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Topology and its Applications 108 (2000) 7–36

Cyclic Dehn surgery and the A-polynomial
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Abstract

We present a necessary condition for Dehn surgery on a knot inS3 to be cyclic which is based
on the A-polynomial of the knot. The condition involves a width of the Newton polygon of the A-
polynomial, and provides a simple method of computing a list of possible cyclic surgery slopes.
The width produces a list of at most three slopes for a hyperbolic knot which contains no closed
essential surface in its complement (in agreement with the Cyclic Surgery Theorem). We conclude
with an application to cyclic surgeries along non-boundary slopes of hyperbolic mutant knots. 2000
Elsevier Science B.V. All rights reserved.

Keywords:Knot; A-polynomial; Polynomial knot invariant; Dehn surgery; Newton polygon

AMS classification: Primary 57M50, Secondary 57M25

1. Introduction

In [3], Cooper et al. introduced a new two-variable polynomial knot invariant called
the A-polynomial. The A-polynomial is derived from the set of representations of the
knot group in SL2C, and it has a number of remarkable features. Foremost among these
is that a certain polygon in the plane, called the Newton polygon of the A-polynomial,
displays detailed information concerning both the topology and the geometry of the knot
complement.

We shall investigate the relationship between cyclic surgery on hyperbolic knots inS3

and the Newton polygon. Our motivation for doing this is the Cyclic Surgery Theorem
of Culler et al. The Cyclic Surgery Theorem was proved, in part, using the algebraic
structure of the set of representations of the knot group in SL2C. Since the A-polynomial
carries information regarding this set, it is not surprising that it would encode information

E-mail address:pshanaha@lmumail.lmu.edu (P.D. Shanahan).
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concerning cyclic surgeries. We shall show that information about which surgeries are
cyclic is encoded by a certain width of the Newton polygon of the A-polynomial.

Before stating the results, we establish some terminology and notation. LetK be a knot
in S3, and letX denote the complement of an open regular neighborhood ofK. Since∂X is
a torus, any simple closed curve in∂X may be parameterized (up to isotopy) by a rational
slopep/q ∈ Q ∪ ∞. The numeratorp represents the number of times the curve wraps
around∂X in the meridional direction, and the denominatorq the number of times in the
longitudinal direction. Ap/q Dehn surgeryonK is the process of attaching a solid torus
V toX so that the boundary of a meridional disk ofV maps to a curve of slopep/q on∂X.
We shall denote the closed orientable three-manifold obtained fromp/q surgery onK by
X(p/q). We callp/q a cyclic surgery slopeif π1(X(p/q)) is a cyclic group.

A surface inX is essentialif it is properly embedded, orientable, incompressible,
boundary-incompressible, and non-boundary parallel. If an essential surface meets∂X,
then it does so in a finite number of parallel curves. The slope of these curves is called the
boundary slopeof the surface. A slope is astrict boundary slopeif it is the boundary slope
of some essential surface which is not the fiber of any fibration ofX over the circle.

The A-polynomial of a knotK will be denoted byAK(L,M). By definition, the
A-polynomial defines a complex algebraic curve inC2 which is associated to a projection
of the set of representations ofπ1(X) in SL2C. It was shown by Culler and Shalen,
in [6], that this curve provides information about essential surfaces inX; subsequently,
in [3], it was shown that this information may be taken from the Newton polygon of the
A-polynomial.

Definition 1.1. The Newton polygonof a polynomialP(L,M), denoted byNewt(P ), is
the convex hull inR2 of {(a, b) | za,bLaMb is a term ofP(L,M) with za,b 6= 0}.

In [1], Cooper shows that ifπ1(X) satisfies a technical condition (called property
NCIS−) and if p/q is a cyclic surgery slope, then the curve defined byAK(L,M) will
intersect a particular curve associated top/q surgery in a minimal set of points. We shall
extend Cooper’s result to include intersection multiplicity and ideal intersections of the
projective (non-smooth) completions of these curves. We then use a classical theorem of
algebraic geometry (Bézout’s Theorem) to associate the algebraic number of intersections
of these curves to a certain width ofNewt(AK).

Definition 1.2. Thep/q width of Newt(AK) is one less than the number of lines of slope
p/q which intersectNewt(AK) and contain a point of the integer lattice.

Letw :Q∪∞→ Z be thewidth functionon Newt(AK) defined byw(p/q)= thep/q
width of Newt(AK). Our main result is that the width function can be used to compute a
list of possible cyclic surgery slopes.

Corollary 3.15. LetK be a knot inS3 with AK(L,M) 6= 1, and suppose thatX contains
no closed essential surface. Ifp/q surgery onK is cyclic, thenp/q is not the slope of
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a side of Newt(AK). Moreover,w(p/q) is the minimal value ofw restricted to the set of
slopes which are not the slope of a side of Newt(AK).

If K is a hyperbolic knot, then there is a discrete faithful representation ofπ1(X) in
SL2C. Associated to this representation is a special factorHK(L,M) of AK(L,M). We
shall use this factor to prove a reformulation of the Cyclic Surgery Theorem in terms of the
p/q width.

Theorem 4.5. Let K be a hyperbolic knot inS3 with no closed essential surface in its
complement. Letw denote the width function on Newt(HK). Then there are at most three
slopesp/q such thatp/q is not a slope of a side of Newt(HK) andw(p/q) is minimal.
Hence, there are at most three cyclic surgery slopes.

We can use these results to compute a list of candidate slopes for cyclic surgery from
the Newton polygon. The hope, however, is that new results regarding cyclic surgery will
be produced from known properties of Newton polygons. An example in this vein is the
following. Let ∆(p/q, r/s) denote the minimal geometric intersection number of two
curves of slopep/q and r/s on the torus. IfK andK ′ are mutant knots, then there is
a common factor ofAK(L,M) andAK ′(L,M). When the mutants are hyperbolic, this
common factor divides the hyperbolic factors of the two knots. This fact leads to the
following result.

Theorem 5.1. Let K andK ′ be hyperbolic mutant knots inS3. Suppose that both knot
groups have property NCIS−. If p/q andr/s are slopes such that:

(1) p/q surgery onK is cyclic,
(2) r/s surgery onK ′ is cyclic, and
(3) neitherp/q nor r/s is a strict boundary slope,

then∆(p/q, r/s)6 1.

2. Preliminaries

Throughout the paper we shall work with a fixed choice of basis,{µ,λ}, of π1(∂X).
The generatorµ is represented by the boundary of a meridional disk of a closed regular
neighborhood ofK, andλ generates the kernel of the inclusion map,

i :H1(∂X)→H1(X).

Henceforth, we shall refer to these two generators as themeridian and longitude,
respectively.

A representationρ of π1(X) in SL2C is a homomorphism of groups

ρ :π1(X)→ SL2C.

We shall letR denote the set of all representations ofπ1(X) in SL2C. A representation is
calledreducibleif there is a non-trivial proper subspace fixed by the entire image of the
representation; otherwise, it is calledirreducible.
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Recall that ifI is an ideal inC[X1,X2, . . . ,Xm], then the complex affinealgebraic set
defined byI is the common zero set inCm of all polynomials inI; equivalently, it is the
common zero set of any generating set of polynomials ofI. A curve(or affine curve) is an
algebraic set inC2 associated to a principal ideal inC[X1,X2]; if P(X1,X2) is a generator
of this ideal, then we shall denote the curve byV(P ). If P has no multiple factors, then we
define thedegreeof V(P ) to be the degree of the polynomialP , i.e.,

deg
(
V(P )

)=max
{
a + b | za,b 6= 0

}
,

where

P(X1,X2)=
∑

za,bX
a
1X

b
2.

SinceX is compact, there is a finite presentation ofπ1(X). Representations inR may
be thought of as an assignment of matrices in SL2C to the generators ofπ1(X). Therefore,
given a presentation ofπ1(X) with n generators, representations inR correspond to points
in C4n. The relations inπ1(X) impose conditions on which points ofC4n correspond
to representations. If the entries of the matrices are viewed as indeterminates, then each
relation produces four polynomial equations. The set of simultaneous zeroes of these
polynomial equations is precisely the subset ofC4n corresponding toR. Therefore,R
is an algebraic set.

Givenρ ∈ R andA ∈ SL2C, defineρA by ρA(g)= Aρ(g)A−1. ThenρA is also a rep-
resentation inR. The representationsρ and ρA are calledconjugate representations.
Conjugate representations encode the same information aboutπ1(X). Much of the
redundancy associated to conjugate representations inR can be avoided by restricting to
the subset

RU :=
{
ρ ∈ R | ρ(µ) andρ(λ) are upper triangular

}
.

Notice thatRU is an algebraic subset ofR. Moreover, no conjugacy class of representations
is lost in this restriction because every representation is conjugate to one which is
simultaneously upper triangular onµ andλ. We could avoid all redundancy associated
to conjugate representations if we focused on the character variety. We shall not do this,
however, since the definition of the A-polynomial is less cumbersome withRU .

