � l(a � b) = k(a � b). On the other hand, h(a � b) � l(b) = (h(a) �h(b)) � l(b) = h(b) � l(b) = k(b) =
k(a) � k(b) = k(a � b). Thus, l(b) is also the unique element with this property, i.e., l(a) � l(b) = l(b). So 
Triv(S, T ) is a subquandle of Hom(S, T ). �

Not only is Triv(S, T ) a subquandle of the Hom quandle, but we can give a precise characterization of 
its elements in the following.

Lemma 3.11. Let S be a quandle and T be a medial quandle. Then:

Triv(S, T ) ∼= {f : c(S) → U : U is a trivial subquandle of T and f is surjective}

as sets. If U is a trivial subquandle of size n ≤ |c(S)|, then the number of homomorphisms with image equal 
to U is

1
n!

n∑
j=1

(−1)n−j

(
n

j

)
j|c(S)| (1)

Proof. Let h ∈ Triv(S, T ). Then h factors through S/ker(cS) as in Example 3.4. Formula (1) is the Stirling
number of the second kind, which gives the number of surjective maps from c(S) to U . �

Note that Triv(S, T ) contains all the constant maps from S to T , but it is not necessarily itself a trivial 
subquandle of Hom(S, T ).

Corollary 3.12. Let R and S be quandles such that |c(R)| = |c(S)| and T be a medial quandle. Then 
Triv(R, T ) ∼= Triv(S, T ).

3.2. From quandle to group homomorphisms

In this section, we extend the isomorphism theorem (Theorem 4.2) in [10] to provide considerable detailed 
information about homomorphisms between medial quandles, using the notion of “indecomposable affine 
mesh,” defined in [10], which we will call an ia-mesh for brevity. Given a collection of abelian groups Ai

for i in some index set I, with homomorphisms φi,j : Ai → Aj and selected elements ci,j ∈ Aj , the triple
(Ai, φi,j , ci,j)i,j∈I is called an ia-mesh, if the following conditions hold (for arbitrary indices i, j, j′, and k).
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• 1 − φi,i is an automorphism of Ai

• ci,i = 0
• φj,k ◦ φi,j = φj′,k ◦ φi,j′

• φj,k(ci,j) = φk,k(ci,k − cj,k)
• the elements ci,j and φi,j(a) for i, j ∈ I and a ∈ Ai generate the group Aj

Given an ia-mesh, we can define a binary operation � on the disjoint union of the Ai as follows: for a ∈ Ai

and b ∈ Aj , a � b = ci,j +φi,j(a) + (1 −φj,j)(b). Then Lemmas 3.8 through 3.13 of [10] may be summarized
as:

Theorem 3.13. (
⋃
Ai, �) is always a medial quandle with components {Ai}i∈I , and every medial quandle

arises in this fashion.

Now we extend Theorem 4.1 from [10] to understand homomorphisms between medial quandles. 
Lemma 3.1 tells us that any homomorphism h : S → T of quandles induces a mapping on their com-
ponents, ĥ : c(S) → c(T ), defined by cS(a) �→ cT (h(a)). We consider the conditions under which one can go
in the opposite direction, i.e., lift a mapping g : c(S) → c(T ) to a homomorphism g̃ : S → T .

Theorem 3.14. Let S = (Si, σi,j , si,j)i,j∈I and T = (Ti, τi,j , ti,j)i,j∈J be medial quandles and let g : I → J

be a mapping. Then there exists a homomorphism h : S → T with ĥ = g if and only if for every i ∈ I there 
exist group homomorphisms ki : Si → Tg(i) and elements ei ∈ Tg(i) such that for every i, j ∈ c(S),

(i) kj ◦ σi,j = τg(i),g(j) ◦ ki
(ii) kj(si,j) = tg(i),g(j) + τg(i),g(j)(ei) − τg(j),g(j)(ej)

Proof. (⇒) Define ei to be h(0i), where 0i is the zero element of Si. Then define the maps ki by ki(a) =
h(a) − ei. We must show that the ki are group homomorphisms and that the two conditions above are
satisfied. We first note that for arbitrary a ∈ Sj and b ∈ Si,

h(sj,i + σj,i(a)) = h(a � 0i) = h(a) � h(0i) = tg(j),g(i) + τg(j),g(i)(h(a)) + (1 − τg(i),g(i))(ei), and

h((1 − σi,i)(b)) = h(0i � b) = h(0i) � h(b) = τg(i),g(i)(ei) + (1 − τg(i),g(i))(h(b)).

