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Abstract

Recent evidence suggests macroalgal blooms mayapiale in the worldwide
decline in seagrass, but the shape of the fundtretationship between seagrass health
and dominant bloom-forming macroalgae is poorlyrabterized. We tested whether the
impact of varying abundances of two cosmopolitarobi-forming macroalgal genera
caused linear/quasi-linear or sudden thresholdgdsim measures of eelgragsstera
marina, meadow health. We conducted two caging experimardshallowZ. marina
bed (~1 m depth) in Bodega Harbor, California, UBi#ere we maintained six densities
within the range of natural abundances of macrealgbva (0-4.0 kg nf) and
Gracilariopsis (0-2.0 kg nf), as well as uncaged controls over a 10-week geShoot
density, blade growth, and epiphyte load were nredsevery two weeks and algal
treatments reset. We did not find support for thoéd transitions between algal
abundance and measures of seagrass bed healttsigsirggdal and broken-stick
regression analyses for each data set; these maem@et®mmonly used to identify
threshold patterns in ecological shifts. Insteat§lfmeasurements of shoot density and
epiphyte load were best modelled as linear or #ligion-linear declines with increasing
Ulva abundance. A negative linear relationship alsetesibetween shoot density and
Gracilariopsisabundance and a trend towards linear negativetsffecepiphyte load.
The similar shape of these functional relationshkip®ss different types of algae
suggests the relationship may be generalizablalgs abundances that are commonly
observed, we found smooth and predictable negatipacts taZ. marina by decline in
shoot density and potential impacts to food webkby of epiphytes rather than sudden

threshold shifts or “ecological surprises”. Our wopntrasts with the growing body of
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literature suggesting highly non-linear shifts@sponse to human impact; thus, it is
important to broaden understanding of shifts toertban just pattern but to the processes

that drive different patterns of shifts.

Keywords: seagrass decline, macroalgal blooms, epiphyte loa

Introduction

Marine ecosystems globally have been undergoingne=ghifts from one state to
another, usually undesirable, state along grad@rgsvironmental stressors such as
climate warming, nutrient input, and changes instoner pressure (see reviews by
Conversi et al., 2014; Dudgeon et al., 2010; Hughed., 2010; Mollmann et al., 2014),
motivating research on the patterns of these fanatiresponses (defined as the shape of
the relationship between predictor and responsahlas). Patterns of shifts in species or
communities across stressor gradients can vary $raooth and gradual transitions, best
described as linear or quasi-linear (sensu Coneti, 2014), to sudden, catastrophic
declines, which are highly nonlinear and are oitesociated with a critical threshold
(Conversi et al., 2014; Scheffer and Carpenter3(Budden shifts are thought to be
common responses to anthropogenic stressors, manainéained by positive feedbacks
(e.g., Unsworth et al., 2015; York et al., 201 @an be extremely difficult to predict
(Ceccherelli et al., 2018; Hughes et al., 2018;&Retcal., 2016; Scheffer and Carpenter,
2003; Viaroli et al., 2008). For example “ecologisarprises”, or unpredicted
degradative shifts, have been documented in ceed$ (McCook, 1999), savannahs
(Ludwig et al., 1997), and lakes (Carpenter etl&l99; reviewed in Scheffer et al.,

2001). In contrast, other systems respond in pt&lolie, linear or quasi-linear ways to
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changes in environmental stressors such as nulelesit in estuaries (e.g., Nedwell et al.
1999) and urbanization in streams (Morley and K2002). These response types can
provide early warning signs of transitions beca@sponses occur incrementally as
stressors intensify. Thus, evaluating the shagkeofunctional response of species or
communities to common stressors is of key impoganorder to overcome the
formidable management challenges regime shiftsigftesent (Suding and Hobbs,

2009).