There is a natural projection ofRU intoC2. Suppose thatρ ∈ RU has values

ρ(λ)=
(
l ∗
0 l−1

)
and ρ(µ)=

(
m ∗
0 m−1

)
.

Define ξ :RU → C2 by ξ(ρ) = (l,m). It is shown in [3] that the Zariski closure of the
image ofξ is an algebraic set inC2. The definition of the A-polynomial is based on the
fact that a complex dimension one algebraic set inC2 is a curve.

Definition 2.1. Let
⋃n
i=1Ci be the union of the irreducible complex dimension one

components ofξ(RU ) with Ci 6= Cj when i 6= j . For eachi, let FCi (L,M) be an
irreducible polynomial definingCi . TheA-polynomialof K is

AK(L,M) :=
∏n
i=1FCi (L,M)

L− 1
.
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Notice that the A-polynomial is only well defined up to multiplication by a non-zero
complex number. In [3], it is shown that one may scale so that the coefficients of the
A-polynomial are integral. If we insist that the greatest common factor of the coefficients
is 1, then the A-polynomial is well defined up to sign. In this paper, all A-polynomial’s
will be normalized in this manner.

The factor ofL − 1 in the denominator of Definition 2.1 arises as follows. SinceX

is a knot complement inS3, the abelianization ofπ1(X) is isomorphic toZ, and the coset
containingµ is a generator. Therefore, one gets an SL2C’s worth of abelian representations
by sendingµ to an arbitrary matrix and all commutators to the identity. Sinceλ is in the
commutator subgroup, every abelian representation sendsλ to the identity. It follows that
the abelian representations project to the curveV(L− 1) ⊂ ξ(RU). Removing the factor
of L − 1 fromAK(L,M) implies that there are only finitely many zeroes ofAK(L,M)

which correspond to abelian representations. Moreover, it is well known that ifρ in RU is
reducible, thenξ(ρ(λ)) = (m,1). Therefore, removing the factor ofL − 1 also implies
that there are only finitely many zeroes ofAK(L,M) which correspond to reducible
representations.

The following are some basic properties of the A-polynomial which we shall use
throughout this paper. Proofs can be found in [3].

Proposition 2.2. Suppose thatK is a knot inS3.
(1) If K is the unknot, thenAK(L,M)= 1.
(2) AK(L,M)=±LaMbAK(L

−1,M−1) for somea, b ∈ Z.
(3) AK(L,M) involves only even powers ofM.
(4) NeitherL norM is a factor ofAK(L,M).

Remark. Proposition 2.2 parts (2) and (4) imply thatNewt(AK) is symmetric about its
center of mass, lies in the first quadrant, and intersects both axes.

Example 2.3. The knot group of the figure-eight knot has a presentation with two
meridional generatorsx andy. Sincex andy are conjugate, an irreducible representation
ρ ∈ RU may be conjugated so that:

ρ(x)=
(
M 1
0 M−1

)
, ρ(y)=

(
M 0
q M−1

)
and ρ(λ)=

(
L ∗
0 L−1

)
.

From the relation in the knot group, we obtain four polynomials of which there is an
irreducible common factorf (M,q). Every irreducible representation inRU corresponds to
a zero off (M,q). From the word in the knot group representing the longitude, we obtain
a second polynomialg(L,M,q). We compute the A-polynomial by taking theq-resultant
of f (M,q) andg(L,M,q). This polynomial is:

−M4+L−LM2− 2LM4−LM6+LM8−L2M4.

(More information on calculations can be found in [4].)
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The curve defined by an A-polynomial is not compact. We can compactify this curve
by adjoining its points at infinity (or ideal points). In order to do this, we take the closure
of an embedding of our curve in the complex projective plane. Recall that thecomplex
projective plane, CP2, is the set all equivalence classes of points(x, y, z) ∈ C3 \ (0,0,0)
with (x, y, z)∼ (kx, ky, kz) for all non-zero complexk. A point inCP2 shall be denoted
by an ordered triple in square brackets,[x, y, z]. There is an embedding ofC2 in CP2

defined by(x, y) 7→ [x, y,1]. We shall call[x, y, z] ∈CP2 an ideal pointif z= 0.
Curves inCP2 are defined by special types of polynomials. IfP(X,Y,Z) is in

C[X,Y,Z], thenP is called aform of degreed if each non-zero term ofP(X,Y,Z)
has degreed . Notice that ifP is a form of degreed and if (x, y, z) ∈ C3 is such that
P(x, y, z) = 0, thenP(kx, ky, kz) = kdP (x, y, z) = 0 for all k ∈ C \ 0. We define a
complexprojective curveto be the zero set inCP2 of a form inC[X,Y,Z].

The operation of homogenization of a two-variable polynomial is used to identify a curve
in C2 with a projective curve inCP2. Suppose thatP(X,Y ) =∑i ziX

ai Y bi ∈ C[X,Y ]
has degreed . The homogenizationof P with respect toZ, denoted byP̃ (X,Y,Z), is∑
i ziX

ai Y biZd−ai−bi . SinceP̃ is a form, it defines a projective curve inCP2. Moreover,
for every point(x, y) which is a zero ofP , the point[x, y,1] is a zero ofP̃ . In this way,
we identify the curveV(P ) in C2 with a dense subset of itsprojective completionV(P̃ ) in
CP2. The points inV(P̃ ) of the form[x, y,0] will be called the ideal points of the curve
V(P ). Thedegreeof a projective curveV(P̃ ) is defined to be the degree of the form̃P
(which is also deg(P )).

The Newton polygon contains information regarding the ideal points of a curve. Suppose
that (xn, yn) is a sequence of points inV(P ) which approach an ideal point ofV(P ). It
follows that either|xn| →∞ or |yn| →∞ (or both). Without loss of generality, assume
that |yn| →∞. After passing to a subsequence, we may assume that there is a non-zero
termza,bxany

b
n of P(xn, yn) whose modulus has the greatest order of magnitude for alln.

If

lim
n→∞

∣∣∣∣xcnydnxany
b
n

∣∣∣∣= 0

for all other non-zero termszc,dxcny
d
n of P(xn, yn), then

lim
n→∞

∣∣∣∣P(xn, yn)xany
b
n

∣∣∣∣= |za,b|.
However, this would contradict the fact thatP(xn, yn)= 0 for all n. Therefore, there must
exist a second non-zero termzc,dxcny

d
n of P(xn, yn) so that

lim
n→∞

∣∣∣∣xcnydnxany
b
n

∣∣∣∣= r > 0.

Taking logs of both sides and dividing by log|yn| implies that

lim
n→∞

(
(c− a) log|xn|

log|yn| + (d − b)
)
= lim
n→∞

log(r)

log|yn| = 0.
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Therefore,

lim
n→∞

− log|xn|
log|yn| =

d − b
c− a .

For eachn, define the linear mapφn : Newt(P )→R by

φ(s, t)= s log|xn| + t log|yn|.
The level sets ofφ are lines of slope− log|xn|/ log|yn|. Since the termsxany

b
n andxcny

d
n

of P(xn, yn) have maximum order of magnitude,φn(a, b) = φn(c, d) is the maximum
value ofφn. Therefore,(a, b) and(c, d) lie in same level set on the boundary ofNewt(P ).
Moreover, since− log|xn|/ log|yn| → (d − b)/(c− a), the slope of this side ofNewt(P )
is (d − b)/(c− a). Thus, sequences of points inV(P ) approaching ideal points give rise
to sides of the Newton polygon.

Suppose(ln,mn) is a sequence of points inV(AK) which is approaching an ideal point.
By above, the limit of− log|ln|/ log|mn| is the slope of a side ofNewt(AK). On the other
hand, in [6] it is shown that the limit of− log|ln|/ log|mn| is a boundary slope of the knot.
We shall review this relationship below. For a more detailed account, consult [4].

A sequence of representationsρn is blowing upif there exists an elementg ∈ π1(X)

such that trace(ρn(g))→∞. There are two possibilities for a sequence of representations
ρn ∈RU which is blowing up:

Type1: There is an elementg ∈ π1(∂X) such that trace(ρn(g))→∞ asn→∞. In
this case, there is a unique (up to inverses) primitive elementµpλq ∈ π1(∂X) such that
trace(ρn(µpλq )) remains bounded asn→∞.

Type2: For everyg ∈ π1(∂X), trace(ρn(g)) remains bounded asn→∞.
In [6], it is shown that a sequence of representations which is blowing up gives rise

to an essential surface inX. If ρn is a type 1 sequence of representations, then there is
an essential surface inX with boundary slopep/q (in fact, it is shown thatp/q is a strict
boundary slope). Whereas, ifρn is a type 2 sequence, then there is a closed essential surface
in X.