To show that ki is a group homomorphism it suffices to consider sums c + d in Si where d is of the form
(1 − σi,i)(b) and c is of the form sj,i + σj,i(a), since the former is arbitrary by the first ia-mesh condition
and the latter generate Si by the last ia-mesh condition. We then have

ki(c + d) = h(c + d) − ei = h(sj,i + σj,i(a) + (1 − σi,i)(b)) − ei

= h(a � b) − ei = (h(a) � h(b)) − ei

= tg(j),g(i) + τg(j),g(i)(h(a)) + (1 − τg(i),g(i))(h(b)) − ei

= h(sj,i + σj,i(a)) − (1 − τg(i),g(i))(ei) + h((1 − σi,i)(b)) − τg(i),g(i)(ei) − ei

= h(c) − ei + h(d) − ei

= ki(c) + ki(d),

as desired. Now we must check that identities (i) and (ii) hold. Since 0i � 0j = si,j then

kj(si,j) = kj(0i � 0j) = h(0i) � h(0j) − ej = ei � ej − ej = tg(i),g(j) + τg(i),g(j)(ei) + (1 − τg(j),g(j))(ej) − ej
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which establishes (ii). For a ∈ Si, a � 0j = si,j + σi,j(a). Then,

kj(σi,j(a)) = kj(si,j + σi,j(a)) − kj(si,j)

= h(a) � ej − ej − tg(i),g(j) − τg(i),g(j)(ei) + τg(j),g(j)(ej)

= tg(i),g(j) + τg(i),g(j)(h(a)) + (1 − τg(j),g(j))(ej) − ej − tg(i),g(j) − τg(i),g(j)(ei) + τg(j),g(j)(ej)

= τg(i),g(j)(h(a)) − τg(i),g(j)(ei)

= τg(i),g(j)(h(a) − ei) = τg(i),g(j)(ki(a))

which is (i).

(⇐) Let a ∈ S and i = cS(a). We define h(a) = ki(a) + ei. We must show that h is a quandle homomor-
phism. For a ∈ Si and b ∈ Sj we have

h(a � b) = h(si,j + τi,j(a) + (1 − τj,j(b))

= kj(si,j + τi,j(a) + (1 − τj,j)(b)) + ej

= kj(si,j) + kj(σi,j(a)) + kj((1 − σj,j)(b)) + ej

= tg(i),g(j) + τg(i),g(j)(ei) − τg(j),g(j)(ej) + τg(i),g(j)(ki(a)) + kj(b) − τg(j),g(j)(kj(b)) + ej

= tg(i),g(j) + τg(i),g(j)(h(a)) − τg(j),g(j)(h(b)) + h(b)

= tg(i),g(j) + τg(i),g(j)(h(a)) + (1 − τg(j),g(j))(h(b))

= h(a) � h(b) �
Note that this proof actually shows that we have a bijection between the elements of Hom(S, T ) and 

sequences of group homomorphisms and elements (ki, ei) satisfying properties (i) and (ii). In this bijection,
on an individual component Si, we have h(a) = ki(a) + ei. In other words, all quandle homomorphisms
between S and T are componentwise affine maps between the components of S and T , precisely the ones 
satisfying conditions (i) and (ii) above.

3.3. The source of a Hom quandle

In the previous section we focused on Hom(S, T ) when both S and T are medial. However, by Theorem 3.3
we know that for any quandle S, Hom(S, T ) is always identical to Hom(R, T ) for some medial R. In this 
section we provide the details to make this statement precise.

We begin with the following definition:

Definition 3.15. Let Q be a quandle and

C = {((a � b) � (c � d), (a � c) � (b � d)) : a, b, c, d ∈ Q}

We will denote the congruence generated by C by mQ.

Note that mQ is the smallest congruence such that the quotient is medial. Moreover, since both terms
in the definition of C above belong to cQ(d), we have mQ ⊆ ker(cQ), and hence |c(Q)| = |c(Q/mQ)| by
Proposition 3.2.

Theorem 3.16. Let S be a quandle and T be a medial quandle. Then S/mS is medial and Hom(S, T ) ∼=
Hom(S/mS , T ) as quandles.
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Proof. The proof is analogous to that of Theorem 3.3, with the observation that the bijection ψ is actually 
an isomorphism of quandles. �

This result explains why rows 2I and Q45 of Table 1 are identical; 2I is the medial quotient of the
non-medial Q45.

