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Abstract

We present a necessary condition for Dehn surgery on a krit to be cyclic which is based
on the A-polynomial of the knot. The condition involves a width of the Newton polygon of the A-
polynomial, and provides a simple method of computing a list of possible cyclic surgery slopes.
The width produces a list of at most three slopes for a hyperbolic knot which contains no closed
essential surface in its complement (in agreement with the Cyclic Surgery Theorem). We conclude
with an application to cyclic surgeries along non-boundary slopes of hyperbolic mutantk2930
Elsevier Science B.V. All rights reserved.
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1. Introduction

In [3], Cooper et al. introduced a new two-variable polynomial knot invariant called
the A-polynomial. The A-polynomial is derived from the set of representations of the
knot group in SkC, and it has a number of remarkable features. Foremost among these
is that a certain polygon in the plane, called the Newton polygon of the A-polynomial,
displays detailed information concerning both the topology and the geometry of the knot
complement.

We shall investigate the relationship between cyclic surgery on hyperbolic knsts in
and the Newton polygon. Our motivation for doing this is the Cyclic Surgery Theorem
of Culler et al. The Cyclic Surgery Theorem was proved, in part, using the algebraic
structure of the set of representations of the knot group #CSISince the A-polynomial
carries information regarding this set, it is not surprising that it would encode information
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concerning cyclic surgeries. We shall show that information about which surgeries are
cyclic is encoded by a certain width of the Newton polygon of the A-polynomial.

Before stating the results, we establish some terminology and notatioK. beta knot
in S8, and letX denote the complement of an open regular neighborho&d &inced X is
atorus, any simple closed curvedX may be parameterized (up to isotopy) by a rational
slope p/q € Q U co. The numeratop represents the number of times the curve wraps
aroundd X in the meridional direction, and the denominajathe number of times in the
longitudinal direction. Ap /g Dehn surgeryon K is the process of attaching a solid torus
V to X so that the boundary of a meridional diskioimaps to a curve of slope/q ondX.

We shall denote the closed orientable three-manifold obtained frarsurgery onk by
X (p/q). We call p/q acyclic surgery slopé 71(X (p/q)) is a cyclic group.

A surface inX is essentialif it is properly embedded, orientable, incompressible,
boundary-incompressible, and non-boundary parallel. If an essential surface aWeets
then it does so in a finite number of parallel curves. The slope of these curves is called the
boundary slop®f the surface. A slope isstrict boundary slopé it is the boundary slope
of some essential surface which is not the fiber of any fibratiaki o’er the circle.

The A-polynomial of a knotk will be denoted byAx (L, M). By definition, the
A-polynomial defines a complex algebraic curvedfwhich is associated to a projection
of the set of representations af(X) in SL,C. It was shown by Culler and Shalen,
in [6], that this curve provides information about essential surfaces$;isubsequently,
in [3], it was shown that this information may be taken from the Newton polygon of the
A-polynomial.

Definition 1.1. The Newton polygorof a polynomialP(L, M), denoted byNewi P), is
the convex hull inR? of {(a, b) | z,.,L* M? is a term of P(L, M) with z, ; # 0}.

In [1], Cooper shows that ifr1(X) satisfies a technical condition (called property
NCIS™) and if p/q is a cyclic surgery slope, then the curve definedAyy(L, M) will
intersect a particular curve associategiy surgery in a minimal set of points. We shall
extend Cooper’s result to include intersection multiplicity and ideal intersections of the
projective (non-smooth) completions of these curves. We then use a classical theorem of
algebraic geometry (Bézout's Theorem) to associate the algebraic number of intersections
of these curves to a certain width Sewi(A k).

Definition 1.2. The p/q width of Newt Ak ) is one less than the number of lines of slope
p/q which intersectNewi(A ¢) and contain a point of the integer lattice.

Letw:QU oo — Z be thewidth functionon Newt Ak ) defined byw(p/q) = the p/q
width of Newt{ A g ). Our main result is that the width function can be used to compute a
list of possible cyclic surgery slopes.

Corollary 3.15. Let K be a knot inS® with Ag (L, M) # 1, and suppose that contains
no closed essential surface. jf/gq surgery onk is cyclic, thenp/q is not the slope of
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a side of NewA ). Moreover,w(p/q) is the minimal value ofv restricted to the set of
slopes which are not the slope of a side of Newt).

If K is a hyperbolic knot, then there is a discrete faithful representation ©f) in
SL,C. Associated to this representation is a special fagtgKL, M) of Ax (L, M). We
shall use this factor to prove a reformulation of the Cyclic Surgery Theorem in terms of the
p/q width.

Theorem 4.5. Let K be a hyperbolic knot it§3 with no closed essential surface in its
complement. Led» denote the width function on Nei#ix ). Then there are at most three
slopesp/q such thatp/q is not a slope of a side of Ne@H ) andw(p/q) is minimal.
Hence, there are at most three cyclic surgery slopes.

We can use these results to compute a list of candidate slopes for cyclic surgery from
the Newton polygon. The hope, however, is that new results regarding cyclic surgery will
be produced from known properties of Newton polygons. An example in this vein is the
following. Let A(p/q,r/s) denote the minimal geometric intersection number of two
curves of slopep/q andr/s on the torus. IfK and K’ are mutant knots, then there is
a common factor ofAx (L, M) and Ag/(L, M). When the mutants are hyperbolic, this
common factor divides the hyperbolic factors of the two knots. This fact leads to the
following result.

Theorem 5.1. Let K and K’ be hyperbolic mutant knots i8°. Suppose that both knot
groups have property NCIS If p/q andr/s are slopes such that

(1) p/q surgery onk is cyclic,

(2) r/s surgery onK’ is cyclic, and

(3) neitherp/q norr/s is a strict boundary slope,
thenA(p/q,r/s) < 1.

2. Preliminaries

Throughout the paper we shall work with a fixed choice of bggis)}, of 71(0X).
The generatoy is represented by the boundary of a meridional disk of a closed regular
neighborhood ok, and) generates the kernel of the inclusion map,

i:H1(0X) —> H1(X).
Henceforth, we shall refer to these two generators asntleeidian and longitude

respectively.
A representatiornp of 71(X) in SL>C is a homomorphism of groups

p:m1(X) — SLC.

We shall letR denote the set of all representationsmgfX) in SLoC. A representation is
calledreducibleif there is a non-trivial proper subspace fixed by the entire image of the
representation; otherwise, it is calleceducible
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Recall that ifZ is an ideal inC[X1, X», ..., X,,], then the complex affinalgebraic set
defined byZ is the common zero set i@ of all polynomials inZ; equivalently, it is the
common zero set of any generating set of polynomials. @ curve(or affine curvéis an
algebraic set itC2 associated to a principal ideal @ X1, X»]; if P(X1, X>) is a generator
of this ideal, then we shall denote the curvelbyP). If P has no multiple factors, then we
define thedegreeof V(P) to be the degree of the polynomial i.e.,

degV(P)) =max{a + b | za,» # O},
where
P(X1.X2) =Y zapX{X5.

Since X is compact, there is a finite presentationmf X). Representations iR may
be thought of as an assignment of matrices inSto the generators of1(X). Therefore,
given a presentation af1 (X) with n generators, representationsdrcorrespond to points
in C*. The relations inr1(X) impose conditions on which points @* correspond
to representations. If the entries of the matrices are viewed as indeterminates, then each
relation produces four polynomial equations. The set of simultaneous zeroes of these
polynomial equations is precisely the subset@f corresponding taR. Therefore,R
is an algebraic set.

Givenp € R andA € SL,C, definepy by pa(g) = Ap(g)A~L. Thenp, is also a rep-
resentation inR. The representations and p4 are calledconjugate representations
Conjugate representations encode the same information ahgt). Much of the
redundancy associated to conjugate representatioRscian be avoided by restricting to
the subset

Ry :={p € R| p(n) andp(r) are upper triangulgr

Notice thatRy is an algebraic subset &. Moreover, no conjugacy class of representations
is lost in this restriction because every representation is conjugate to one which is
simultaneously upper triangular gn and A. We could avoid all redundancy associated
to conjugate representations if we focused on the character variety. We shall not do this,
however, since the definition of the A-polynomial is less cumbersome Ryjth

There is a natural projection & into C2. Suppose that € Ry has values

!
p(x)z(o l*l> and p(u)=<’g m*1>~

Define&: Ry — C2 by £(p) = (I, m). It is shown in [3] that the Zariski closure of the
image of¢ is an algebraic set iff2. The definition of the A-polynomial is based on the
fact that a complex dimension one algebraic s&t4ris a curve.