Let (ln,mn) be a sequence of points inV(AK) which approach an ideal point ofV(AK).
Since all but finitely many points ofV(AK) lift to representations inRU , we may assume
with no loss of generality that each point(ln,mn) lifts to a representationρn. The sequence
ρn is blowing up since(ln,mn) approaches an ideal point. If− log|ln|/ log|mn| →
p/q , then we know thatp/q is the slope of a side ofNewt(AK). On the other hand,
− log|ln|/ log|mn| → p/q implies that trace(ρn(µpλq)) remains bounded asn→∞. So,
ρn is a type 1 sequence, andp/q is a boundary slope. Therefore, boundary slopes that arise
from type 1 sequences appear as the slope of a side ofNewt(AK). The converse is also true,
and is one of the main results of [3].

Theorem 2.4 (Cooper, Culler, Gillet, Long, Shalen).The slopes of the sides of Newt(AK)

are boundary slopes of incompressible surfaces inX which correspond to type1 sequences
of representations.
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Fig. 1. The Newton polygon associated to the figure-eight knot.

Therefore, the slopes of the sides ofNewt(AK) are (strict) boundary slopes ofK. It is
unknown if every strict boundary slope appears as the slope of a side ofNewt(AK).

Example 2.5. From Example 2.3, the A-polynomial of the figure-eight knot is:

AK(L,M)=−M4+L−LM2− 2LM4−LM6+LM8−L2M4.

The Newton polygon ofAK(L,M) is shown in Fig. 1. It follows from Theorem 2.4 that
the figure-eight knot has strict boundary slopes 4 and−4. The boundary slope 0 of the
Seifert surface does not appear because it is not a strict boundary slope.

One technical problem that we wish to avoid is the existence of a zero(l,m) of
AK(L,M) which does not correspond to a representation inRU . If (l,m) ∈ ξ(RU ) −
ξ(RU) and if bothl andm are non-zero, then call(l,m) a hole of V(AK). Associated
to each hole(l,m) of V(AK), there is a type 2 sequence of representationsρn such that
ξ(ρn)→ (l,m). Therefore, in order to avoid holes, it suffices to require that there are no
type 2 sequences of representations.

Definition 2.6. A knot group hasproperty NCIS− if there is no sequence of representations
ρn ∈RU such thatρn is blowing up and trace(ρn(g)) remains bounded for allg ∈ π1(∂X).
In other words, a knot group has property NCIS− if there is no type 2 sequence of
representations inRU .

As mentioned, associated to each type 2 sequence is a closed essential surface inX.
Therefore, ifX contains no closed essential surface, thenπ1(X) has property NCIS−. The
converse is not true. In fact, it is unknown if holes exist.
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3. Cyclic surgery and the Newton polygon

We are now ready to establish the relationship between the Newton polygon and cyclic
surgery. An application of the Seifert–Van Kampen Theorem shows thatπ1(X(p/q)) is
π1(X) with the added relationµpλq = 1. In order to show thatπ1(X(p/q)) is non-cyclic,
it suffices to find a representation ofπ1(X(p/q)) in PSL2C := SL2C/{±I } with non-
cyclic image. Now, a representationρ ∈ RU will induce a representation ofπ1(X(p/q))

in PSL2C if and only if ρ(µpλq) = ±I . Moreover, a representationρ ∈ RU such that
ρ(µpλq)=±I will project to a point(l,m) ∈ V(AK) with the property thatmplq =±1.
The following Theorem of Cooper [1] gives necessary conditions for such a point inV(AK)
to correspond to a representation with cyclic image.

Theorem 3.1 (Cooper).If π1(X) has property NCIS−, if (l,m) ∈ (C \ 0)2 is a root of
AK(L,M) with the property thatmplq =±1 for co-prime integersp andq , and if either
l or m is not±1, thenp/q surgery is not cyclic.

We shall interpret this result in the context of curves as follows. For the remainder of
this paper, we shall assume thatp is non-negative and gcd(p, q)= 1. Let

Bp/q(L,M) :=
M2pL2q − 1 if q > 0,

M2p −L−2q if q < 0.

Notice that if (l,m) ∈ V(AK) ∩ V(Bp/q), thenAK(l,m) = 0 andmplq = ±1. Hence,
these points possibly correspond to representations ofπ1(X(p/q)) in PSL2C. Theorem 3.1
implies that ifπ1(X) has property NCIS− andp/q surgery is cyclic, then

V(AK)∩ V(Bp/q)⊂ {−1,0,1}× {−1,0,1}.
One can say more about these points of intersection using the notion of intersection

multiplicity from algebraic geometry. Before we describe the intersection multiplicities at
the points inV(AK) ∩ V(Bp/q), we must discuss the slopesp/q for which our methods
will not apply.

Given p/q 6= 1/0, consider the family of lines with slopep/q which intersect
Newt(AK). Let α andβ be the respective minimum and maximumM-intercepts of a line
in this family. Sinceα andβ are extrema, the lines of slopep/q through these points
intersectNewt(AK) in its boundary. Therefore, these lines must contain at least one vertex
of Newt(AK) (which is a point in the integer lattice corresponding to a non-zero term
of AK(L,M)). Let AK(L,M) =∑n

i=1 ziL
aiMbi . Define thetrailing edgeof AK(L,M)

towardsp/q to be the polynomial:

f−p/q(L,M) :=
∑

{i|−pai+qbi=qα}
ziL

aiMbi ,

and define theleading edgeof AK(L,M) towardsp/q to be the polynomial:

f+p/q(L,M) :=
∑

{i|−pai+qbi=qβ}
ziL

aiMbi .
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Notice that the trailing edge is the sum of the terms ofAK(L,M) corresponding to points
of Newt(AK) which lie along the line with slopep/q andM-interceptα. Similarly, the
leading edge contains those terms ofAK(L,M) corresponding to points on the line with
slopep/q andM-interceptβ .

If p/q = 1/0, then we letα and β be the respective minimum and maximumL-
intercepts of vertical lines which intersectNewt(AK). Notice that, sinceL is not a factor of
AK(L,M), α = 0. Define the trailing edge ofAK(L,M) towards 1/0 to be the polynomial:

f−1/0(L,M) :=
∑
{i|ai=0}

ziL
aiMbi ,

and define the leading edge ofAK(L,M) towards 1/0 to be the polynomial:

f+1/0(L,M) :=
∑
{i|ai=β}

ziL
aiMbi .

Example 3.2. For the figure-eight knot (see Example 2.5),f+4 (L,M) = −M4 + LM8,
f−4 (L,M)= L−L2M4, f+1/0(L,M)=−L2M4, andf−1/0(L,M)=−M4.

It follows from Proposition 2.2 thatf+p/q(L−1,M−1)= ±f−p/q(L,M) up to powers of
L andM. Moreover,p/q is the slope of a side ofNewt(AK) if and only if the leading
edge (hence, trailing edge by the previous comment) ofAK(L,M) towardsp/q has two
or more terms. Ifp/q is the slope of a side ofNewt(AK), then the terms off+p/q(L,M)
may be written in the formLaMb(c0+ c1(L

qMp)+ · · · + cm(LqMp)m). Define theedge
polynomialof Newt(AK) corresponding to the edge of slopep/q to be the polynomial

gp/q(t) := c0+ c1t + · · · + cmtm.
Sincef+p/q(L−1,M−1)=±f−p/q(L,M) up to powers ofL andM, defininggp/q with f−
gives the same polynomial up to sign.

The following type of slope will prove problematic in our study.

Definition 3.3. If p/q is the slope of a side ofNewt(AK), and if 1 or−1 is a root of the
edge polynomial corresponding top/q , then callp/q a badslope; otherwise callp/q a
goodslope.

Example 3.4. For the figure-eight knot,g4(t)=−1+ t , andg−4(t)=−1+ t . Therefore,
both 4 and−4 are bad slopes.

Adding the hypothesis thatp/q is a good slope to Theorem 3.1 allows further restriction
on the setV(AK) ∩ V(Bp/q).

Lemma 3.5. Assume thatAK(L,M) 6= 1 andπ1(X) has property NCIS−. If p/q is a good
cyclic surgery slope, then(V(AK) ∩ V(Bp/q)) \ (0,0)⊂ {−1,1} × {−1,1}.

Proof. Suppose that(l,m) ∈ (V(AK) ∩ V(Bp/q)) \ (0,0). It follows by Theorem 3.1 that
(l,m) ∈ ({−1,0,1}× {−1,0,1}) \ (0,0). We shall show that neitherl norm can be 0.
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By way of contradiction, assume that(l,m) = (±1,0). Since(±1,0) ∈ V(Bp/q), we
haveBp/q(±1,0) = 0. By definition ofBp/q(L,M), it follows thatp/q = 0/1. On the
other hand,(±1,0) ∈ V(AK). So,AK(±1,0) = 0. Consider the polynomialAK(L,0).
By Proposition 2.2,M is not a factor ofAK(L,M). Hence,AK(L,0) is not identically
0. On the other hand,AK(±1,0) = 0. Thus,AK(L,0) has at least two terms. However,
AK(L,0) is the trailing edge ofAK(L,M) towards 0/1. Therefore, 0/1 is the slope of
a side ofNewt(AK). Moreover, if g0/1(t) is the edge polynomial for slope 0/1, then
AK(t,0)= tag0/1(t) for somea ∈ Z. Hence,AK(±1,0)= 0 implies thatg0/1(±1)= 0.
Therefore, 0/1 is a bad slope, and this contradicts our hypothesis.