Finite connected medial quandles are well studied as they can be understood as finite modules over the 
Laurent polynomials [8,6,9].

Lemma 3.17. Let T be a finite connected medial quandle and S be a subquandle of T . Then |S| divides |T |.

Proof. Every finite connected medial quandle is Latin and it is isomorphic to a quandle QAff(A, f), where A
is an abelian group, f ∈ Aut(A) and a � b = (1 −f)(a) +f(b) for every a, b ∈ T [8,9]. Let S be a subquandle 
containing 0. Then for any b ∈ S, there must also be a y ∈ S such that 0 � y = b, namely y = f−1(b). 
Further, since S is Latin by Lemma 3.5, for any a ∈ S, there must be an x ∈ S such that x � 0 = a, i.e., 
(1 − f)(x) = a. Then S contains x � y = (1 − f)(x) + f(y) = a + b. Therefore S is a subgroup of A.

If Q is an arbitrary subquandle, choose any a ∈ Q. Then Q = a + S where S is a subquandle containing 
0, since the mappings b �→ a + b are automorphisms of T . Hence, every subquandle is a subgroup or a coset 
of a subgroup of A, and so has order dividing that of T . �
Theorem 3.18. Let S and T be finite quandles of relatively prime orders with T medial and connected. Then 
Hom(S, T ) ∼= T .

Proof. By Lemma 3.5 and Lemma 3.17 every subquandle of T is Latin and its size divides the size of T . In 
particular this is true for the image of any homomorphism into T .

Let S be a quandle and h : S → T . Suppose h(a) � h(b) = h(c). Then, for any b′ ∈ [b]ker(h), h(a � b′) =
h(a) � h(b′) = h(c), so a � b′ ∈ [c]ker(h). In other words, La : [b] → [c]. Since La is injective, |[b]| ≤ |[c]|.
On the other hand, Im(h) is a connected subquandle of T , so this relationship must hold for any pair of 
equivalence classes. Hence, we conclude that all the equivalence classes of ker(h) have the same size, so 
|S| = | Im(h)||[a]ker(h)|. Thus, if |S| and |T | are relatively prime, | Im(h)| = 1. �

This corollary explains the preponderance of 3’s in the column for Q32 and 4’s in the column for Q47 in
Table 1 as both of these are medial connected quandles.

The results of this section combined with Theorem 3.14 mean that, in some sense, we have determined 
all of the quandles of the form Hom(S, T ). Given an arbitrary S, we form its medial quotient S/mS, realize
it as an ia-mesh, and now determine the collections of group homomorphisms ki and constants ei as in
Theorem 3.14.

3.4. Homomorphism into 2-reductive quandles

The general observation at the end of the previous Section 3.3 can be made quite concrete in the case of 
“2-reductive” quandles. A quandle Q is 2-reductive if (x � y) � z = y� z for all x, y, z ∈ Q. Jedlicka et al. in 
[10] provide a structure theorem for 2-reductive quandles which we take advantage of in this section to study
the space of quandle homomorphisms into such targets. (Note that [10] uses a slightly different identity to
define 2-reductive; the two definitions are equivalent in the presence of mediality, and the definition above
implies mediality. In short, 2-reductive as defined here coincides with “2-reductive medial” as used in [10].)

In particular, Theorems 3.14 and 6.9 of [10] can be summarized as follows:

Theorem 3.19. [10] An ia-mesh (Ai, φi,j , ci)i,j∈I gives rise to a 2-reductive quandle if φi,j = 0 for all i, j ∈ I.
Moreover, all 2-reductive quandles arise in this way.
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In light of this result, we will often drop the φi,j altogether from an ia-mesh when it is clear that we are
concerned with a 2-reductive quandle. A corollary of Theorem 3.19 is that all components of 2-reductive 
quandles are trivial. Therefore the only connected 2-reductive quandle is the one-element quandle I.

Again, we can understand arbitrary source quandles by employing a procedure similar to that of Sec-
tion 3.3 tailored to the 2-reductive case.

Definition 3.20. Let Q be a quandle and

C = {((a � b) � c, b � c) : a, b, c ∈ Q}

We will denote the congruence generated by C by γQ.

Note that γQ is the smallest congruence such that the quotient is 2-reductive, and again γQ ⊆ ker(cQ),
hence |c(Q)| = |c(Q/γQ)|. So, we have the following:

Theorem 3.21. Let S be a quandle and T a 2-reductive quandle. Then S/γS is 2-reductive and Hom(S, T ) ∼=
Hom(S/γS , T ).