Definition 2.1. Let | J_; C; be the union of the irreducible complex dimension one
components of(Ry) with C; # C; wheni # j. For eachi, let F¢,(L, M) be an
irreducible polynomial defining’;. The A-polynomiabf K is

" Fc.(L,M
Ag(L, M) := %
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Notice that the A-polynomial is only well defined up to multiplication by a non-zero
complex number. In [3], it is shown that one may scale so that the coefficients of the
A-polynomial are integral. If we insist that the greatest common factor of the coefficients
is 1, then the A-polynomial is well defined up to sign. In this paper, all A-polynomial’s
will be normalized in this manner.

The factor of L — 1 in the denominator of Definition 2.1 arises as follows. Sice
is a knot complement i3, the abelianization of1(X) is isomorphic tdZ, and the coset
containingu is a generator. Therefore, one gets an@Sk worth of abelian representations
by sendingu to an arbitrary matrix and all commutators to the identity. Sihde in the
commutator subgroup, every abelian representation seta$he identity. It follows that
the abelian representations project to the corye — 1) C £(Ry). Removing the factor
of L — 1 from Ag (L, M) implies that there are only finitely many zeroesAy¢ (L, M)
which correspond to abelian representations. Moreover, it is well known thahiRy; is
reducible, theré(p (1)) = (m, 1). Therefore, removing the factor df — 1 also implies
that there are only finitely many zeroes afx (L, M) which correspond to reducible
representations.

The following are some basic properties of the A-polynomial which we shall use
throughout this paper. Proofs can be found in [3].

Proposition 2.2. Suppose thak is a knot inSS.
(1) If K isthe unknot, thed g (L, M) = 1.
(2) Ag(L,M)==+L*M"Ag (L™, M~1) for someua, b € Z.
(3) Ak (L, M) involves only even powers of.
(4) NeitherL nor M is a factor ofAg (L, M).

Remark. Proposition 2.2 parts (2) and (4) imply thidewi( Ak ) is symmetric about its
center of mass, lies in the first quadrant, and intersects both axes.

Example 2.3. The knot group of the figure-eight knot has a presentation with two
meridional generators andy. Sincex andy are conjugate, an irreducible representation
p € Ry may be conjugated so that:

M 1 M 0 L
p<x>=<0 Ml), p<y>=<q Ml) and pm:(o L*l>.

From the relation in the knot group, we obtain four polynomials of which there is an
irreducible common factof (M, ¢). Every irreducible representationfy corresponds to

a zero of f(M, ¢). From the word in the knot group representing the longitude, we obtain
a second polynomigd(L, M, ¢). We compute the A-polynomial by taking tieresultant

of f(M,q)andg(L, M, g). This polynomial is:

~M*+ L —LM?—2LM* — LM® + LM® — L2M*,

(More information on calculations can be found in [4].)
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The curve defined by an A-polynomial is not compact. We can compactify this curve
by adjoining its points at infinity (or ideal points). In order to do this, we take the closure
of an embedding of our curve in the complex projective plane. Recall thataimplex
projective planeCP?, is the set all equivalence classes of pointsy, z) € C3\ (0, 0, 0)
with (x, y, z) ~ (kx, ky, kz) for all non-zero complex. A point in CP? shall be denoted
by an ordered triple in square brackets, y, z]. There is an embedding @2 in CP?
defined by(x, y) — [x, y, 1]. We shall call[x, y, z] € CP? anideal pointif z =0.

Curves in CP? are defined by special types of polynomials. R{X, Y, Z) is in
C[X,Y, Z], then P is called aform of degreed if each non-zero term o (X, Y, Z)
has degreel. Notice that if P is a form of degree/ and if (x, y, z) € C2 is such that
P(x,y,z) =0, then P(kx, ky,kz) = k?P(x,y,z) = 0 for all k € C \ 0. We define a
complexprojective curveo be the zero set iiP? of a form inC[X, Y, Z].

The operation of homogenization of a two-variable polynomial is used to identify a curve
in C2 with a projective curve inCP2. Suppose thaP(X,Y) = >, z; X% Ybi e C[X, Y]
has degree/. The homogenizatiorof P with respect toZ, denoted by13(X, Y,Z),is
doizX% ybi zd—ai=bi SinceP is a form, it defines a projective curve @P2. Moreover,
for every point(x, y) which is a zero ofP, the point[x, y, 1] is a zero ofP. In this way,
we identify the curve/(P) in C2 with a dense subset of ifsojective completio®(P) in
CP2. The points inV(ﬁ) of the form[x, y, O] will be called the ideal points of the curve
V(P). The degreeof a projective curve’(P) is defined to be the degree of the forbn
(which is also deg@P)).

The Newton polygon contains information regarding the ideal points of a curve. Suppose
that (x,, y,) is a sequence of points ¥(P) which approach an ideal point 0f(P). It
follows that eitherx,,| — oo or |y,| — oo (or both). Without loss of generality, assume
that|y,| — oo. After passing to a subsequence, we may assume that there is a non-zero
termz, px%y? of P(x,, y,) whose modulus has the greatest order of magnitude far. all
If

lim W%
e iy

=0

for all other non-zero termg. 4x¢y< of P(x,, y,), then

. P(x,,
lim (Xn, yn)

= |za,pl.
n—00 xrﬂl’yr}l’ @

However, this would contradict the fact thAtx,,, y,) = 0 for all n. Therefore, there must
exist a second non-zero tem]dx“y,‘f of P(x,, y,) so that

n

c.,d
XpY,
N —p > 0.

Taking logs of both sides and dividing by lpg | implies that

log x|
IOg [Vl

lim ((c —a)

n—o0

+m—m)=nm'w“)=a
n—00 |09|)’n|
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Therefore,

—log|x,| d—b
n—oo log|y,| T c—a’

For eachn, define the linear mag, : Newi{ P) — R by

¢ (s, t) =slog|x,| +rlog]|y,l.

The level sets op are lines of slope-log|x,|/log|y,|. Since the terms¢y”? andx¢ y¢

of P(x,,y,) have maximum order of magnitude, (a, b) = ¢,(c,d) is the maximum
value of¢,. Therefore(a, b) and(c, d) lie in same level set on the boundaryNéwi( P).
Moreover, since-log|x,|/log|y,| — (d — b)/(c — a), the slope of this side dflewi P)

is (d — b)/(c — a). Thus, sequences of pointsW(P) approaching ideal points give rise
to sides of the Newton polygon.

Supposél,, m,) is a sequence of points (A ) which is approaching an ideal point.
By above, the limit of-log|l,|/log|m,| is the slope of a side dfew{ Ak ). On the other
hand, in [6] it is shown that the limit of log|l,|/log|m,| is a boundary slope of the knot.
We shall review this relationship below. For a more detailed account, consult [4].

A sequence of representatiops is blowing upif there exists an element € 71(X)
such that tracg, (¢)) — oc. There are two possibilities for a sequence of representations
pn € Ry which is blowing up:

Typel: There is an element € 71(dX) such that trace,(g)) — co asn — oo. In
this case, there is a unique (up to inverses) primitive elemént < 71(dX) such that
trace p, (u?A?)) remains bounded as— oc.

Type2: For everyg € w1(3dX), tracd p,(g)) remains bounded as— oo.

In [6], it is shown that a sequence of representations which is blowing up gives rise
to an essential surface iX. If p, is a type 1 sequence of representations, then there is
an essential surface iki with boundary slopg /g (in fact, it is shown thap/q is a strict
boundary slope). Whereas df is atype 2 sequence, then there is a closed essential surface
in X.