Seagrasses are important foundation species thatdeen experiencing global
regime shifts along gradients of environmentalsstoes such as nutrient enrichment,
sedimentation, and increased temperature (reviéwedth et al., 2006; York et al.,
2017), yet their functional response to key streshas not been fully characterized. One
well-known driver of loss is nutrient enrichmendiin developed watersheds that results
in phytoplankton blooms or excessive epiphyte laatdseagrass blades that block light
(Hughes et al. 2004, Burkholder et al., 2007; Csodet al., 2004; Orth et al., 2006,
Hitchcock et al. 2017). There is a growing bodgwidence that implicates nutrient-
driven blooms of macroalgae as a biotic stressairdan also drive seagrass loss. It is
well known that bloom-forming macroalgae, such ggastunistic greenllva,
Cladaophora) andred (Gracilaria, Gracilariopsis) algae,grow quickly in response to
nutrient input (e.g., Fong et al., 1993; Kamerlgt2901; McGlathery, 1995). Resultant
macroalgal blooms have caused declines in seagrastee genuZostera on both sides
of the Atlantic Ocean by reducing available lightlor creating toxic biogeochemical
conditions (Han et al., 2016; Hauxwell et al., 20dLghes et al., 2018; Mcglathery,

2001; Pulido and Borum, 2010; Valiela et al., 1988¢ Appendix S1 for a more detailed
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review), and a meta-analysis suggests that maaioefigcts may vary across major
bloom-forming genera (Thomson et al., 2012). Thewedicts that positive feedbacks
should result in threshold responses to stressays Scheffer and Carpenter, 2003) and
some empirical evidence has demonstrated posgr@biacks in seagrass communities,
such as seagrasses stabilizing sediment and grazersing epiphytes and macroalgae
(for reviews see Maxwell et al., 2017; O’'Brien &f 2017; Roca et al., 2016; Unsworth
et al., 2015; York et al., 2017, for analysis afdderm data see van der Heide et al.,
2007). However, the shape of the macroalgal stresssmrass response curve has not
been characterized as most experimental studieglma limited range of bloom
conditions (Han et al., 2016; Huntington and Bog&(08; Olyarnik and Stachowicz,
2012 and Supplemental Table S1). Because seagsiesis are thought to be
characterized by positive feedbacks, we predidtatthe functional response between

seagrass and our macroalgal stress gradients Wweutdghly non-linear.

It is especially important to evaluate the shap#heffunctional response of
foundation species, such as seagrasses, to sg@sstirey support many ecosystem
functions, including habitat and trophic supporatawhole community (e.g., Scott et al.,
2018; York et al., 2017). Seagrasses provide haioifaoth epiphytic algae and
mesograzers that comprise a key grazing functiahghpports upper trophic levels
(Baden et al., 2010; Scott et al., 2018). Althoegiphytes depend on seagrass for
habitat, nutrient enrichment may cause increasbestimepiphytes (Borum 1985,
Frankovich and Fourqurean 1997, reviewed by Hughes 2004) and macroalgae (Han
et al., 2016; Huntington and Boyer, 2008; Olyarand Stachowicz, 2012), with over all

negative effects on seagrasses (Hessing-Lewis, @0dl1; Hughes et al., 2018). An
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additional consequence of nutrient-stimulated blsaffree-floating macroalgae that
raft onto seagrass is an increase in competititin @piphytes for light and nutrients (see
Cardoso et al. 2004), which may cause a decliepiphyte loading o@. marina. While
this may alleviate some negative impacts of epghyvZ. marina, there may be
cascading impacts to trophic support for mesogsa@déughes et al., 2004, 2018; Scott et
al., 2018). Thus, characterizing the shape of tinetfonal response of seagrass and its
epiphytes to a macroalgal stress gradient is kéyityp understanding the impacts of

stressors on the functioning of seagrass commanitie

While links have been made between macroalgal béoamad seagrass and
epiphyte decline, these studies have not evalissagrass responses along a gradient of
macroalgal stress to identify the shape of thetfanal response. We manipulated the
abundance of two common bloom forming macroalgae@aliforniaZostera marina
bed to determine whether the seagrass system wespond in a predictable
linear/quasi-linear fashion or experience an abttugshold shift in response to the
stressor of macroalgal loading. We asked: (1) tére be similar responses of seagrass
and epiphytes to increased abundances of two domgesmera of bloom forming
macroalgae? If so, can we (2) identify whetherrdgponse to increased abundance of
each macroalgal species is a sudden thresholdtioansr smooth and predictable?
Whether macroalgal loads cause a smooth, predéctidgradation of seagrass and its
epiphytes or whether catastrophic loss occurs abuotreal loads is key knowledge

needed to fully understand community transitions.
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M ethods