By a similar argument, if(l,m)= (0,±1), then 1/0 is a bad slope. Therefore, neitherl
norm can be zero. 2

The following propositions investigate the intersection multiplicities at affine and ideal
points ofV(AK) ∩ V(Bp/q) whenp/q is a good cyclic surgery slope. The proofs of these
propositions will incorporate ideas from both algebraic geometry and hyperbolic geometry.
We shall briefly review these ideas below.

For two affine curvesU andV , let Ip(U,V) denote theintersection multiplicityof U
andV at the pointp. The intersection multiplicity is defined to be the generic algebraic
number of intersections that occur betweenU andV nearp after a small perturbation of
these curves. For almost every linear subspaceL containingp, Ip(U,L) has a fixed value.
The value ofIp(U,L) is called themultiplicity of p as a point ofU , and will be denoted by
mp(U). In order to simplify notation, if the polynomialsF andG define the curvesU and
V , respectively, then we shall letIp(F,G) denoteIp(U,V), and we shall letmp(F) denote
mp(U). If U andV are projective curves defined by formsF(X,Y,Z) andG(X,Y,Z) and
if p = [x, y,1], then we define:

Ip(U,V) := I(x,y)
(
F(X,Y,1),G(X,Y,1)

)
.

We make similar definitions ifp is [1, y, z] or [x,1, z].
The following are well known properties of the intersection multiplicity:
• If F ,G, andH are polynomials, thenIp(FG,H)= Ip(F,H)+ Ip(G,H).
• Ip(F,G) >mp(F) ·mp(G) with equality if and only ifF andG have no common

tangent line atp.
We shall also use the following classical theorem from algebraic geometry.

Theorem 3.6 (Bézout’s Theorem).If U and V are complex projective curves with no
common component, and ifU andV have degreesu andv, respectively, then∑

p∈U∩V
Ip(U,V)= uv.

Let H3 denote hyperbolic three-space. We shall work with the upper-half space model
of H3. In this model,

H3= {(x, y, z) ∈R3 | z > 0
}
.
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The hyperbolic metricds on the upper half-space is given byds = dx/z wheredx is
the Euclidean metric. The set of orientation-preserving isometries ofH3 is isomorphic
to PSL2C. We see the action of a PSL2C matrix onH3 as follows. Identify the plane
z = 0 with the complex plane. The Riemann sphere obtained by adjoining infinity to the
planez = 0 is called thesphere at infinityof H3. Given a matrix

(
a b
c d

) ∈ PSL2C, there
is an associated Mobius transformationω 7→ (aω + b)/(cω + d) acting on the sphere at
infinity. The unique extension of this action on the sphere at infinity toH3 determines the
isometry ofH3 associated to the PSL2C matrix. An isometry ofH3 is calledparabolic if
it fixes no point ofH3 and a single point on the sphere at infinity. Parabolic isometries
are represented by matrices in PSL2C which are not diagonalizable. Hence, parabolic
isometries are represented by matrices which can be conjugated to have the form

(±1 1
0 ±1

)
.

A non-trivial isometry which is not parabolic fixes exactly two points on the sphere at
infinity.

We are now ready for the first proposition.

Proposition 3.7. Assume thatAK(L,M) 6= 1 and thatπ1(X) has property NCIS−. If
p/q is a good cyclic surgery slope, and if(l,m) ∈ (V(AK) ∩ V(Bp/q)) \ (0,0), then
I(l,m)(AK,Bp/q )=m(l,m)(AK).

Proof. Suppose that(l,m) ∈ (V(AK) ∩ V(Bp/q)) \ (0,0). It follows by Lemma 3.5 that
(l,m) ∈ {−1,1}× {−1,1}. If V(AK) andV(Bp/q) have no common tangent line at(l,m),
thenI(l,m)(AK,Bp/q) =m(l,m)(AK) ·m(l,m)(Bp/q). Moreover, for all(l,m) ∈ {−1,1} ×
{−1,1},m(l,m)(Bp/q)= 1. Therefore, it suffices to show thatV(AK) andV(Bp/q) have no
common tangent line at(l,m).

We begin with the observation that the order ofπ1(X(p/q)) is finite. By hypothesis,
π1(X(p/q)) is cyclic (hence, abelian), but not necessarily finite. However, sinceπ1(X) is
a knot group, it follows thatπ1(X(p/q)) is generated byµ, and thatµp = 1. Hence, if
p 6= 0, then the order ofπ1(X(p/q)) is finite. If p = 0, then 0 surgery onK is infinite
cyclic. Thus, by a theorem of Gabai [9],K is the unknot. This contradicts the hypothesis
thatAK(L,M) 6= 1. Therefore,π1(X(p/q)) is finite, andp 6= 0.

We now proceed to prove the proposition. By way of contradiction, assume that some
component ofV(AK) does has common tangent line withV(Bp/q) at (l,m). Choose a
sequence of points(ln,mn) from this component so that(ln,mn)→ (l,m). Since neither
l norm is 0, we may choose this sequence in(C \ 0)2 − (l,m). Therefore, sinceπ1(X)

has property NCIS−, there is a sequence of representationsρn ∈ RU such that:ρn→ ρ as
n→∞, ξ(ρn) = (ln,mn) for eachn, andξ(ρ) = (l,m). After possibly conjugating this
sequence of representations by a family of matrices tending to the identity matrix, we may
further assume that

ρn(λ)=
(
ln cn

0 1/ln

)
→ ρ(λ)=

(
l c

0 l

)
and

ρn(µ)=
(
mn 1
0 1/mn

)
→ ρ(µ)=

(
m 1
0 m

)
.
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Remark. The reason we may assume thatρ(µ) is parabolic is the following. Ifρ(µ)
were not parabolic, thenρ(µ) would be diagonal. However, this implies thatρ(µ)=±I
because the eigenvalues ofρ(µ) are either both 1 or both−1. In [2], it is shown that if
ρ ∈ RU is such thatρ(µ)=±I , then there is a neighborhood aboutρ inRU which contains
only abelian representations. Hence, there would be infinitely many points inV(AK) near
(l,m) corresponding to abelian representations. This contradicts the fact that there are only
finitely many points inV(AK) corresponding to abelian representations.

Returning to the main line of the proof, since one ofln or mn is not±1, ρn(µ) and
ρn(λ) are sequences of non-parabolic isometries. Moreover,ρn(µ) andρn(λ) commute.
Therefore, for eachn, these isometries must fix the same two points on the sphere at
infinity. Notice that the isometryρn(µ) fixes the points∞ and (1/mn − mn)−1. Since
ρn(λ) must fix the same points, it follows that

cn = 1/ln − ln
1/mn−mn → c. (1)

There are four cases to consider.
Case1: (l,m) = (1,1). With this assumption, the unique tangent line toV(Bp/q) at

(1,1) is p(M − 1) + q(L − 1) = 0. The assumption thatV(AK) andV(Bp/q) have a
common tangent line at(1,1) implies that

mn − 1

ln − 1
→−q/p (2)

(recall thatp 6= 0). Sinceln → 1 andmn → 1, (1) and (2) imply that 1/cn → −q/p.
Hence,q 6= 0 becausecn→ c andc is finite. Therefore,c=−p/q . Notice that:

ρ(µpλq)=
(

1 1
0 1

)p (1 −p/q
0 1

)q
=
(

1 p

0 1

)(
1 −p
0 1

)
= I.

So,ρ induces a representation ofπ1(X(p/q)) in SL2C. However,ρ(µ) has infinite order.
This contradicts the fact thatπ1(X(p/q)) is finite.

Case2: (l,m)= (−1,1). In this case, the tangent line toV(Bp/q) at (1,1) is p(M − 1)
− q(L+ 1)= 0. So,

mn − 1

ln + 1
→ q

p
. (3)

The limits in (1) and (3) imply thatc= p/q . Hence,

ρ(µpλq)=
(

1 1
0 1

)p (−1 p/q

0 −1

)q
=
(

1 p

0 1

)(
(−1)q (−1)q+1p

0 (−1)q

)
=±I.

Therefore,ρ induces a representation ofπ1(X) in PSL2C. As in case 1, the image ofµ has
infinite order, and this contradicts the fact thatπ1(X(p/q)) is finite.

Case3: (l,m) = (1,−1). The tangent line toV(Bp/q) at (1,−1) is −p(M + 1) +
q(L− 1)= 0. It follows thatc= p/q . Hence,

ρ(µpλq)=
(−1 1

0 −1

)p (1 p/q

0 1

)q
=
(
(−1)p (−1)p+1p

0 (−1)p

)(
1 p

0 1

)
=±I.
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Once again,ρ induces a representation ofπ1(X) in PSL2C with infinite order. This
contradicts the assumption thatπ1(X(p/q)) is finite.