Let (I, m,) be a sequence of pointsW(A ) which approach an ideal point df(Ak).
Since all but finitely many points of (A ) lift to representations iRy, we may assume
with no loss of generality that each poiit, m,) lifts to a representatiop, . The sequence
pn 1S blowing up since(/,, m,) approaches an ideal point. ¥ log|l,|/log|m,| —

p/q, then we know thatp/q is the slope of a side dllewfAg). On the other hand,
—logll,|/log|m,| — p/q implies that tracéop, (u”19)) remains bounded as— co. So,

pn 1S atype 1 sequence, apdq is a boundary slope. Therefore, boundary slopes that arise
from type 1 sequences appear as the slope of a sidlew{ Ak ). The converse is also true,
and is one of the main results of [3].

Theorem 2.4 (Cooper, Culler, Gillet, Long, ShalenT.he slopes of the sides of Néwi )
are boundary slopes of incompressible surfaces imhich correspond to typesequences
of representations.
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M
A

(1,8)

0,4) 2,4

(1,0

Fig. 1. The Newton polygon associated to the figure-eight knot.

Therefore, the slopes of the sidesMéwi(A ) are (strict) boundary slopes &f. It is
unknown if every strict boundary slope appears as the slope of a sidevafA g ).

Example 2.5. From Example 2.3, the A-polynomial of the figure-eight knot is:
Ax(L,M)=—-M*+L—LM?—-2LM*— LM®+ LM® — L?>M*.

The Newton polygon ofAx (L, M) is shown in Fig. 1. It follows from Theorem 2.4 that
the figure-eight knot has strict boundary slopes 4 add The boundary slope 0 of the
Seifert surface does not appear because it is not a strict boundary slope.

One technical problem that we wish to avoid is the existence of a @dero) of
Ak (L, M) which does not correspond to a representatio®Rin If (I,m) € E&(Ry) —
&(Ry) and if both/ andm are non-zero, then call, m) a hole of V(Ak). Associated
to each holgl, m) of V(Ag), there is a type 2 sequence of representatignsuch that
&(py) — (I, m). Therefore, in order to avoid holes, it suffices to require that there are no
type 2 sequences of representations.

Definition 2.6. A knot group hagroperty NCIS if there is no sequence of representations
pn € Ry such thafo, is blowing up and traag, (g)) remains bounded for ayl € 71(3 X).

In other words, a knot group has property NCIS there is no type 2 sequence of
representations iRy .

As mentioned, associated to each type 2 sequence is a closed essential sukface in
Therefore, ifX contains no closed essential surface, thetX) has property NCIS. The
converse is not true. In fact, it is unknown if holes exist.
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3. Cyclic surgery and the Newton polygon

We are now ready to establish the relationship between the Newton polygon and cyclic

surgery. An application of the Seifert—Van Kampen Theorem showst{@t(p/q)) is

1(X) with the added relatiop”A? = 1. In order to show that1(X (p/q)) is non-cyclic,

it suffices to find a representation af (X (p/q)) in PSLC := SLpC/{£1I} with non-

cyclic image. Now, a representatigne Ry will induce a representation of1(X (p/q))

in PSLC if and only if p(uPr9) = £1. Moreover, a representatigne Ry such that
p(uPr1) = £1 will project to a point(l, m) € V(Ak) with the property thain?1? = £1.

The following Theorem of Cooper [1] gives necessary conditions for such a panitig )

to correspond to a representation with cyclic image.

Theorem 3.1 (Cooper).If 71(X) has property NCIS, if (I, m) € (C\ 0)? is a root of
Ak (L, M) with the property that”[9 = +1 for co-prime integergp andg, and if either
[ or m is not+1, thenp/q surgery is not cyclic.

We shall interpret this result in the context of curves as follows. For the remainder of
this paper, we shall assume thais non-negative and g¢g, g) = 1. Let

M?PL% —1 ifg >0,

Bpg(L, M) =
M? — L% if g <O.

Notice that if (I,m) € V(Ax) N V(Byq), then Ak (I,m) =0 andm”19 = £1. Hence,
these points possibly correspond to representations©f (p/q)) in PSLLC. Theorem 3.1
implies that ifr1(X) has property NCIS and p/q surgery is cyclic, then

V(Ak) NV(B,,) C {=1,0,1} x {—1,0,1}.

One can say more about these points of intersection using the notion of intersection
multiplicity from algebraic geometry. Before we describe the intersection multiplicities at
the points inV(Ag) N V(Bp/,), we must discuss the slopggq for which our methods
will not apply.

Given p/q # 1/0, consider the family of lines with slop@/q which intersect
NewiAg). Leta andp be the respective minimum and maximuintercepts of a line
in this family. Sincex and g are extrema, the lines of slopg/q through these points
intersectNewtAg) in its boundary. Therefore, these lines must contain at least one vertex
of Newi(Ag) (which is a point in the integer lattice corresponding to a non-zero term
of Axk(L, M)). Let Ax (L, M) = Z?:lziL“i MPi. Define thetrailing edgeof Ax (L, M)
towardsp/q to be the polynomial:

fogLoMy== > g LYM”,
{il—pai+qbi=qa}
and define théeading edgef Ag (L, M) towardsp/q to be the polynomial:

[ LMy= " > LM
{il—pai+qbi=qp}
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Notice that the trailing edge is the sum of the termsi@f(L, M) corresponding to points
of NewtAg) which lie along the line with slop@/q and M-intercepte. Similarly, the
leading edge contains those termsAgf (L, M) corresponding to points on the line with
slopep/q and M-interceptps.

If p/g =1/0, then we lete and 8 be the respective minimum and maximuin
intercepts of vertical lines which intersédéwt A ¢ ). Notice that, sincd. is not a factor of
Ak (L, M),a =0.Define the trailing edge of x (L, M) towards ¥0 to be the polynomial:

froL,M):= Y LLM",
{ila;=0}
and define the leading edge 4k (L, M) towards ¥0 to be the polynomial:

fiho(L, M) = Z Zi L% M
filai=p)

Example 3.2. For the figure-eight knot (see Example 2.5}',’(L, M) = —M* + LM,
fa (L,M)=L—L2M*, f;;O(L, M) =—L?M*, and f (L, M) = —M*.

It follows from Proposition 2.2 thafp*/q(Lfl, M1 = £f,,,(L, M) up to powers of
L and M. Moreover,p/q is the slope of a side dilewiAg) if and only if the leading
edge (hence, trailing edge by the previous commens ptL, M) towardsp/q has two
or more terms. Ifp/q is the slope of a side dflewi(A ), then the terms o ,jL/q(L, M)
may be written in the fornL? M?(co + c1(LIMP) + - - - + ¢,, (LI MP)™). Define theedge

polynomialof Newt(A k) corresponding to the edge of slopgg to be the polynomial
gl’/q(t) i=co+cit+---F+cput™.

Since ;r/q(L*l, M= £f,,,(L, M) up to powers of. andM, definingg/, with f~
gives the same polynomial up to sign.
The following type of slope will prove problematic in our study.

Definition 3.3. If p/q is the slope of a side dflewi(Ak), and if 1 or—1 is a root of the
edge polynomial corresponding /¢, then callp/g abadslope; otherwise calp/q a
goodslope.

Example 3.4. For the figure-eight knog4(r) = —1+ ¢, andg_4(¢t) = —1+¢t. Therefore,
both 4 and-4 are bad slopes.

Adding the hypothesis that/q is a good slope to Theorem 3.1 allows further restriction
on the set(Ag) N V(B,/q)-

Lemma 3.5. Assume thati g (L, M)=# 1 andx1(X) has property NCIS. If p/q is a good
cyclic surgery slope, the@V(Ax) N V(Bp/4)) \ (0,0) C {—1,1} x {-1,1}.

Proof. Suppose thatl, m) e V(Akx) NV(B,/y)) \ (0, 0). It follows by Theorem 3.1 that
(I,m)e ({—1,0,1} x {—1,0,1} \ (0, 0). We shall show that neithémorm can be 0.
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By way of contradiction, assume thdt m) = (&1, 0). Since(£1,0) € V(B,/,), we
have B, /,(+1, 0) = 0. By definition of B,,,, (L, M), it follows that p/q = 0/1. On the
other hand(+1,0) € V(Ak). So, Ag(+1,0) = 0. Consider the polynomialk (L, 0).
By Proposition 2.2M is not a factor ofAg (L, M). Hence,Ag (L, 0) is not identically
0. On the other hand4 ¢ (+1,0) = 0. Thus,Ak (L, 0) has at least two terms. However,
Ak (L,0) is the trailing edge ofAx (L, M) towards Q1. Therefore, @1 is the slope of
a side ofNewi(Ag). Moreover, if go/1(7) is the edge polynomial for slope/D, then
Ak (t,0) =19go/1(t) for somea € Z. Hence, A (£1, 0) = 0 implies thatgo/1(+1) = 0.
Therefore, @1 is a bad slope, and this contradicts our hypothesis.