Macroalgal genera

Dominant bloom-forming macroalgae in seagrass beglsisually either sheet-
like or filamentous green (McGlathery, 2001; Vaiet al., 1997) or coarsely branching
red (Hauxwell et al., 2003, 2001; Huntington and/&op 2008) algae that respond to
nutrient addition with rapid increases in growtloiig et al., 1993; Kamer et al., 2001;
McGlathery, 1995). Blooms of green algae can predlaating mats that raft over
seagrass, blanketing the beds with various aburedaarad depths (McGlathery 2001),
though some can also intercalate between seadragstsr near the sediment (Hessing-
Lewis et al., 2015). In contrast, branching rechalgenerally form masses that
intercalate within the bases of seagrass shootstiiirjion and Boyer, 2008). Previous
studies showed separately that red or green alighti@ns can have negative impacts on
seagrass (see Appendix S1: Table S1.1), but ditesbmultiple levels of algal addition
(but see Hauxwell et al. 2001, Huntington & Boy808, Rasmussen et al. 2012 for 3
treatments). Our study compared impacts of 2 gevfareacroalgae that commonly occur
in seagrass beds and included multiple treatmegetdeéo determine the shape of the
seagrass community response. One algal genuslwaswhich we identified as
expansa, but since species-level distinctions are comp@itdy considerable
morphological plasticity and we did not key out gvepecimen, we hereafter callltva
(as in Olyarnik and Stachowicz, 2012). The otherugasGracilariopsis, and as
Gracilariopsisis difficult to key to species, and often requineslecular techniques for

identification (e.g., Lyra et al., 2015), hereaftex refer to it a&racilariopsis.
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148 Experimental design

149 Two field experiments assessgthnges over time in seagrass health, measured as
150 shoot density, blade growth rate, and epiphyte,loéith additions of two common

151 macroalgae. A seagrass bed near the mouth of Badidpur, California, USA

152 (38°18'41.81"N, 123° 3'37.63"W) with a range iratitieight of -0.24 to +2.00 m relative
153 to mean lower low water was the site for both expents. Bodega Harbor is nearly

154 completely flushed each tidal cycle and receivey lrgle freshwater input outside the
155 rainy season (November-April) (Olyarnik and Stactoaw2012). It is episodically

156 subjected to upwelled and advected nutrient-rickaa water. Large areas of the

157 benthos are cover by continuous meadow&ogtera marina. Prior to the experiments,
158 all existing macroalgae were removed from 44%pfuts. To retain (or exclude) algae, 5-
159 sided cages (4 vertical sides and a horizontalit) dimensions of 1 fnconstructed

160 from a PVC frame and hardware mesh with 2.5 cnbxcgh openings were placed on all
161 plots; the 1m height allowed algae to float up dodn with the tides if they did so

162 naturally, but maintained experimental treatme@ieén et al., 2014).

163 For one experiment, six treatmentdd¥a were added to seagrass plots with
164 densities of 0, 1.0, 1.5, 2.0, 3.0, and 4.0 kwet weight (n=4 for algal treatments; n=5
165 for no addition plots used in both experiments (sglew)). Marked but uncaged control
166 (UCC) plots (n=4) evaluated artefacts due to cadmse. There were no differences due
167 to cages for any response variable but epiphyt® Mhich was reduced by cages (see
168 Appendix S2). Treatments were based upon Olyamik&tachowicz (2012) finding

169  strong negative impacts, with shoot density appriver0 at 4.0 kg /M of Ulva during

170 one year of their study. This was the highest b&srfarUlva found in their nearly 4 year



Bittick et al.—Two macroalgal blooms

171 study, was over double the next highest biomaskcansed massive loss of shoots.
172 Thus, we added a gradient of algal abundance biliswalue to identify the pattern of
173 the transition to these very low shoot densitiekil®\this cannot eliminate the possibility
174  of a threshold at even higher biomass additions;ivese to use values within ranges
175 found in the literature (see Table S1) and thatld/oapture the pattern across a wide

176 range of the stressor gradient.