Case4: (l,m)= (−1,−1). In this final case, the tangent line toV(Bp/q) at (−1,−1) is

−p(M + 1)− q(L+ 1)= 0.

Hence,c=−p/q , and

ρ(µpλq)=
(
(−1)p (−1)p+1p

0 (−1)p

)(
(−1)q (−1)qp

0 (−1)q

)
=±I.

This gives the same contradiction as in the previous cases.2
We next develop a method to count intersection multiplicities at ideal points and(0,0).

In doing so, we come across the following characterization of thep/q width.

Lemma 3.8. Supposeq 6= 0. Let α andβ be the respective minimum and maximumM-
intercepts of a line of slopep/q which intersects Newt(AK). Then

(β − α)|q| =w(p/q).

Proof. From Definition 1.2,w(p/q) is one less than the number of lines of slopep/q
which intersectNewt(AK) and contain a point of the integer lattice. Sinceα andβ are
extrema, a line of slopep/q which containsα or β musts intersectNewt(AK) in its
boundary. Therefore, these lines must contain at least one vertex ofNewt(AK); hence,
a point in the integer lattice. A line of slopep/q will contain a point of the integer lattice
if and only if itsM-intercept has the formk/q for somek ∈ Z. It follows that there are
m,n ∈ Z such thatα =m/q andβ = n/q . Furthermore, the number of lines of slopep/q
which intersectNewt(AK) and contain a point of the integer lattice is equal to the number
of rational points of the formk/q in the interval[m/q,n/q]. Since there are|n−m| + 1
points of the formk/q in [m/q,n/q], w(p/q)= (|n−m| + 1)− 1= |n−m|. However,
|n−m| = (β − α)|q|. Therefore,(β − α)|q| =w(p/q). 2
Remark. Recall that 0 is the minimalL-intercept of a vertical line which intersects
Newt(AK). Therefore, ifβ is the maximumL-intercept of a vertical line which intersects
Newt(AK), thenw(1/0)= β .

Example 3.9. If K is the figure-eight knot, thenw(1/2)= 16,w(2)= 8, andw(1/0)= 2
(see Fig. 1).

In the proof of Proposition 3.11, we shall appeal to the following technical lemma.

Lemma 3.10. The following are equivalent:
(1) p/q is a bad slope,
(2) one off−p/q(t−p, tq ), f

−
p/q(−t−p, tq), or f−p/q(t−p,−tq) is identically zero,

(3) one off+p/q(tp, t−q ), f
+
p/q(−tp, t−q ), or f+p/q(tp,−t−q) is identically zero.
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Proof. (1)⇔ (2) Set

f−p/q(L,M)= LaMb
(
c0+ c1(L

qMp)+ · · · + cm(LqMp)m
)
, and

gp/q(t)= c0+ c1t + · · · + cmtm.
The slopep/q is a bad slope if and only if eithergp/q(1) = 0 or gp/q(−1) = 0. Notice
that:

gp/q(1)= c0+ c1+ · · · + cm =
f−p/q(t−p, tq )
t−pa+qb

.

Hence,gp/q(1)= 0 if and only iff−p/q(t−p, tq )≡ 0. On the other hand,

gp/q(−1)= c0− c1+ · · · + (−1)mcm =


f−p/q (t−p,−t q)
t−pa(−t )qb if p is odd,

f−p/q (−t−p,tq)
(−t )−patqb if p is even.

So,gp/q(−1)= 0 if and only if eitherf−p/q(t−p,−tq )≡ 0 orf−p/q(−t−p, tq )≡ 0.

(2)⇔ (3) This follows directly from the fact thatf+p/q(L−1,M−1)=±f−p/q(L,M) up
to powers ofL andM. 2

We are now prepared to count intersection multiplicities ofV(AK) andV(Bp/q) at ideal
points and(0,0). Notice that the only possible ideal points ofV(B̃p/q) are [1,0,0] or
[0,1,0].

Proposition 3.11. Suppose thatV(AK) and V(Bp/q) have no common component. Let
S = V(ÃK) ∩ V(B̃p/q) ∩ {[1,0,0], [0,1,0], [0,0,1]}. Then∑

x∈S
Ix
(
ÃK, B̃p/q

)
> deg(AK) · deg(Bp/q)− 2w(p/q). (4)

Moreover, we have equality in(4) whenp/q is a good slope.

Proof. Let

AK(L,M)=
n∑
i=1

ziL
aiMbi , and d = deg(AK).

If q 6= 0, then letα andβ be the respective minimum and maximumM-intercepts of a line
of slopep/q which intersectsNewt(AK). If q = 0, then letβ be the maximumL-intercept
of a vertical line which intersectsNewt(AK). There are three cases to consider.

Case1: Suppose thatq > 0. With this assumption, deg(Bp/q) = 2(p + q), andS ⊂
{[1,0,0], [0,1,0]}. Therefore,∑

x∈S
Ix
(
ÃK, B̃p/q

)= I[1,0,0](ÃK, B̃p/q)+ I[0,1,0](ÃK, B̃p/q).
We first computeI[1,0,0](ÃK, B̃p/q). By definition,

I[1,0,0]
(
ÃK, B̃p/q

)= I(0,0)(ÃK(1,M,Q), B̃p/q(1,M,Q)).
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Moreover, sincẽBp/q(1,M,Q)= (Mp −Qp+q )(Mp +Qp+q),
I[1,0,0]

(
ÃK, B̃p/q

)
= I(0,0)

(
ÃK(1,M,Q),Mp −Qp+q)+ I(0,0)(ÃK(1,M,Q),Mp +Qp+q).

In order to computeI(0,0)(ÃK(1,M,Q),Mp −Qp+q), we parameterizeV(Mp −Qp+q)
by setting M = tp+q and Q = tp . Then I(0,0)(ÃK(1,M,Q),Mp − Qp+q) is the
multiplicity of 0 as a root of̃AK(1, tp+q, tp). SinceÃK is a form of degreed ,

ÃK(1, tp+q, tp)= tpdAK(t−p, tq ).
So, the multiplicity of 0 as a root of̃AK(1, tp+q, tp) is equal to the sum ofpd and the
multiplicity of 0 as a root ofAK(t−p, tq). Notice that the hypothesis thatV(AK) and
V(Bp/q) have no common component ensures thatAK(t

−p, tq) is not identically 0. Ifektk

is a term inA(t−p, tq), then

ek =
∑

{i|−pai+qbi=k}
zi.

Therefore, the multiplicity of 0 as a root ofA(t−p, tq ) is the minimum value ofk =
−pai + qbi such thatek 6= 0. If we let

k0= min
16i6n

{−pai + qbi},

then

I(0,0)
(
ÃK(1,M,Q),Mp −Qp+q)> pd + k0.

Moreover, we have equality providedek0 6= 0. For eachi, let yi be theM-intercept of the
line of slopep/q containing(ai, bi). Sinceqyi =−pai + qbi andq > 0, it follows that

k0= min
16i6n

{qyi} = q min
16i6n

{yi} = qα.

Hence,

ek0 =
∑

{i|−pai+qbi=qα}
zi =

f−p/q(t−p, tq )
tqα

.

By Lemma 3.10, ifp/q is a good slope, thenf−p/q(t−p, tq ) is not identically zero. So,
ek0 6= 0 whenp/q is a good slope. It follows that,

I(0,0)
(
ÃK(1,M,Q),Mp −Qp+q)> pd + qα, (5)

and we have equality whenp/q is a good slope.
The computation forI(0,0)(ÃK(1,M,Q),Mp + Qp+q ) is similar. We parametrize
V(Mp +Qp+q ) by settingM =−tp+q andQ= tp if p is odd, or by settingM =−tp+q
andQ=−tp if p is even. SincẽAK is a form of degreed , we have

ÃK(1,−tp+q, tp)= tpdAK(t−p,−tq) if p odd, and

ÃK(1,−tp+q,−tp)=±tpdAK(−t−p, tq ) if p even.
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Therefore, if

k0= min
16i6n

{−pai + qbi},
then

I(0,0)
(
ÃK(1,M,Q),M

p +Qp+q)> pd + k0= pd + qα. (6)

Furthermore, ifek0 is the coefficient of thetk0 term, then

ek0 =


∑
{i|−pai+qbi=qα}

(−1)bi zi = f−p/q (t−p,−t q )
tqα

if p is odd,∑
{i|−pai+qbi=qα}

(−1)ai zi = f−p/q (−t−p,tq )
tqα

if p is even.