By a similar argument, if/, m) = (0, £1), then 20 is a bad slope. Therefore, neittier
norm can be zero. O

The following propositions investigate the intersection multiplicities at affine and ideal
points of V(Ag) N V(B,,,) whenp/q is a good cyclic surgery slope. The proofs of these
propositions will incorporate ideas from both algebraic geometry and hyperbolic geometry.
We shall briefly review these ideas below.

For two affine curve$/ andV, let I,(U, V) denote thentersection multiplicityof /
andV at the pointp. The intersection multiplicity is defined to be the generic algebraic
number of intersections that occur betwéémnd)’ nearp after a small perturbation of
these curves. For almost every linear subsp&centainingp, 1, (U, £) has a fixed value.
The value off, (U4, £) is called themultiplicity of p as a point ot/, and will be denoted by
mp,(U). In order to simplify notation, if the polynomials andG define the curve& and
V, respectively, then we shall 1€ (F, G) denotel, (U4, V), and we shall let: ,(F) denote
mpU). If U andV are projective curves defined by formigX, ¥, Z) andG(X, Y, Z) and
if p=[x,y,1],then we define:

I,U, V) =14 ,(F(X,Y,1),G(X,Y,1).

We make similar definitions ip is [1, y, z] or [x, 1, z].
The following are well known properties of the intersection multiplicity:
e If F, G, andH are polynomials, thed,(FG, H) =I,(F, H)+ 1,(G, H).
e [,(F,G)=2m,(F)-mp,(G) with equality if and only if ¥ and G have no common
tangent line ap.
We shall also use the following classical theorem from algebraic geometry.

Theorem 3.6 (Bézout's Theorem)If I/ and V are complex projective curves with no
common component, andifand) have degrees andv, respectively, then

Z I,U,V)=uv.
peuUny

Let H® denote hyperbolic three-space. We shall work with the upper-half space model
of H2. In this model,

H3={(x,y,z)€R3|z>0}.
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The hyperbolic metriels on the upper half-space is given by = dx/z wheredx is
the Euclidean metric. The set of orientation-preserving isometrié&ois isomorphic
to PSLLC. We see the action of a PSC matrix onH2 as follows. Identify the plane
z = 0 with the complex plane. The Riemann sphere obtained by adjoining infinity to the
planez = 0 is called thesphere at infinityof H®. Given a matrix(“ %) € PSLC, there
is an associated Mobius transformation— (aw + b)/(cw + d) acting on the sphere at
infinity. The unique extension of this action on the sphere at infinififtaletermines the
isometry of H® associated to the PSC matrix. An isometry ofH? is calledparabolicif
it fixes no point ofH2 and a single point on the sphere at infinity. Parabolic isometries
are represented by matrices in BELwhich are not diagonalizable. Hence, parabolic
isometries are represented by matrices which can be conjugated to have tt(%tg{)n
A non-trivial isometry which is not parabolic fixes exactly two points on the sphere at
infinity.

We are now ready for the first proposition.

Proposition 3.7. Assume thatAg (L, M)# 1 and thatnz1(X) has property NCIS. If
p/q is a good cyclic surgery slope, and (f, m) € (V(Ag) N V(B,;4)) \ (0,0), then
Iqmy(Ak, Bpjg) =mqm(Ak).

Proof. Suppose that/, m) € (V(Ak) N V(B,/y)) \ (0,0). It follows by Lemma 3.5 that
(I,m)e {11} x {—1,1}. If V(Akx) andV(B/,) have no common tangent line @tm),
thenly (A, Bpjq) =mam(Ax) - mam(Bp/q). Moreover, for all(l, m) € {—1, 1} x
{—1, 1}, mq m(Bp/q) = 1. Therefore, it suffices to show thitAg) andV(B,/,) have no
common tangent line &t, m).

We begin with the observation that the ordermaf X (p/q)) is finite. By hypothesis,
71(X(p/q)) is cyclic (hence, abelian), but not necessarily finite. However, sia¢¥) is
a knot group, it follows thatr1(X (p/q)) is generated by:, and thatu? = 1. Hence, if
p # 0, then the order ofr1 (X (p/q)) is finite. If p =0, then 0 surgery oK is infinite
cyclic. Thus, by a theorem of Gabai [%; is the unknot. This contradicts the hypothesis
thatAg (L, M) # 1. Thereforer1(X (p/q)) is finite, andp # 0.

We now proceed to prove the proposition. By way of contradiction, assume that some
component of(Ak) does has common tangent line with(B,,,) at (I, m). Choose a
sequence of point§,,, m,) from this component so that,, m,) — (I, m). Since neither
I norm is 0, we may choose this sequence(@)\ 0)2 — (I, m). Therefore, sincer;(X)
has property NCIS, there is a sequence of representations Ry such thatyp, — p as
n — 00, £(p,) = (I,, my,) for eachn, and&(p) = (I, m). After possibly conjugating this
sequence of representations by a family of matrices tending to the identity matrix, we may
further assume that

I, ¢y (!l <
pior= (5 20 )~or=(’ )

my 1 _(m 1
pnw):(o 1/mn>—>,0(u)—<0 m)

and
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Remark. The reason we may assume thdj) is parabolic is the following. Ifo ()

were not parabolic, thep(u) would be diagonal. However, this implies thadu) = +1
because the eigenvalues ofut) are either both 1 or both-1. In [2], it is shown that if

p € Ry issuchthap (u) = +1, thenthere is a neighborhood abpuh Ry, which contains

only abelian representations. Hence, there would be infinitely many poiitsdip ) near

(1, m) corresponding to abelian representations. This contradicts the fact that there are only
finitely many points inV(A k) corresponding to abelian representations.

Returning to the main line of the proof, since onelpfor m,, is not+1, p,(x) and
pn (1) are sequences of non-parabolic isometries. Moregygy) and p, (A) commute.
Therefore, for each, these isometries must fix the same two points on the sphere at
infinity. Notice that the isometry, (1) fixes the pointsso and (1/m, — m,)~L. Since
pn(X) must fix the same points, it follows that
1/1, -1,
= . 1
Cn 1 — —C 1)
There are four cases to consider.
Casel: (I,m) = (1,1). With this assumption, the unique tangent linewtos,, ;) at
(1,1) is p(M — 1) + q(L — 1) = 0. The assumption that(Ax) andV(B,,,) have a
common tangent line &f, 1) implies that
m, —1
— 2
L1 q/p @
(recall thatp # 0). Sincel, — 1 andm, — 1, (1) and (2) imply that Ac, — —q/p.
Henceg # 0 because, — ¢ andc is finite. Therefore¢ = —p/q. Notice that:

_llpl—p/qq_lp l—p_
p(’“‘w)_(o 1) (o 1 ) _<o 1)(0 1)"'

So,p induces a representationof (X (p/q)) in SL,C. However,p (1) has infinite order.
This contradicts the fact that (X (p/q)) is finite.

Case2: (I,m) = (—1,1). Inthis case, the tangent line XA B, ;) at (1, 1) is p(M — 1)
—qg(L+1)=0. So,

m—1 a4 3)
lL,+1 p

The limits in (1) and (3) imply that = p/q. Hence,

(Y (=1 p/g\'_ (1 p\ (D7 (=DHp) _
p(uw)_<0 1) (0 —1> _<o 1)( 0 (—1)4 >_i['

Thereforep induces a representationaf(X) in PSL,C. As in case 1, the image of has
infinite order, and this contradicts the fact that X (p/q)) is finite.

Case3: (I,m) = (1, -1). The tangent line td/(B,/,) at (1, =1) is —p(M + 1) +
q(L —1)=0. It follows thatc = p/q. Hence,

(-1 1N\ (1 p/g\!_((=DP (=DPFip\ (1 p\ _
p(u”)ﬂ)-(o —1> (o 1) _< 0 (—1)P )(o 1)‘*1'
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Once again,e induces a representation af(X) in PSL,C with infinite order. This
contradicts the assumption that(X (p/q)) is finite.