Corollary 3.22. Let S be a connected quandle and T be a 2-reductive quandle. Then every homomorphism 
between S and T is a constant mapping and Hom(S, T ) ∼= T .

Proof. We have that γS is the full relation since S/γS is a connected 2-reductive quandle. Hence it is trivial
and connected, so |S/γS| = 1. Thus, Hom(S, T ) = Hom(I, T ) ∼= T . �

This corollary tells us that 2-reductive quandles will not provide additional information about a knot; 
they can however be useful for coloring links. See for example [2].

Lemma 3.23. Let S be a quandle, T = (Ti, ti,j)i,j∈c(T ) a 2-reductive quandle, and h : S → T a homomor-
phism. Then h is completely determined by the image of a set of base points.

Proof. Let {bi : i ∈ c(S)} be a set of base points of S. Let h(bi) = ei ∈ ĥ(i). The images of the base points
determine the mapping ĥ, by virtue of Lemma 3.1. Then the image of any a in component i ∈ c(S) is given 
by:

h(a) = h(ai1 � (ai2 � (. . . (ain � bi))))

= h(ai1) � (h(ai2) � (. . . (h(ain) � h(bi))))

= ei +
n∑

�=1

tĥ(i�),ĥ(i)

Thus, h is completely determined by the image of the base points. �
In this setting, Theorem 3.14 has a powerful corollary for the case of 2-reductive quandles.

Corollary 3.24. Let S be a quandle with base points {bi : i ∈ c(S)}, S/γS = (Si, si,j)i,j∈c(S) and T =
(Ti, ti,j)i,j∈c(T ) be a 2-reductive quandle. Let g : c(S) → c(T ) and {ei ∈ g(i) : i ∈ c(S)} ⊆ T . Then the
following are equivalent:

(i) there exists a quandle homomorphism h : S → T such that ĥ = g and h(bi) = ei,
(ii) for each i ∈ c(S), the map ki : Si → Tg(i) induced by sj,i �→ tg(j),g(i) is a group homomorphism,
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(iii) for any selection of elements fi ∈ g(i), there exists a unique homomorphism h : S → T such that
h(bi) = fi.

Proof. (i) ⇒ (ii) Follows from Theorem 3.14 since condition (i) of that result is vacuous in the 2-reductive 
case and condition (ii) is precisely the definition of the maps ki above, since the sj,i generate the Si.

(ii) ⇒ (iii) As in the previous implication, the ki give us exactly the collection of group homomorphisms
required by Theorem 3.14. Now, note that with all the σi,j and τi,j equal to zero, the constants ei play
no role in the condition. Hence, the quandle homomorphism h : S → T must exist for any choice of ei.
Uniqueness follows from Lemma 3.23.

(iii) ⇒ (i) Clear. �
This corollary exposes an interesting dichotomy; for a given map of components, there are either no 

homomorphisms that correspond to that map, or we can map basepoints arbitrarily.
As a consequence of Corollary 3.24 we can compute the size of Hom quandles with 2-reductive targets.

Corollary 3.25. Let S be a quandle and T be a 2-reductive quandle. Then:

|Hom(S, T )| =
∑

g:c(S)→c(T )

δg
∏

i∈c(S)

|g(i)| where δg =
{

1, if Corollary 3.24 (ii) holds for g
0, otherwise.

Note that if all components of T have the same size n, then the size of the Hom set from S into T
will always be a multiple of n|c(S)|. The Q46 and Q667 columns in Table 1 illustrate this phenomenon.
The quandle Q46 has two components of order two, while Q667 has two components of order three, each
isomorphic to 3I. For an example of when the components of T are not the same size, consider Q516, which
has components of sizes two and three. Consider the source Q46. There are four possible maps g, but if the
two components of Q46 are mapped to different components of Q667, then one of the ki in Corollary 3.24
(ii) would have to be a homomorphism from Z2 to Z3. Hence, only the g which map both components of
the source to a single component in the target contribute to the sum, and we have 2 × 2 + 3 × 3 = 13
homomorphisms as indicated in Table 1.

The conditions on T in Corollary 3.24 may seem quite specialized. However, Tables 1 and 2 of [10] show 
that the vast bulk of quandles are, in fact, 2-reductive, perhaps asymptotically all of them.

Corollary 3.26. Let S be a quandle and T be a 2-reductive quandle. Then Hom(S, T ) embeds in T c(S) and
Hom(S, T ) =

⋃
i Xi where each Xi is a component of T c(S).