177 The other caging experiment evaluated the impattteobranching red alga,
178 Gracilariopsis. There were six treatments of macroalgae—0, 0.761 5, 1.75, and 2.0
179 kg m? wet weight (n=3). Additions dBracilariopsis were determined from Huntington
180 and Boyer (2008) who found strong negative effatts.7 kg nf but not 0.325 kg .

181 Both the 0 kg if and UCC plots were used for both experiments.

182 Treatments were initiated by collecting the appiatpralgae, weighing out the
183 randomly assigned densities for each experimemialnith a hanging fish scale, and
184 placing the algae within experimental plots. Toverd trapping fish within cages, a PVC
185 pipe was moved back and forth throughout the piiotrpo securing cages. The same
186 procedure was replicated on UCC plots as well. Tikédy disturbed the epiphyte

187 community, so we began measuring epiphytes in \2e&¥e used a shovel to sever
188 rhizomes to a depth of ~30 cm around each plotéegmt movement of nutrients and
189 photosynthate from outside the experimental arearygwo weeks (see below) we

190 collected all algae from within each plot, measutediomass, and added or removed
191 macroalgae to re-establish initial treatment levEle amount of macroalgae present in
192 each plot after each two-week period estimategbénsistence of macroalgae over time

193 and treatment. Overalllva biomasgemained constant at the treatment levels except
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between the last two weeks, whiteacilariopsis biomasswvas reduced between each
interval (Appendix S3). Despite this reduction inrbass over time, we used the
experimental algal biomass that we maintained e2ewmgeks in our statistical analyses
as loss or gain within a mat is a natural procées mat deposition and therefore are part

of the response to the treatments.
Field and Laboratory Methods

Both experiments ran for ten weeks from 10 Julg Sgéptember 2012; previous
work demonstrated that algal mats rafting ontortidal mudflat communities could last
up to 5 months (Green and Fong, 2015) and thathhdysignificant community-level
effects within this timeframe (Green et al., 20M/e sampled all plots within both
experiments initially and five times over the 10ekealuration approximately every 14
days at the spring low tides. Sampling occurrea th25 m x 0.25 m (0.06253muadrat
placed in a different predetermined location witeath plot for each sampling event.
Thus the same location within each plot was samgilethg a particular sampling period,
but a new location was determined each samplinggeso that a location was never
resampled. We counted the number of seagrass Hseetslauxwell et al., 2001 for
method) and normalized density to shoots?. We collected three shoots from each plot
to quantify epiphyte load. Shoots were separatedingividual blades and both sides
were scraped with a microscope slide to removehgpes (method adapted from
Kendrick and Lavery, 2001; Short et al., 1995).dhgies from each blade were
composited for each shoot and transferred to seppra-weighed aluminium foil, dried

at 60 C to a constant weight, and dry weighed. Epiplyae per shoot was calculated as

the average of the 3 shoots per plot. Epiphyte laadwas calculated as the average

10
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epiphyte dry weight (g) on the three collected shmoultiplied by the total number of

shoots m? (epiphyte load = epiphyte biomass @hoot’) * #shoots: m™).

Two weeks prior to the end of the experiment atléaur shoots per plot were
marked to measure seagrass growth. Two holes weehpd through the shoots within
the sheath using a needle (method adapted from@®aiad Kirkman 2001). The first
hole was punched approximately 5 cm from the sewliraed the second directly above it
to make them distinguishable from other damageaxigg scars. After two weeks,
shoots were collecteahd growth of each blade measured as the distamicetiie initial
mark on the outer sheath (which does not elongatie hole on each interior blade. The
tissue between the hole in the sheath and in dade s comprised of new tissue as
seagrass grows from a basal meristem (see Keranath.avery, 2001; Short et al.,
1995). Lengths of new blades with no holes were alsasured. The total length of new
tissue from each blade was summed for a given sirmbaiveraged for all shoots from a

plot for average total blade elongation (eshoot’) (see Duarte and Kirkman 2001).