Cased: (I, m) = (=1, —1). In this final case, the tangent lineX4(B,,,) at(—1, -1) is

—p(M+1)—q(L+1)=0.
Hencec =—p/q, and
D7 (=DM (DT DIp _

0 (=DF 0 -7 )

This gives the same contradiction as in the previous cages.

p(u”k‘f)=<

We next develop a method to count intersection multiplicities at ideal point$Ga gl
In doing so, we come across the following characterization opthewidth.

Lemma 3.8. Suppose # 0. Leta and 8 be the respective minimum and maximim
intercepts of a line of slopg/q which intersects Newti ). Then

B-a)lgl=w(p/q).

Proof. From Definition 1.2,w(p/q) is one less than the number of lines of slgpg;
which intersectNewtAx) and contain a point of the integer lattice. Sinceand g are
extrema, a line of slopg/g which containse or 8 musts intersecNewi(Ag) in its
boundary. Therefore, these lines must contain at least one vertidewf Ak ); hence,
a point in the integer lattice. A line of sloge/q will contain a point of the integer lattice
if and only if its M-intercept has the forr/q for somek € Z. It follows that there are
m,n € Z such thatr = m/q andpg = n/q. Furthermore, the number of lines of slopgy
which intersectNewt A g ) and contain a point of the integer lattice is equal to the number
of rational points of the fornk/q in the intervallm/q,n/q]. Since there argr — m| + 1
points of the formk/q in [m/q,n/ql, w(p/q) = (In —m| + 1) — 1= |n — m|. However,
In —m| = (B — a)lg|. Therefore(B — a)lg| = w(p/q). ©

Remark. Recall that O is the minimaL-intercept of a vertical line which intersects
Newt Ag). Therefore, ifg is the maximuni-intercept of a vertical line which intersects
Newt{Ag), thenw(1/0) = B.

Example 3.9. If K is the figure-eight knot, thew(1/2) = 16, w(2) = 8, andw(1/0) =2
(see Fig. 1).

In the proof of Proposition 3.11, we shall appeal to the following technical lemma.

Lemma 3.10. The following are equivalent
(1) p/q is a bad slope,
(2) one offp_/q P, 1), fp_/q(—t"’, t1), or Tora (t—P,—t9) is identically zero,
(3) oneof £, (P, 179), f,f, (=tP,179), 0r £, (1P, —t~9) is identically zero.
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Proof. (1) & (2) Set
fl:/q(L, M) = L“Mb(CO+Cl(LqMP) R Cm(Lqu)m)’ and
8p/qt) =co+cit+--- + cpt™.
The slopep/q is a bad slope if and only if eithey;,/,(1) = 0 or g,/,(—1) = 0. Notice
that:

Frg P, 19)

gp/g(D)=cotert - +om= (—pa+ab

Hence,g,/,(1) =0 if and only if f,:/q (t~?,1t%) = 0. On the other hand,
Spyg@ =19
Timpa(—nab
fzr/q<7fp"q)
S (—nraab
S0,gp/4(=1) =0if and only if eitherf,j/q (P, —19)=0 orflj/q(—fl’, t9)=0.

(2) © (3) This follows directly from the fact that,, (L™, M~Y) =+, (L, M) up
to powers ofL andM. O

if pisodd
/gD =co—c1+-+(=D"cp =
if piseven

We are now prepared to count intersection multiplicitie¥ 0d ¢ ) andV(B,,,) atideal
points and(0, 0). Notice that the only possible ideal points ¥{B,,,) are[1,0,0] or
[0, 1,0].

Proposition 3.11. Suppose thaV(Ak) and V(B,,,) have no common component. Let
S=V(Ag)NV(By/q) N{[1,0,0]10,1,0],0,0,1]}. Then

> 1(Ak, Byg) > deg Ax) - deg B,/q) — 2w(p/q). 4)

xes

Moreover, we have equality {@) whenp/q is a good slope.
Proof. Let

n
Ag(L.M)=Y"zL“M", and d=degAg).
i=1
If ¢ # 0, then letw andg be the respective minimum and maximintercepts of a line
of slopep/q which intersect®Newi(Ag). If g = 0, then lets be the maximuni -intercept
of a vertical line which intersectdewt A ¢). There are three cases to consider.
Casel: Suppose thag > 0. With this assumption, d€§,,,) = 2(p + ¢), and S C

{[1,0, 0], [0, 1, 0]}. Therefore,

Y L(Ak, Bpjg) = Inooi(Ak. Bpg) + Ior.01(Ak Bpyg)-

xes

We first compute|1.0,0)(Ak, B,/4)- By definition,

[[1,0,0](ZK» Ep/q) = [(0,0)(ZK(1» M, Q), Ep/q(l’ M, Q)).
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Moreover, since.?f,,/q(l, M, Q)= (MP — QPT9)(MP 4+ QPT9),

In0.01(Ax. Bpyg)
=l0.0)(Ak(1, M, Q), MP — QP*9) + I0.0)(Ak (1, M, Q), MP + QP*9).
In order to computéo, o)(ZK(l M, Q), MP — QP+‘1) we parameteriz® (M? — QPT9)

by setting M = ¢t’*4 and O =1tP. Then I 0)(AK(1 M,Q), MP? — QP*9) is the
multiplicity of 0 as a root ofAx (1,174, 7). SinceA is a form of degred,

A (L, 1P 1Py = P4 A (1P 19).

So, the multiplicity of O as a root ofig (1,171, 1P) is equal to the sum opd and the
multiplicity of 0 as a root ofAx (t~7,t?). Notice that the hypothesis that(Ax) and
V(B /4) have no common component ensures that:—7, ¢9) is not identically 0. Ife t*
isaterminA(—7?,t9), then

{i|=pai+qbi=k}
Therefore, the multiplicity of 0 as a root of(r=7,¢9) is the minimum value ok =
—pa; + qb; such thaky # 0. If we let

ko_lmm {—pa; +qb;},

<ikn
then
Ioo(Ax (L, M, Q), M? — QP*) > pd + ko.
Moreover, we have equality provideg, # 0. For each, let y; be theM-intercept of the
line of slopep/q containing(a;, b;). Sinceqy; = — pa; + gb; andq > 0, it follows that
ko= min i} =g min {y;} =qa.
0 l<ign{qyl} q 1<l,gn{y,} qa
Hence,
- —P 14
Farg @51

e = i =
ko i qa

{il—pai+qbi=qa}
By Lemma 3.10, ifp/q is a good slope, thegf;/q(fl’, t?) is not identically zero. So,
ek, # 0 whenp/q is a good slope. It follows that,
lo0)(Ak (L, M, Q), M? — Q%) > pd + qa, )

and we have equality whepy ¢ is a good slope.

The computation forl(oyo)(AVK(l, M, Q), MP + QPT9) is similar. We parametrize
V(MP + QPt9) by settingM = —t”T4 andQ = ¢” if p is odd, or by settingd = —tP+4
andQ = —t? if piseven. SinceT(K is a form of degred, we have

A, —tPHa 1Py = P4 A (17P, —19) if p odd, and

Ax(L, =Pt 1Py = £¢P9 A (—t~P 19 if p even.



P.D. Shanahan / Topology and its Applications 108 (2000) 7—36 23

Therefore, if
ko= r\niign{—pai +qbi},
then
Io,0(Ax (1, M, Q), MP 4+ QPF1) > pd + ko = pd + qa. (6)

Furthermore, ik, is the coefficient of theko term, then

bi _ Jppg0 D
Z{i|*17ai+qbi=qa}(_1) 4= MT if pisodd

€ko = o fpf/q(_[—p’tq) . ]
Z{i|*Pai+qbi=qa}(_1) izj = Hi_m—— if piseven

Therefore, by Lemma 3.10, we have equality in (6) wipgn is a good slope.
Summing Egs. (5) and (6) implies:
Iin00(Ak. Bpg) = 2pd + 2qa, @)

and we have equality in (7) wheyyq is a good slope.
We apply a similar argument to the intersectiotl, 0]. We first note that

lo1.01(Ax, Bp/q)
=l0.0(Ax (L, 1, Q), LY — Q") + I 0 (Ak (L, 1, Q), LY + QP™9).
To computel(oyo)(AVK(L, 1,0), L7 — Q"+ql, we parametriz&’ (LY — QPT9) by setting
L =t"*4 and Q =14. It follows that/0,0/(Ax (L, 1, Q), LY — QP*4) is the multiplicity
of 0 as aroot ofAx (774, 1, t7). However,
AP, 1,19 =199 A (tP, 179).