Therefore, by Lemma 3.10, we have equality in (6) whenp/q is a good slope.
Summing Eqs. (5) and (6) implies:

I[1,0,0]
(
ÃK, B̃p/q

)
> 2pd + 2qα, (7)

and we have equality in (7) whenp/q is a good slope.
We apply a similar argument to the intersection at[0,1,0]. We first note that

I[0,1,0]
(
ÃK, B̃p/q

)
= I(0,0)

(
ÃK(L,1,Q),Lq −Qp+q

)+ I(0,0)(ÃK(L,1,Q),Lq +Qp+q).
To computeI(0,0)(ÃK(L,1,Q),Lq −Qp+q ), we parametrizeV(Lq −Qp+q) by setting
L= tp+q andQ= tq . It follows thatI(0,0)(ÃK(L,1,Q),Lq −Qp+q) is the multiplicity
of 0 as a root of̃AK(tp+q,1, tq ). However,

ÃK(t
p+q ,1, tq)= tqdAK(tp, t−q ).

Thus,I(0,0)(ÃK(L,1,Q),Lq −Qp+q ) is equal to the sum ofqd and the multiplicity of 0
as a root ofAK(tp, t−q ). If ektk is a term ofAK(tp, t−q ), then

ek =
∑

{i|pai−qbi=k}
zi.

Therefore, the multiplicity of 0 as a root ofAK(tp, t−q ) is the minimal value ofk =
pai − qbi such thatek 6= 0. Let

k1 := min
16i6n

{pai − qbi}.
Then

I(0,0)
(
ÃK(L,1,Q),Lq −Qp+q

)
> qd + k1,

and we have equality whenek1 6= 0. Once again, letyi be theM-intercept of the line of
slopep/q containing(ai, bi). Since−qyi = pai − qbi andq > 0, it follows that

k1= min
16i6n

{−qyi} = −q max
16i6n

{yi} = −qβ.
Hence,

ek1 =
∑

{i|−pai+qbi=qβ}
zi = tqβf+p/q(tp, t−q).
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If p/q is a good slope, thenek1 6= 0 by Lemma 3.10. Therefore,

I(0,0)
(
ÃK(L,1,Q),Lq −Qp+q

)
> qd − qβ, (8)

and we have equality whenp/q is a good slope.
A similar computation gives:

I(0,0)
(
ÃK(L,1,Q),Lq +Qp+q

)
> qd − qβ. (9)

Therefore, summing (8) and (9) yields:

I[0,1,0]
(
ÃK, B̃p/q

)
> 2qd − 2qβ, (10)

with equality in (10) whenp/q is a good slope.
The proof for case 1 is completed by summing (7) and (10), then rewriting the right-hand

side of the inequality using Lemma 3.8:∑
x∈S

Ix
(
ÃK, B̃p/q

)
> d · 2(p+ q)+ 2q(α− β)= deg(AK) · deg(Bp/q)− 2w(p/q).

Case2: Suppose thatq < 0. The proof here is similar to case 1. However, there are two
subcases.

Subcase1:p >−q . With this assumption, deg(Bp/q)= 2p, andS ⊂ {[0,0,1], [1,0,0]}.
Hence,∑

x∈S
Ix
(
ÃK, B̃p/q

)= I[0,0,1](ÃK, B̃p/q)+ I[1,0,0](ÃK, B̃p/q).
We first computeI[0,0,1](ÃK, B̃p/q). Notice that

I[0,0,1]
(
ÃK, B̃p/q

)
= I(0,0)

(
AK(L,M),M

p −L−q)+ I(0,0)(AK(L,M),Mp +L−q).
If we parametrizeV(Mp − L−q ) by M = t−q andL = tp , thenI(0,0)(AK(L,M),Mp −
L−q) is the multiplicity of 0 as a root ofAK(tp, t−q ). Thus, if

k1 := min
16i6n

{pai − qbi},

then

I(0,0)
(
AK(L,M),M

p −L−q)> k1.

As before, letyi denote theM-intercept of the line of slopep/q containing(ai, bi). Since
−qyi = pai − qbi andq < 0,

k1= min
16i6n

{−qyi} = −q min
16i6n

{yi} = −qα.

Therefore,

I(0,0)
(
AK(L,M),M

p −L−q)>−qα. (11)

Moreover, as in Case 1, Lemma 3.10 implies that we have equality in (11) whenp/q is a
good slope.
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A similar computation gives:

I(0,0)
(
AK(L,M),M

p +L−q)>−qα. (12)

Therefore, from (11) and (12), we have

I[0,0,1]
(
ÃK, B̃p/q

)
>−2qα, (13)

with equality whenp/q is a good slope.
On the other hand,

I[1,0,0]
(
ÃK, B̃p/q

)
= I(0,0)

(
ÃK(1,M,Q),Mp −Qp+q)+ I(0,0)(ÃK(1,M,Q),Mp +Qp+q).

If we parametrizeV(Mp −Qp+q) by M = tp+q andQ = tp , thenI(0,0)(ÃK(1,M,Q),
Mp −Qp+q) is the multiplicity of 0 as a root of̃AK(1, tp+q, tp). However, sincẽAK is a
form of degreed , this multiplicity is equal to the sum ofpd and the multiplicity of 0 as a
root ofAK(t−p, tq ). If

k0 := min
16i6n

{−pai + qbi},

then

I(0,0)
(
ÃK(1,M,Q),M

p −Qp+q)> pd + k0.

However, sinceqyi =−pai + qbi andq < 0,

k0= min
16i6n

{qyi} = q max
16i6n

{yi} = qβ.

Therefore,

I(0,0)
(
ÃK(1,M,Q),Mp −Qp+q)> pd + qβ, (14)

and Lemma 3.10 implies that we have equality whenp/q is a good slope.
In a similar manner, we compute

I(0,0)
(
ÃK(1,M,Q),Mp +Qp+q)> pd + qβ. (15)

Therefore, from (14) and (15),

I[1,0,0]
(
ÃK, B̃p/q

)
> 2pd + 2qβ, (16)

with equality whenp/q is a good slope.
Summing (13) and (16) gives∑

x∈S
Ix
(
ÃK, B̃p/q

)
> d · 2p+ 2q(β − α).

However, sinceq < 0,w(p/q)=−q(β − α) by Lemma 3.8. Therefore,∑
x∈S

Ix
(
ÃK, B̃p/q

)
> deg(AK) · deg(Bp/q)− 2w(p/q),

and we have equality whenp/q is a good slope.
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Subcase2: p < −q . The argument here is essentially the same. In this case,S ⊂
{[0,0,1], [0,1,0]}, and deg(Bp/q)=−2q . Computing intersection multiplicities as in the
other cases we see:

I[0,0,1]
(
ÃK, B̃p/q

)
>−2qα, and

I[0,1,0]
(
ÃK, B̃p/q

)
>−2qd + 2qβ.

Therefore,∑
x∈S

Ix
(
ÃK, B̃p/q

)
> d · (−2q)+ 2q(β − α)= deg(AK) · deg(Bp/q)− 2w(p/q).

Moreover, as before, we have equality ifp/q is a good slope.
Case3: Suppose thatq = 0. Then deg(B1/0)= 2, andS ⊂ {[1,0,0]}. Therefore,∑

x∈S
Ix
(
ÃK, B̃1/0

)= I[1,0,0](ÃK, B̃1/0
)
.

A computation similar to the previous cases shows:

I[1,0,0]
(
ÃK, B̃1/0

)
> 2d − 2β.

Furthermore, Lemma 3.10 will again imply that we have equality when 1/0 is a good slope.
Therefore, sincew(1/0)= β ,∑

x∈S
Ix
(
ÃK, B̃1/0

)
> d · 2− 2β = deg(AK) · deg(B1/0)− 2w(1/0). 2

Our main theorem combines Proposition 3.7 and Proposition 3.11 using Bézout’s
Theorem. In order for Bézout’s Theorem to apply to the curvesV(ÃK) andV(B̃p/q), they
must have no common component. This will be true whenp/q is a good slope.

Lemma 3.12. If p/q is a good slope, thenV(ÃK) and V(B̃p/q) have no common
component.

Proof. Assume thatq is non-negative. The proof forq negative is similar. By way of
contradiction, assume thatV(ÃK) andV(B̃p/q) have a common component. Since neither
of these curves has a component at infinity, it follows that gcd(AK,Bp/q) 6= 1. However,
Bp/q(L,M) has precisely two irreducible factors:MpLq −1 andMpLq +1. If MpLq −1
is a factor ofAK(L,M), thenAK(t−p, tq) ≡ 0. It follows thatf−p/q(t−p, tq )≡ 0. So, by
Lemma 3.10,p/q is a bad slope. This contradicts our hypothesis. Similarly, ifMpLq + 1
is a factor ofAK(L,M), then eitherf−p/q(−t−p, tq ) ≡ 0 or f−p/q(t−p,−tq ) ≡ 0. Once
again, by Lemma 3.10, either outcome would contradict the hypothesis thatp/q is a good
slope. 2
Theorem 3.13. Suppose thatAK(L,M) 6= 1 andπ1(X) has property NCIS−. If p/q is a
good cyclic surgery slope, and ifr/s is any slope, then either:
• w(p/q)6w(r/s), or
• gcd(AK,Br/s) 6= 1.
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Proof. Assume thatr/s is any slope such that gcd(AK(L,M),Br/s(L,M)) = 1. There-
fore,V(ÃK) andV(B̃r/s) have no common component. We shall apply Bézout’s Theorem
twice; first to the curvesV(ÃK) andV(B̃p/q), and then toV(ÃK) andV(B̃r/s).