This insured that blades of all sizes were includegtowth measurements.
Threshold Analysisand Model Fitting

We tested for a threshold shift in response vaemdhoot density, growth,
epiphyte load per shoot, and epiphyte load peram the final week 10 measurement)
in response to macroalgal abundance with two comappnoaches: (1) testing the fit of
a sigmoid function and (2) conducting piecewiseesgion (Samhouri et al., 2010; Toms

and Lesperance, 2003). Figure 1 (a) shows theiumct

R=-4

= (Equation 1)

C2
1+ 5

11
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where R = the ecosystem response varigethe stressor on the syste@,is
the y-axis starting value, ands varied to determine the steepness in the oalstiip
between the ecosystem response and stressor a0po#s the value of declines, the
shape of the negative relationship between thesireand ecosystem response switches
from being a very abrupt threshold transition (&=§0) to a very smooth relationship
(e.g.t=1). We used the non-linear regression, nls, reutih Core Team, 2015) and
bbmle package (Bolker, 2008) in R to estimate \@foe parameter€,, C,, andt for
each of our seagrass response variables using maxitkelihood estimation (as in
Samhouri et al. 2010). In cases where there wasupgort for a sharp threshold
transition (e.gt close to or less than 1), the smooth sigmoid ma@sl compared by
Akaike Information Criterion, using the correctifox small sample sizes (AICc), to two

other stress-response models

(a) (b)

based on their ecological ' -
— o
. — =5
relevance to the possible effec ¢ | - g | /
Q t=2 Q
of macroalgae on seagrass an % q%
o o
. . . G \Sb
their epiphytes: (1) steady \
negative decline (linear) acros Stresson () )
the full range of the stressor Figure 1. Examples of possible ecosystem response (R) to

a stressor (S) following a threshold pattern eithesugh
(a) a sigmoid function (Eq. 1) or (b) a piecewiegression
(Eqg. 2) model with breakpoint &. The different colours
of the lines in the sigmoid (a) example represeagriadient
of the stressor (exponential de). from a steep threshold response (purpibP) at poiniC,
(dotted line) to smooth, predictable relationskhiplipw,

If AICcs were similar AAICc<4; t=1).

and (2) rapid decline at low vas

although Burnham et al. 2011 accepted differe’@d€c>2 as similar, they also suggest

using >4 as more conservative so we chose the)latte chose multiple models. Table 1

12
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lists all models and comparisons; non-lineAvBlues were estimated by squaring the
correlation between predicted and actual respoakes.

As a second test for threshold behavior, which@agkcommodate a broader
range of functional relationships, we conducted@gse regression through the iterative
search method in R (see method in Crawley 2007oiR Team 2015). In this case, two
linear regressions:

R =b + m*S when S<§, and
R=kp +my*S when S>§ (Equation 2)
were conducted to describe the data before andaalieeak-point, $(Figure 1 b). The
breakpoint that yielded a model with the lowestdeal mean standard error (MSE) was
selected. We show any significant piecewise moele similar analysis in Sutula et al.,
2014) and these models were also comparetidgc to the linear, exponential, and
sigmoid models described above.

All analyses were conducted independently for ¥ (Jlva andGracilariopsis)
experiments. We used repeated measures ANOVA &ssigsmporal responses of shoot
density and epiphyte load (measured every 2 wdekspcroalgal abundance; results are
presented in Appendix S4 and S5. UCC plots werenotided in analyses, as they do
not represent an experimental treatment but wereaced to 0 kg ffiplots to assess

cage effects in Appendix S2.

Results

13
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Ulva experiment

The data did not support the existence of a stegsition or threshold relationship As
marina shoot density declined incrementally across thdigra of increasin@/lva
abundance (Figure 2 a). The maximum likelihoodeste (MLE) oft for the sigmoid
function was 1.55, resulting in a smooth curve g green) similar in shape to the

exponential decay model (Fig 2 a, blue). The piésewodel (Figure 2 b) was

o =) -
o Q :

& N Sigmoid RN | oo Pecetosuc
€ —— Exponential £ e oo b:::ﬁ 0315‘ % C
n 9 —— Linear w Q : p
5 21 . ==+ Initial Value 5 ©1 :

o le] i

< < :