Proof. Let {bi : i ∈ c(S)} be a set of base points of S. The embedding k : Hom(S, T ) → T c(S) defined by
h �→ (h(b1), . . . , h(bn)) is injective by Corollary 3.24 (iii) and is a homomorphism due to the component-wise
definition of the quandle structure on Hom(S, T ). The components of T c(S) are given by C =

∏
i∈c(S)

Tji where

Tji are components of T . Let k(h) ∈ C, i.e., h(bi) = ei ∈ Tji for every i ∈ c(S). Then by (iii) of Corollary 3.24
with g(i) = Tji , we have C ⊂ Im(k). �

Note that the embedding given in Corollary 3.26 refines the embedding in Theorem 4.8 of [1], since the 
minimum cardinality of a set of generators is at least |c(S)| (since we need at least one element from each 
component to generate the quandle). Note that if S is already 2-reductive, then it is generated by any set 
of basepoints, so the minimum number of generators is equal to the number of components. Moreover, the 
isomorphic copy of Hom(S, T ) in T c(S) is a union of components, not merely an arbitrary subquandle.
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Corollary 3.27. Let S be a quandle and T = (Ti, ti,j)i,j∈c(T ) be a 2-reductive quandle. Let

G = {g : c(S) → c(T ) : tg(i),g(j) = 0 for all i, j ∈ c(S)}

Then

Triv(S, T ) ∼=
⋃
g∈G

∏
i∈c(S)

Tg(i)

In particular 
⋃

i∈c(T ) T
c(S)
i ≤ Triv(S, T ).

Proof. Let h ∈ Triv(S, T ). Then h(ej) = h(ei) � h(ej) = h(ej) + tĥ(i),ĥ(j), so tĥ(i),ĥ(j) = 0 for every
i, j ∈ c(Q). Thus, ĥ ∈ G. On the other hand, if g ∈ G then each ki of Corollary 3.24 (ii) is the constant zero
map, which is always a homomorphism. Hence, 

∏
i∈c(S) Tg(i) ≤ Triv(S, T ). �

If all the components of the source are connected quandles, the homomorphisms are determined by trivial 
subquandles of the target.

Corollary 3.28. Let S be a quandle and T be a 2-reductive quandle. If all the components of S are themselves 
connected, then Hom(S, T ) = Triv(S, T ).

Proof. Since the components of S/γS are connected and trivial, then S/ ker(c(S)) = S/γS . So S/γS is trivial
and therefore, for any h ∈ Hom(S, T ), Im(h) is a trivial subquandle of S. �

We include Q652 in Table 1 to illustrate this corollary. It has two components, each of which is isomor-
phic to the connected Q32. The homomorphisms from Q652 into a 2-reductive quandle, such as Q46, are
therefore simply the trivial ones. We can count them using Lemma 3.11: one each for the four single-element 
subquandles of Q46, and two each for the two trivial two-element subquandles.

Example 3.29. This example illustrates how Hom(S, T ) depends in a significant way on the constants in

the ia-mesh for S. Let T =
(

[Zn Zm], t =
[

0 1m
1n 0

])
and let S = (Si, si,j)i,j∈I be a 2-reductive quandle.

By Corollary 3.27, we have Triv(S, T ) = Zc(S)
n ∪ Zc(S)

m . Let h ∈ Hom(S, T ). If si,j = 0, then kj(si,j) =
tĥ(i),ĥ(j) = 0, and therefore ĥ(i) = ĥ(j). In particular if any component Sk of S acts trivially, i.e., sk,j = 0
for every j ∈ S, then ĥ(i) = ĥ(k) for every i ∈ I, which means Hom(S, T ) = Triv(S, T ).

Taken together, these results explain all of the entries in Table 1 except for the column of Q671, the only
medial quandle in the table that is not 2-reductive. However, since none of the quandles in Table 1 have 
more than two non-singleton components, it is possible to see using Theorem 3.14 that for all of the sources 
into Q671 the images of the homomorphisms lie in a single component of Q671. Hence, in fact, we can count
them using Corollary 3.24. Presumably this will not be the case for larger sources and/or targets that are 
not 2-reductive.

Corollary 3.26 gives us the precise structure of Hom(S, T ) when T is 2-reductive as a union of products 
of components of T . An interesting direction for further investigation would be to understand the behavior 
of the (ki, ei) of Theorem 3.14 sufficiently well to provide a similarly precise characterization of Hom(S, T )
when T is not necessarily 2-reductive.
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