Thus,I(oyo)(ZK(L, 1, 0), LY — QP*4) is equal to the sum afd and the multiplicity of 0
as aroot ofAg (t7,179). If ext* is a term ofAx (¢7, 1~ 9), then

{ilpai—qbi=k}
Therefore, the multiplicity of 0 as a root ofx (¢7,t~9) is the minimal value ofk =
pa; — gb; such thaky £ 0. Let

k1:= min i —qb;}.
1 1<i<n{pal qbi}

Then

I0.0)(Ak (L. 1, Q). LY — Q"*) > qd + ki
and we have equality whes, # 0. Once again, le; be theM-intercept of the line of
slopep/q containing(a;, b;). Since—qy; = pa; — qb; andg > 0, it follows that

k1= min {—qgy;} = —qg max{y;} = —gpB.
1 <ign{ qvi} qlgign{yl} qB

Hence,

ey = Z 7= tqﬁf;'/q(tp, 7).
{il—pai+qbi=qp}
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If p/q is a good slope, thegy, # 0 by Lemma 3.10. Therefore,

oo (Ak(L, 1, 0), L1 — QP*1) > qd — 4B, (8)

and we have equality whepy g is a good slope.
A similar computation gives:

I0.0)(Ak(L.1, Q). LY + 0PF) > qd — qp. )
Therefore, summing (8) and (9) yields:
lo.10(Ak. Byyg) = 2qd — 24, (10)

with equality in (10) wherp/q is a good slope.
The proof for case 1 is completed by summing (7) and (10), then rewriting the right-hand
side of the inequality using Lemma 3.8:

> I(Ak. Bpyg) 2 d-2p+q) +2q(a — p) =ded Ax) - deg B, y) — 2w(p/q).
xes

Case2: Suppose thaj < 0. The proof here is similar to case 1. However, there are two
subcases.

Subcasé: p > —g. With this assumption, dé@,,/,) = 2p, andS C {[0, 0, 1], [1, 0, 07}.
Hence,

Y L(Ak. Bpjg) = lo.o11(Ak. Bpsg) + I1.00(Ax, Bpyg)-

xeS
We first computd[o,o,l](XK, §p/q). Notice that
Ioo11(Ax, Bp/q)
= I0,0/(Ax (L, M), MV — L™9) + I0,0)(Ak (L, M), MP + L™).

If we parametriz&)(M? — L™9) by M =t~ andL = t?, thenI,0)(Ax (L, M), M? —
L~7) is the multiplicity of 0 as aroot ofA g (t”, 7). Thus, if

k1:= min i —qb;},
1 1<i<n{pal qbi}

then
Io,0) (A (L, M), MP — L™9) > k1.

As before, lety; denote theM -intercept of the line of slopg /g containing(a;, b;). Since
—qyi = pa; —gb; andg <0,

k1= min {—qyi}=—q lr<nin {yi}=—qa.

<isn <ign
Therefore,
I(O,O)(AK(L,M),MP _qu) 2 —qa. (11)

Moreover, as in Case 1, Lemma 3.10 implies that we have equality in (11) wheis a
good slope.
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A similar computation gives:
Io,0)(Ak (L, M), MP + L™9) > —qa. (12)
Therefore, from (11) and (12), we have
lo.011(Ak. Bpg) > —2qa, (13)

with equality whenp/q is a good slope.
On the other hand,

Ii00/(Ak, Bpjg)
=li00(Ax(1, M, Q), MP — QPF9) + I0.0)(Ak (1, M, Q), MP + QP*9).

If we parametrize)(M? — QP*9) by M =P+ and Q =t?, thenIq, o)(AK(l M, Q),
MP — QP*4) is the multiplicity of O as a root ofi x (1, 174, t7). However, sinced x is a
form of degreet, this multiplicity is equal to the sum gid and the multiplicity of 0 as a
rootof Ax (=7, t7). If

ko:= mln {—pa; + qbi},

<ikn

then
I0.0)(Ax (1. M, Q), M? — QP™) > pd + ko.
However, sinceyy; = —pa; + gb; andg < 0,

ko=lr<n,lg {gyi} =q max{y;} =qp.

\l\n g \n

Therefore,
Ioo) (Ax (L, M, Q), MP — QP*) > pd + qB, (14)

and Lemma 3.10 implies that we have equality wipgn is a good slope.
In a similar manner, we compute

Io.o(Ak (1, M, Q), MP + QP™) > pd + gB. (15)
Therefore, from (14) and (15),
Ii1,00/(Ax, Bp/q) = 2pd + 298, (16)

with equality whenp/q is a good slope.
Summing (13) and (16) gives

ZIX(‘ZK’ Byjg) 2d-2p+29(8—a).
xes
However, sincey < 0, w(p/q) = —q(B — o) by Lemma 3.8. Therefore,
Z Iy (ZK’ Ep/fi) >degAx) -degBpq) — 2w(p/q),
xes

and we have equality whepy g is a good slope.
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Subcase?: p < —¢. The argument here is essentially the same. In this cage,
{[0,0,1],[0,1, 0]}, and degB,/,) = —2q. Computing intersection multiplicities as in the
other cases we see:

loo1(Ak. Byyg) = —2qa, and
ljo 0](ZK, Ep/q) > —2qd + 2qp
Therefore,
S 1(Ak.Byg) = d - (—29) +2q(B — o) = deg Ax) - deg By q) — 2w(p/q).
xes

Moreover, as before, we have equalityifg is a good slope.
Case3: Suppose that = 0. Then de@B1/0) = 2, andS C {[1, 0, 01}. Therefore,

Z I (ANK» El/o) = 111,00 (ZK, El/o)-

xes

A computation similar to the previous cases shows:
I11.0,0/(Ax . B1jo) > 2d — 2.

Furthermore, Lemma 3.10 will again imply that we have equality wh@nd.a good slope.
Therefore, sincev(1/0) = 8,

> I.(Ak.Bijo) >d-2- 28 =degAk) - degB1jo) — 2w(1/0). O

xes

Our main theorem combines Proposition 3.7 and Proposition 3.11 using Bézout's
Theorem. In order for Bézout's Theorem to apply to the cuivesx) andV (B, /,), they
must have no common component. This will be true wiéan is a good slope.

Lemma 3.12.If p/q is a good slope, then(Ax) and V(Ep/q) have no common
component.

Proof. Assume thaly is non-negative. The proof foy negative is similar. By way of
contradiction, assume thH(KK) andV(E,,/q) have a common component. Since neither
of these curves has a component at infinity, it follows that(ded B)/,) # 1. However,
Bp,q(L, M) has precisely two irreducible facto®? L4 —1 andM?L? + 1. 1f MPL? -1

is a factor ofAx (L, M), thenAg (r—7,17) = 0. It follows thatflj/q (t=?,11) = 0. So, by
Lemma 3.10p/q is a bad slope. This contradicts our hypothesis. Similarlyf#L7 + 1

is a factor ofAx (L, M), then eitherflj/q(—fl’, 9y =0 or flj/q (t7?,—1t7) = 0. Once
again, by Lemma 3.10, either outcome would contradict the hypothesig thas a good
slope. O

Theorem 3.13. Suppose thati x (L, M) # 1 andr1(X) has property NCIS. If p/q is a
good cyclic surgery slope, andsifs is any slope, then either

e w(p/q) <w(r/s),or

° ngAKa Br/s) # 1.
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Proof. Assume that-/s is any slope such that gcd (L, M), B,/s(L, M)) = 1. There-
fore, V(Ax) andV(Er/Y) have no common component. We shall apply Bézout’s Theorem
twice; first to the curve¥ (A ) andV(B,,/q) and then ta)(Ax) andV(B,/Y)

Sincep/q is a good slope, it follows from Lemma 3.12 thatA k) andV(B,,/q) have
no common component. By Bézout’s Theorem,

> I+(Ak, Byq) = degAx) - deg B, q). 17)
xeVARNV(Byq)