ﬁ)/ O =t - G w e - - - - — - \t_/)/ o :
> 2 e > O+ :
= = - B
2 . . 2 .

a N 5 N
. 8 T L} - 8 1 \.
: S S —

5 * . (% . P o Tuuy

© 1 . o .
T T T T T I T T T T
0 1 2 3 4 0 1 2 3 4
Algal Biomass (kg m~ wet wt) Algal Biomass (kg m~ wet wt)
(c) (d)
. B
Sigmoid
—— Exponential s

& 2 — Linear & 2 : - =~ Piece 195%Cl
£ === Initial Value £ B ! === Piece 295% Cl
o B o == breakpoint

o N
T O | T O |
2 = T
o o
o . o
Q < L] [0}

208 : 2
8 97 . . a 04
S o ol
w ° . ° L

. s o \
. . .
o ¢ o H o 4
T T T T T
0 1 2 3 4

Algal Biomass (kg m™ wet wt)

Flgure2 Zostera marina shoot density (n= 25) and epiphyte load (g) per

m (n=23) in response tdlva abundance (kg n) Linear, exponential
and sigmoid models were fit ®& marina shoot density (a) and epiphyte

load (c) (g rﬁz). Black dotted horizontal lines indicate initialues
(n=25). Piecewise regression with 95% confidenteritals for each
linear piece (shaded areasz) are also plotted jahdot density with

breakpoint§ =2 (p<0.001, R=0.56) and (d) epiphyte load (gjzmith
breakpointS =1 (p=0.04, F2%:0.04). Vertical dotted lines are the
breakpoints for each piecewise regression.

14



289

290

291

292

293

294

295

296

297

298

Bittick et al.—Two macroalgal blooms

significant with a breakpoint &=2 but the model was not preferred by AlCc
comparison (Table 1). Based upon our selectioeraifor AICc, the exponential model

was selected.

Table 1. Model fitting of linear, non-linear, and piecewiggression models using
maximum likelihood parameter estimation. The regimsmodels examined the

relationship between macroalgal abundai®exd all seagrass responss (ncludes

comparison of linearR = b + n8), exponential R = a*€™), and sigmoidR = Cclz—r)

N

least squares regression models and piecewisessagnebyAAICc for each
measurement. We also include data sets with ndfis@nt relationships. Models

determined to be preferred WAICc are in bold.

15
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Response Algal species Form Equation (MLE) Adjusted P-value  AAICc
(R) S R?

Shoot density Ulva Linear R=125.45 - 26.48 0.5207 <0.0001 3.1
Exponential R = 138.74e%% 0.5939 <0.0001 0.0
decay
Sigmoid R=138.5/[1+(1.72%) ™7 0.6009 0.001 2.4
Piecewise R= 137.28 — 36.08whens<2, 0.5554 <0.001 7.2

R= 68 —-8SwhenS>2
Gracilariopsis Linear R =148.51 - 42.97S 0.3912 0.0025 0.0
Exponential R = 147.94e°3%° 0.3914 <0.01 1.1
decay
Sigmoid R=141.8/[1+(1.68%)2%] 0.4741 0.0796 1.6
Piecewise R= 137.6 + 15.65when&<1, 0.3843 0.0268 7.9
R= 140.2— 44..8whenS>1

Growth Ulva Linear R=59.04 — 7.86 0.0205 0.2441 0.0
Exponential R=57.55¢&"% 0.0556 0.3723 0.3
decay
Sigmoid R=54.5/[1+(3.468)** 0.1075 0.5655 2.0
Piecewise R=42.9 -12.5when&l1, 0.0253 0.3446 4.0