Sincep/q is a good slope, it follows from Lemma 3.12 thatV(ÃK) andV(B̃p/q) have
no common component. By Bézout’s Theorem,∑

x∈V(ÃK)∩V(B̃p/q)
Ix
(
ÃK, B̃p/q

)= deg(AK) · deg(Bp/q). (17)

The setV(ÃK) ∩ V(B̃p/q) can be divided into two disjoint subsets:

T := (V(ÃK)∩ V(B̃p/q)) \ {[1,0,0], [0,1,0], [0,0,1]}, and

S := V(ÃK)∩ V(B̃p/q)∩
{[1,0,0], [0,1,0], [0,0,1]}.

By Lemma 3.5,T ⊂ {−1,1}× {−1,1} × {1}, and by Proposition 3.7,∑
x∈T

Ix
(
ÃK, B̃p/q

)= 1∑
s=0

1∑
t=0

m[(−1)s,(−1)t ,1](ÃK). (18)

On the other hand, by Proposition 3.11,∑
x∈S

Ix
(
ÃK, B̃p/q

)= deg(AK) · deg(Bp/q)− 2w(p/q). (19)

Combining (17), (18), and (19) gives:

2w(p/q)=
1∑
s=0

1∑
t=0

m[(−1)s,(−1)t ,1](ÃK). (20)

The computation for the curvesV(ÃK) andV(B̃r/s) is slightly different since we can
apply neither Lemma 3.5 nor Proposition 3.7. As above, partitionV(ÃK) andV(B̃r/s) into
setsT andS. Now T need not be contained in{−1,1} × {−1,1} × {1}. However, since
Ix(ÃK, B̃r/s)>mx(ÃK) ·mx(B̃r/s),∑

x∈T
Ix
(
ÃK, B̃r/s

)
>

1∑
s=0

1∑
t=0

m[(−1)s,(−1)t ,1](ÃK). (21)

Moreover, by Proposition 3.11,∑
x∈S

Ix
(
ÃK, B̃r/s

)
> deg(AK) · deg(Br/s)− 2w(r/s). (22)

Summing (21) and (22), and applying Bézout’s Theorem gives:

2w(r/s)>
1∑
s=0

1∑
t=0

m[(−1)s,(−1)t ,1](ÃK).

Therefore,w(r/s)>w(p/q) follows from (20). 2
Example 3.14.Suppose that bothm andn are positive and odd. The A-polynomial of an
(m,n) torus knot isM2mnL2 − 1. The only bad slope ismn. By Theorem 3.13, ifp/q
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andr/s are good cyclic surgery slopes, thenw(p/q)=w(r/s). Notice that 1/0 is a good
cyclic surgery slope, andw(1/0) = 2. Therefore, ifp/q is a good cyclic surgery slope,
thenw(p/q)= 2. Forp/q 6=mn, we havew(p/q)= (2mn− 2(p/q))|q|. Thus, forp/q
to be a good cyclic surgery slope, it is necessary thatp =mnq ± 1. It is well known that
these are all of the cyclic surgery slopes for an(m,n) torus knot.

As mentioned in Section 2, if a knot complement contains no closed essential surface,
then its knot group has property NCIS−. This leads to the following corollary of
Theorem 3.13.

Corollary 3.15. LetK be a knot inS3 with AK(L,M) 6= 1, and suppose thatX contains
no closed essential surface. Ifp/q surgery onK is cyclic, thenp/q is not the slope of
a side of Newt(AK). Moreover,w(p/q) is the minimal value ofw restricted to the set of
slopes which are not the slope of a side of Newt(AK).

Proof. SinceX contains no closed essential surface, it follows thatπ1(X) has property
NCIS−. Recall that a slope of a side ofNewt(AK) is a strict boundary slope ofK. By
Theorem 2.0.3 of [5], surgery along a strict boundary slope can be cyclic only if there is a
closed essential surface inX. Hence, surgery along a slope of a side ofNewt(AK) cannot
be cyclic.

Now assume thatp/q surgery onK is cyclic. Thenp/q is not the slope of a side of
Newt(AK), so it is a good slope. Letr/s be any slope that is not the slope of a side of
Newt(AK). It follows thatr/s is a good slope. Hence, by Lemma 3.12, gcd(AK,Br/s)= 1.
Therefore, by Theorem 3.13,w(p/q)6w(r/s). 2
Example 3.16.The figure-eight knot satisfies the hypotheses of Corollary 3.15. Moreover,
1/0 is a good cyclic surgery slope, andw(1/0)= 2. A quick calculation using the Newton
polygon shows thatw(p/q) > 2 if p/q 6= 1/0. Therefore, by Corollary 3.15, the only
possible cyclic surgery slopes for the figure-eight knot (other than 1/0) are the boundary
slopes±4. However, neither of these slopes are cyclic by Theorem 2.0.3 of [5].

4. The Cyclic Surgery Theorem

One of the most celebrated results concerning cyclic surgery is the Cyclic Surgery
Theorem of Culler et al. [5].

Theorem 4.1 (The Cyclic Surgery Theorem).LetX be a compact, connected, irreducible
three-manifold such that∂X is a torus. Suppose thatX is not a Seifert fibered space. If
p/q and r/s surgeries are cyclic, then∆(p/q, r/s) 6 1. Hence, there are at most three
cyclic surgery slopes.

Given a hyperbolic knot which contains no closed essential surface in its complement,
we shall produce a reformulation of the Cyclic Surgery Theorem in terms of thep/q width.
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The proof of this result will exploit the fact that the A-polynomial of a hyperbolic knot has
a special factor.

Definition 4.2. Let r and s be co-prime non-negative integers. LetG(L,M) be the
product of all factors ofAK(L,M) of the formMrLs ± 1 orMr ± Ls . The polynomial
HK(L,M) := AK(L,M)/G(L,M) is called thehyperbolic factorof AK(L,M).

In [4], Cooper and Long prove that ifK is hyperbolic, thenHK(L,M) 6= 1. Therefore,
we have the following corollary to Theorem 3.13.

Corollary 4.3. Suppose thatK is a hyperbolic knot andX contains no closed essential
surface. Letw denote the width function on Newt(HK). If p/q surgery onK is cyclic, and
if r/s is any slope, thenw(p/q)6w(r/s).

Proof. We apply Theorem 3.13 withHK(L,M) used in place ofAK(L,M). Thus, it
suffices to show that the hypotheses of Theorem 3.13 are satisfied. The result of Cooper
and Long implies thatHK(L,M) 6= 1. SinceX contains no closed essential surface, we
know thatπ1(X) has property NCIS−. Moreover, sincep/q is a cyclic surgery slope
andX contains no closed essential surface, we knowp/q is not the slope of a side
of Newt(AK) by Corollary 3.15. Hence,p/q is a good slope, and by Theorem 3.13,
w(p/q) 6 w(r/s) or gcd(HK,Br/s) 6= 1. However, gcd(HK,Br/s) = 1 for all r/s by the
definition ofHK(L,M). Therefore,w(p/q)6w(r/s). 2

The proof of the reformulation of the Cyclic Surgery Theorem for hyperbolic knots in
S3 will depend on the following lemma.

Lemma 4.4. Let N be a non-degenerate polygon in the plane whose vertices lie in the
integer lattice, and letw denote the width function onN . Letp/q be a slope such that:

(1) p/q is not the slope of a side ofN and
(2) w(p/q) is the minimal value ofw.

If r/s is any slope withw(r/s) = w(p/q), then∆(p/q, r/s) 6 1. Hence, for such a
polygon, there exist at most three slopesp/q satisfying(1) and(2).

Proof. After an integral change of basis, we may assume thatp/q = 1/0. Moreover, since
N has integral vertices and sincew is invariant under integral translations, we may assume
thatN lies in the first quadrant and intersects both axes. Sincep/q = 1/0, it follows that
∆(p/q, r/s) = ∆(1/0, r/s) = |s|. Therefore, in order to prove the lemma, it suffices to
show that|s|6 1.

Assumes 6= 0, and consider the family consisting of all lines of sloper/s which intersect
N . Let l1 andl2 be the lines in this family with the respective maximum and minimumM-
intercepts. Similarly, consider the family of vertical lines intersectingN , and letl3 and
l4 be the lines in this family with the respective maximum and minimumL-intercepts.
DefineP to be the parallelogram bounded by the linesl1, l2, l3, andl4. Notice thatN ⊂ P .
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Fig. 2. The parallelogramP containingN .