The setV(KK) N V(E,,/q) can be divided into two disjoint subsets:
= (V(Ax) NV(B,) \ {[1,0,01,[0,1,0],[0,0,1]}, and
S :=V(Ag) NV(B,y) N {[1.0,01.[0.1,0].[0,0, 1]}.
By Lemma 3.57 c {—1,1} x {—1, 1} x {1}, and by Proposition 3.7,

101
D LAk Bprg) = Y0 mi-ap i u(Ax). (18)
xeT s=01r=0

On the other hand, by Proposition 3.11,
> I (Ak. Bpy) =degAx) - deg B, /q) — 2w(p/q). (19)
xes

Combining (17), (18), and (19) gives:

1 1
2w(p/g) =) mi1s 1y.1(AK). (20)
s=0r=0
The computation for the curves(Ax) andV(lN?r/S) is slightly different since we can
apply neither Lemma 3.5 nor Proposition 3.7. As above, partitiofix ) andV(lN?r/S) into
setsT aleS. Now TNneed not be contained ir-1, 1} x {—1,1} x {1}. However, since
I (Ak, Br/s) = my(Ag) - mx(Br/s)y

1 1
le (A, Byjs) = sz[(—l)S,(—l)f,l](AK)- (21)
xeT s=01=0

Moreover, by Proposition 3.11,

Y I:(Ak, Bys) > degAx) - degByjs) — 2w (r/s). (22)
xes

Summing (21) and (22), and applying Bézout's Theorem gives:

101
2w(r/s) =Y Y myyyr.1.1(Ax).

s=01=0
Thereforew(r/s) > w(p/q) follows from (20). O

Example 3.14. Suppose that botik andn are positive and odd. The A-polynomial of an
(m,n) torus knot isM?"" L2 — 1. The only bad slope isin. By Theorem 3.13, ifp/q
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andr/s are good cyclic surgery slopes, theitip/q) = w(r/s). Notice that Y0 is a good
cyclic surgery slope, and(1/0) = 2. Therefore, ifp/q is a good cyclic surgery slope,
thenw(p/q) = 2. Forp/q # mn, we havew(p/q) = (2mn — 2(p/q))|q|. Thus, forp/q
to be a good cyclic surgery slope, it is necessary thatmng + 1. It is well known that
these are all of the cyclic surgery slopes for(an n) torus knot.

As mentioned in Section 2, if a knot complement contains no closed essential surface,
then its knot group has property NCIS This leads to the following corollary of
Theorem 3.13.

Corollary 3.15. Let K be a knot inS3 with Ax (L, M) # 1, and suppose thaX contains
no closed essential surface. jf/q surgery onk is cyclic, thenp/q is not the slope of
a side of NewtA ). Moreover,w(p/q) is the minimal value ofv restricted to the set of
slopes which are not the slope of a side of Newt).

Proof. Since X contains no closed essential surface, it follows thgtX) has property
NCIS™. Recall that a slope of a side dfewi(Ag) is a strict boundary slope of. By
Theorem 2.0.3 of [5], surgery along a strict boundary slope can be cyclic only if there is a
closed essential surface K1 Hence, surgery along a slope of a sidéNefvi(A ) cannot

be cyclic.

Now assume thap/q surgery onk is cyclic. Thenp/q is not the slope of a side of
NewtAg), so it is a good slope. Let/s be any slope that is not the slope of a side of
Newt(A k). It follows thatr/s is a good slope. Hence, by Lemma 3.12,@tg, B, /) = 1.
Therefore, by Theorem 3.18(p/q) < w(r/s). O

Example 3.16. The figure-eight knot satisfies the hypotheses of Corollary 3.15. Moreover,
1/0is a good cyclic surgery slope, and1/0) = 2. A quick calculation using the Newton
polygon shows thatv(p/q) > 2 if p/q # 1/0. Therefore, by Corollary 3.15, the only
possible cyclic surgery slopes for the figure-eight knot (other thy@) are the boundary
slopest4. However, neither of these slopes are cyclic by Theorem 2.0.3 of [5].

4. The Cyclic Surgery Theorem

One of the most celebrated results concerning cyclic surgery is the Cyclic Surgery
Theorem of Culler et al. [5].

Theorem 4.1 (The Cyclic Surgery Theoremlet X be a compact, connected, irreducible
three-manifold such thatX is a torus. Suppose that is not a Seifert fibered space. If
p/q andr/s surgeries are cyclic, thea(p/q,r/s) < 1. Hence, there are at most three
cyclic surgery slopes.

Given a hyperbolic knot which contains no closed essential surface in its complement,
we shall produce a reformulation of the Cyclic Surgery Theorem in terms gf #pevidth.
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The proof of this result will exploit the fact that the A-polynomial of a hyperbolic knot has
a special factor.

Definition 4.2. Let r and s be co-prime non-negative integers. L6{L, M) be the
product of all factors ofAx (L, M) of the formM"L* +1 or M" &+ L. The polynomial
Hg(L,M):= Ak (L, M)/G(L, M) is called thehyperbolic factorof Ag (L, M).

In [4], Cooper and Long prove that K is hyperbolic, therHg (L, M) # 1. Therefore,
we have the following corollary to Theorem 3.13.

Corollary 4.3. Suppose thakK is a hyperbolic knot anX contains no closed essential
surface. Letw denote the width function on NeW#ix ). If p/g surgery onK is cyclic, and
if r/s is any slope, them(p/q) < w(r/s).

Proof. We apply Theorem 3.13 witli{x (L, M) used in place ofAg (L, M). Thus, it
suffices to show that the hypotheses of Theorem 3.13 are satisfied. The result of Cooper
and Long implies thatix (L, M) # 1. SinceX contains no closed essential surface, we
know thatz1(X) has property NCIS. Moreover, sincep/q is a cyclic surgery slope

and X contains no closed essential surface, we know is not the slope of a side

of NewtAg) by Corollary 3.15. Hencep/q is a good slope, and by Theorem 3.13,
w(p/q) < w(r/s) or gcd Hk, B,/s) # 1. However, gcdHg, B,/;) = 1 for all /s by the
definition of Hx (L, M). Thereforew(p/q) < w(r/s). O

The proof of the reformulation of the Cyclic Surgery Theorem for hyperbolic knots in
S® will depend on the following lemma.

Lemma 4.4. Let N be a non-degenerate polygon in the plane whose vertices lie in the
integer lattice, and letv denote the width function oN. Let p/q be a slope such that

(1) p/q is not the slope of a side @f and

(2) w(p/q) is the minimal value ofv.
If r/s is any slope withw(r/s) = w(p/q), then A(p/q,r/s) < 1. Hence, for such a
polygon, there exist at most three slopeg satisfying(1) and(2).

Proof. After anintegral change of basis, we may assumejiliat= 1/0. Moreover, since
N has integral vertices and singeis invariant under integral translations, we may assume
that NV lies in the first quadrant and intersects both axes. Singe= 1/0, it follows that
A(p/q,r/s) = A(1/0,r/s) = |s|. Therefore, in order to prove the lemma, it suffices to
show thats| < 1.

Assumes £ 0, and consider the family consisting of all lines of slepewhich intersect
N. Letl; andl be the lines in this family with the respective maximum and minimdm
intercepts. Similarly, consider the family of vertical lines intersectigand let/z and
l4 be the lines in this family with the respective maximum and minimlUsimtercepts.
Define P to be the parallelogram bounded by the linggy, /3, andl4. Notice thatV C P.
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M
A L
(@,(r/s) 1+ y2)
0,)
N
P b
(@,(/s) a1 +y1)
> L
(Ovyl)

l4 3

Fig. 2. The parallelogran® containingn.

So, by hypothesisP is also non-degenerate. Starting at the South West vertéarid
moving clockwise, label the four vertices & (0, y1), (0, y2), (x1, (r/s)x1 + y2), and
(x1, (r/s)x1 + y1). By Lemma 3.8(y2 — y1)|s| = w(r/s) andx1 = w(1/0). (See Fig. 2.)

Define a new width functiom p on the parallelogran® as follows. If6 # 0, then letw
andp be the respective minimum and maximintercepts of a line of slope/b which
intersectsP. Definewp by wp(a/b) := (B — «)|b|. If b =0, then lets be the maximum
L-intercept of a vertical line which intersects and definewp by wp(1/0) := 8. If the
vertices of P are integral, then by Lemma 3.8,» agrees with the width function from
Definition 1.2. Therefore, sincd& is contained inP, and sinceN does have integral
vertices,wp > w for all slopes. Moreoverp(r/s) = w(r/s) = w(1/0) = wp(1/0).

By way of contradiction, assume that # 1. Hence, there exists an integesuch that:

’
a<-<a+1
K

We shall prove thab p (@) = w(a) andwp (a+1) = w(a+1). This leads to a contradiction
as follows. Sincer < r/s, wp(a) = w(a) if and only if the South West and North East
vertices ofP are inN. Similarly, sincer/s < a + 1, we see that the North West and South
East vertices of? are inN if wp(a + 1) = w(a + 1). Therefore, ifwp(a) = w(a) and
wp(a +1) =w(a + 1), then P = N. This contradicts the hypothesis thatOlis not the
slope of a side oiV.

We now proceed to show p(a) = w(a). We shall assume thafs > 0. The proof for
r/s < 0 is similar. Define so that:

b

r
a+—=-
N s
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ls
(21, (/s )1 + y2)
)z |

0,2)

> L
(O.’yl) /
/

Fig. 3. The computation ab p (a).

therefore, O< b < s. Consider the family of lines with slope which intersectP. Let s
andlg be the lines in this family with the respective maximum and minimdrntercepts.

Notice that theM-intercept ofls is y2 + (r/s)x1 — ax1. (See Fig. 3.) So, by definition of
wP!

,
wp(a) = (;xl +y2 — axl) -y

r

= (; —a)x1+ (y2—y1)
- <f —a)w(l/o) + w9
S S

- <b%1)w(1/0). (23)

Sincewp > w andw(1/0) is minimal, it follows thatw p (@) > w(a) > w(1/0). Hence,
from (23),b + 1 > 5. On the other hand, & b < s. Thereforep + 1 =, and this implies
thatwp(a) = w(a) = w(1/0).

The proof thatwp(a + 1) = w(a + 1) is essentially the same. Once again we assume
thatr/s > 0. Consider the family of lines with slope+ 1 which intersec®. Let/7 andlg
be the lines in this family with the respective maximum and minimdrintercepts. The
M-intercept oflg is y1 + (r/s)x1 — (a + 1)x1. (See Fig. 4.) Therefore,

,
wpla+1)=yr— <y1+ ;xl —(a+ 1)x1)

-
=(y2—y1)+<a+1—g>x1
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M Iy
(07 y2)
ls
P
| | o 7 (1,@/s)z1+4n)

79) >
r/s)x

0

(a+)x;

Fig. 4. The computation abp (a + 1).

w(i/o) + <a F1- £>w(1/0)

_ (¥>w(1/0). (24)

Sincewp(a+1) > w(a + 1) > w(1/0), it follows from (24) that 1+ s — b > 5. Hence,
b=1because & b < s. Thereforewp(a+1) =w(a+1) =w(l/0). O

Combining Corollary 4.3 and Lemma 4.4 we produce the following reformulation of the
Cyclic Surgery Theorem for hyperbolic knotsSA.

Theorem 4.5. Let K be a hyperbolic knot it§3 with no closed essential surface in its
complement. Led» denote the width function on Nei#ix ). Then there are at most three
slopesp/q such thatp/q is not a slope of a side of Ne@H ) andw(p/q) is minimal.
Hence, there are at most three cyclic surgery slopes.

Proof. It suffices to show that the hypotheses of Lemma 4.4 are satisfied by the polygon
Newt Hg). SinceK is hyperbolic, it follows by Theorem 6.3 of [4] th&lewt Hk) is
non-degenerate. Moreover, singeis a knot inS2, 1/0 is a cyclic surgery slope. So,

by Corollary 4.3,w(1/0) is minimal. Furthermore, by Theorem 2.0.3 of [5},0Lis not

strict boundary slope. Hence/Q is not the slope of a side dfewt{ Hg). Therefore, by
Lemma 4.4, there are at most three slopgg such thatp/q is not a slope of a side

of NewtHg) and w(p/q) is minimal. The last remark of the Theorem follows from
Corollary 4.3. O
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Fig. 5. The(—2, 3, 7) pretzel knot.
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7y .
/ / V4
‘ / 7
2l v A0
w(2) Z 7
| /] | >
B I
Va .
w3 Lo s
< w(1/0)
1/

Fig. 6. The sheared Newton polygon of the A-polynomial of th&, 3, 7) pretzel knot.

Using thep/q width, one can easily compute a list of possible cyclic surgery slopes from
the Newton polygon. If the knot is hyperbolic and contains no closed essential surface, then
the list we compute will contain at most three slopes.

Example 4.6. The best known example of a hyperbolic knot with three cyclic surgeries is
the (=2, 3, 7) pretzel knot shown in Fig. 5. By work of Oertel [12], this knot complement
contains no closed essential surface. The A-polynomial of this knot is:

Ax(L,M)=—1+LM*®— 2L M8+ LM+ 202Mm36 + 1238
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The shape of the Newton polygon for this polynomial is less obscure after applying the
linear shear ma[)jG ﬂ (See Fig. 6.) The width function on the sheared polygon evaluated
on slopep/q is equal to the width function on the original Newton polygon evaluated at
slope (p + 16g)/q. Since the width function on the sheared polygon takes on minimal
values wherp/q = 2, 3, and }0, the width function on the original Newton polygon takes
on minimal values whep/g =18, 19, and 10. It was shown by Fintushel and Stern [7]
that all of these slopes are cyclic surgery slopes foth2 3, 7) pretzel knot.

5. An application to mutant knots

Assume thak is a knotinS® and F is a 2-sphere i§2 with the following properties:

(1) FnNaX =four copies ofu,

(2) FN X is essential inX.
We may identify F with the unit sphere so that the punctures Bfn K are the
points{(1,0,0), (—1,0,0), (0,0, 1), (0,0, —1)}, and, insideF, K connects the punctures
(1,0,0) to (—1,0,0) and (0, 0, 1) to (0,0, —1). There are four involutions of that are
central in the mapping class group: the identity, rotatiomtgbout thex-axis, rotation by
7 about thez-axis, and the product of the last two maps. If we cut aléh@pply one of
the four involutions, then glue back in, we form one of four knots cattedantof K (one
of which isK itself).

If K is a hyperbolic knot, then Theorem 7.3 of [4] implies that there is a common non-
trivial factor, C(L, M), of the A-polynomial's ofK and any mutant oK. Moreover, this
factor divides the hyperbolic factor. This leads to the following theorem.

Theorem 5.1. Let K and K’ be hyperbolic mutant knots i8°. Suppose that both knot
groups have property NCIS If p/q andr/s are slopes such that

(1) p/q surgery onk is cyclic,

(2) r/s surgery onK’ is cyclic, and

(3) neitherp/q norr/s is a strict boundary slope,
thenA(p/q,r/s) < L.

Proof. Let C(L, M) be the common factor of the A-polynomials &f and K’. Let w
denote the width function oNewtC). Since neithep /g norr/s is strict boundary slope,
neither can be the slope of a sideN#wi(C). So, bothp /g andr/s are good slopes. Since
C(L, M) is non-trivial and divides the hyperbolic factor, g€t B,,,,) = 1 for all slopes
m/n. Hence, by Theorem 3.13;(p/q) = w(r/s) is the minimal value ofw. Moreover,
NewtC) is non-degenerate becau€éL, M) is non-trivial and divides the hyperbolic
factor. Therefore, by Lemma4.4(p/q.r/s) <1. O

We conclude with two questions.

Question 5.2. By Theorem 3.13, ifp/q surgery is cyclic themw(p/q) must be minimal.
Examples 3.14 and 4.6 lead one to wonder if the converse is also true.
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K mutant of K

Fig. 7. A mutant ofK .

Question 5.3. A knot hasProperty-Pif the only surgery which produces a manifold with
trivial fundamental group is/D surgery. IfK is a hyperbolic knot with no closed essential
surface in its complement, then it is necessary that eiih@j or w(—1) be minimal in
order forK to fail to have Property-P. Can one show that neith€t) nor w(—1) can be
minimal for such a knot?
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