So, by hypothesis,P is also non-degenerate. Starting at the South West vertex ofP and
moving clockwise, label the four vertices ofP (0, y1), (0, y2), (x1, (r/s)x1 + y2), and
(x1, (r/s)x1+ y1). By Lemma 3.8,(y2− y1)|s| =w(r/s) andx1=w(1/0). (See Fig. 2.)

Define a new width functionwP on the parallelogramP as follows. Ifb 6= 0, then letα
andβ be the respective minimum and maximumM-intercepts of a line of slopea/b which
intersectsP . DefinewP by wP (a/b) := (β − α)|b|. If b = 0, then letβ be the maximum
L-intercept of a vertical line which intersectsP , and definewP by wP (1/0) := β . If the
vertices ofP are integral, then by Lemma 3.8,wP agrees with the width function from
Definition 1.2. Therefore, sinceN is contained inP , and sinceN does have integral
vertices,wP >w for all slopes. Moreover,wP (r/s)=w(r/s)=w(1/0)=wP (1/0).

By way of contradiction, assume that|s| 6= 1. Hence, there exists an integera such that:

a <
r

s
< a + 1.

We shall prove thatwP (a)=w(a) andwP (a+1)=w(a+1). This leads to a contradiction
as follows. Sincea < r/s, wP (a) = w(a) if and only if the South West and North East
vertices ofP are inN . Similarly, sincer/s < a + 1, we see that the North West and South
East vertices ofP are inN if wP (a + 1) = w(a + 1). Therefore, ifwP (a) = w(a) and
wP (a + 1) = w(a + 1), thenP = N . This contradicts the hypothesis that 1/0 is not the
slope of a side ofN .

We now proceed to showwP (a)= w(a). We shall assume thatr/s > 0. The proof for
r/s < 0 is similar. Defineb so that:

a + b
s
= r
s
;
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Fig. 3. The computation ofwP (a).

therefore, 0< b < s. Consider the family of lines with slopea which intersectP . Let l5
andl6 be the lines in this family with the respective maximum and minimumM-intercepts.
Notice that theM-intercept ofl5 is y2+ (r/s)x1− ax1. (See Fig. 3.) So, by definition of
wP ,

wP (a)=
(
r

s
x1+ y2− ax1

)
− y1

=
(
r

s
− a

)
x1+ (y2− y1)

=
(
r

s
− a

)
w(1/0)+ w(1/0)

s

=
(
b+ 1

s

)
w(1/0). (23)

SincewP >w andw(1/0) is minimal, it follows thatwP (a)>w(a)>w(1/0). Hence,
from (23),b+ 1> s. On the other hand, 0< b < s. Therefore,b+ 1= s, and this implies
thatwP (a)=w(a)=w(1/0).

The proof thatwP (a + 1)= w(a + 1) is essentially the same. Once again we assume
thatr/s > 0. Consider the family of lines with slopea+ 1 which intersectP . Let l7 andl8
be the lines in this family with the respective maximum and minimumM-intercepts. The
M-intercept ofl8 is y1+ (r/s)x1− (a + 1)x1. (See Fig. 4.) Therefore,

wP (a + 1)= y2−
(
y1+ r

s
x1− (a + 1)x1

)
= (y2− y1)+

(
a + 1− r

s

)
x1
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Fig. 4. The computation ofwP (a + 1).

= w(1/0)
s
+
(
a + 1− r

s

)
w(1/0)

=
(

1+ s − b
s

)
w(1/0). (24)

SincewP (a + 1)>w(a + 1)>w(1/0), it follows from (24) that 1+ s − b> s. Hence,
b= 1 because 0< b < s. Therefore,wP (a + 1)=w(a + 1)=w(1/0). 2

Combining Corollary 4.3 and Lemma 4.4 we produce the following reformulation of the
Cyclic Surgery Theorem for hyperbolic knots inS3.

Theorem 4.5. Let K be a hyperbolic knot inS3 with no closed essential surface in its
complement. Letw denote the width function on Newt(HK). Then there are at most three
slopesp/q such thatp/q is not a slope of a side of Newt(HK) andw(p/q) is minimal.
Hence, there are at most three cyclic surgery slopes.

Proof. It suffices to show that the hypotheses of Lemma 4.4 are satisfied by the polygon
Newt(HK). SinceK is hyperbolic, it follows by Theorem 6.3 of [4] thatNewt(HK) is
non-degenerate. Moreover, sinceK is a knot inS3, 1/0 is a cyclic surgery slope. So,
by Corollary 4.3,w(1/0) is minimal. Furthermore, by Theorem 2.0.3 of [5], 1/0 is not
strict boundary slope. Hence, 1/0 is not the slope of a side ofNewt(HK). Therefore, by
Lemma 4.4, there are at most three slopesp/q such thatp/q is not a slope of a side
of Newt(HK) andw(p/q) is minimal. The last remark of the Theorem follows from
Corollary 4.3. 2
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Fig. 5. The(−2,3,7) pretzel knot.

Fig. 6. The sheared Newton polygon of the A-polynomial of the(−2,3,7) pretzel knot.

Using thep/q width, one can easily compute a list of possible cyclic surgery slopes from
the Newton polygon. If the knot is hyperbolic and contains no closed essential surface, then
the list we compute will contain at most three slopes.

Example 4.6. The best known example of a hyperbolic knot with three cyclic surgeries is
the(−2,3,7) pretzel knot shown in Fig. 5. By work of Oertel [12], this knot complement
contains no closed essential surface. The A-polynomial of this knot is:

AK(L,M)=−1+LM16− 2LM18+LM20+ 2L2M36+L2M38

−L4M72− 2L4M74−L5M90+ 2L5M92−L5M94+L6M110.
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The shape of the Newton polygon for this polynomial is less obscure after applying the
linear shear map

[ 1 0
−16 1

]
. (See Fig. 6.) The width function on the sheared polygon evaluated

on slopep/q is equal to the width function on the original Newton polygon evaluated at
slope(p + 16q)/q . Since the width function on the sheared polygon takes on minimal
values whenp/q = 2, 3, and 1/0, the width function on the original Newton polygon takes
on minimal values whenp/q = 18, 19, and 1/0. It was shown by Fintushel and Stern [7]
that all of these slopes are cyclic surgery slopes for the(−2,3,7) pretzel knot.

5. An application to mutant knots

Assume thatK is a knot inS3 andF is a 2-sphere inS3 with the following properties:
(1) F ∩ ∂X = four copies ofµ,
(2) F ∩X is essential inX.

We may identify F with the unit sphere so that the punctures ofF ∩ K are the
points{(1,0,0), (−1,0,0), (0,0,1), (0,0,−1)}, and, insideF , K connects the punctures
(1,0,0) to (−1,0,0) and(0,0,1) to (0,0,−1). There are four involutions ofF that are
central in the mapping class group: the identity, rotation byπ about thex-axis, rotation by
π about thez-axis, and the product of the last two maps. If we cut alongF , apply one of
the four involutions, then glue back in, we form one of four knots calledmutantsofK (one
of which isK itself).

If K is a hyperbolic knot, then Theorem 7.3 of [4] implies that there is a common non-
trivial factor,C(L,M), of the A-polynomial’s ofK and any mutant ofK. Moreover, this
factor divides the hyperbolic factor. This leads to the following theorem.

Theorem 5.1. Let K andK ′ be hyperbolic mutant knots inS3. Suppose that both knot
groups have property NCIS−. If p/q andr/s are slopes such that:

(1) p/q surgery onK is cyclic,
(2) r/s surgery onK ′ is cyclic, and
(3) neitherp/q nor r/s is a strict boundary slope,

then∆(p/q, r/s)6 1.

Proof. Let C(L,M) be the common factor of the A-polynomials ofK andK ′. Let w
denote the width function onNewt(C). Since neitherp/q nor r/s is strict boundary slope,
neither can be the slope of a side ofNewt(C). So, bothp/q andr/s are good slopes. Since
C(L,M) is non-trivial and divides the hyperbolic factor, gcd(C,Bm/n)= 1 for all slopes
m/n. Hence, by Theorem 3.13,w(p/q) = w(r/s) is the minimal value ofw. Moreover,
Newt(C) is non-degenerate becauseC(L,M) is non-trivial and divides the hyperbolic
factor. Therefore, by Lemma 4.4,∆(p/q, r/s)6 1. 2

We conclude with two questions.

Question 5.2. By Theorem 3.13, ifp/q surgery is cyclic thenw(p/q) must be minimal.
Examples 3.14 and 4.6 lead one to wonder if the converse is also true.
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Fig. 7. A mutant ofK .

Question 5.3. A knot hasProperty-Pif the only surgery which produces a manifold with
trivial fundamental group is 1/0 surgery. IfK is a hyperbolic knot with no closed essential
surface in its complement, then it is necessary that eitherw(1) or w(−1) be minimal in
order forK to fail to have Property-P. Can one show that neitherw(1) norw(−1) can be
minimal for such a knot?
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