16
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R=70.6 -125SwhenS>1

Gracilariopsis Linear R=62.27 - 3.56 -0.0517 0.8009 0.0
Exponential R = 61.62&%% 0.0030 0.8370 0.0
decay
Sigmoid R=65.8/[1+(2.199) > 0.0465 0.7305 2.3
Piecewise R=42.9 + 91.6when&1, 0.1112 0.2271 3
R=89.3 — 23.8whenS>1
Epiphyte load Ulva Linear R=0.0491 - 0.0023 -0.0428 0.7585 0.0
(g/shoot)
Exponential R = 0.049&%® 0.0044 0.7719 0.0
decay
Sigmoid NF* - - -
Piecewise R= 0.054 — 0.018whenS<2, -0.0404 0.5489 6.9
R=0.16 — 0.038 whenS>2
Gracilariopsis Linear R=0.0585 - 0.0035 -0.0517 0.8012 0.0
Exponential R = 0.058&%°% 0.0585 0.8116 0.0
decay
Sigmoid R=0.06/[1+(3.499) 2" 0.0879 0.8850 3.1

17
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Piecewise R=0.053 + 0.008 whens0.75,R= -0.1098 0.7734 5.5
0.045 + 0.008whenS>0.75

Epiphyte load Ulva Linear R=6.20-1.55 0.2238 0.0131 2.4
(g/n?)
Exponential R =7.51e%%% 0.3330 0.0156 0.0
decay
Sigmoid R=7.75/[1+(0.689) %} 0.3476 0.481 2.4
Piecewise R=7.2 - 0.4%5when&1, 0.2475 0.0386 5.6
R= 2.6 - 045SwhenS>1
Gracilariopsis Linear R=9.41-3.48 0.0669 0.1417 0.0
Exponential R=9.01&3%® 0.0997 0.2248 0.4
decay
Sigmoid R=8.73/[1+(1.599)>"1 0.1497 0.4625 2.4
Piecewise R=7.7 + 6.6when<1, 0.0994 0.2454 6.6

R=18.6 - 8.3whenS>1

299

300
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Epiphyte load per fiwvas negatively impacted hylva abundance but did not
exhibit a threshold pattern. The sigmoid curve srasoth with a MLE fot < 1 (Fig 2 c,
green). The exponential decay (Fig 2 c, blue) m@dslightly preferred over the linear

(Fig 2 c, red) and sigmoid (Fig 2 c,

green) models b)AICc (Table 1). B o (@)
o 8
In addition, the adjusted’Ralue ? N
g g )
was higher for the exponential mod = L
(&) °
than linear (0.33 vs. 0.22). The = 2 .
o 9 ] °
piecewise model was significant g .
S 3 H o
with a breakpoing,=1 (Figure 2d) [0 ¢ ‘ . .
) : . . .
but was not preferred by AlCc. 8 o - | : | | .
m
0 1 2 3 4
Compared to initial |eve|92(: 12.2 A|ga| Biomass (kg m_2 wet Wt)
+ 1.2 SEM g nf) average epiphyte Q)
©
load (g n¥) decreased at least 3-folc 2 °
»
. O
in all treatments except forthe 0 kg &
TN O e e e - [ —
m? (Figure 2 c). g S° . .
©
O .
. . D L | ° L4 °
There was no relationship % 8 : .
betweerUlva abundance and growtt % o |* : E . o
il o hd Y
. . o
of Z. marina blades (Figure 3 a). 0 1 5 3 4
Algal Biomass (kg m~ wet wt)

Total blade elongation (cm) per
Figure 3. Scatter plots of responses with no significant

shoot was highly variable with a relationship tdJlva abundance, (a) shoot growth over
last two-week period (n=22) and (b) epiphyte logd (
RV per shoot (n=23). Black dotted horizontal lineséate
range from 2 to 171 cm ShO]O([x - initial values (n=25). Note that there is no ifitralue
for growth because this is a measurement over a two
week period.
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324 45.3 +9.1 SEM cm shadt. While there were no differences by treatmeradbl
325 elongation appeared to be lower and less varialtlee highest biomass treatment. There

326 was also no relationship

327 betweerlUlva abundance @)
328 and epiphyte load on & S |
e Sigmoid
329 individual shoots (g shady @ s — Exponential
o O L —— Linear
S O 7w e --- Initial Value
330 (Figure 3 b). Mean epiphyte & .
2 9o |°
331 load per shoot was initially '@ e
(<))
332 0.11 £0.01 g and none of e o
g ©°
333 the treatments recovered tc ¢ o .
o —
334 these levels. ' ' ' ' '
0.0 0.5 1.0 1.5 2.0
Algal Biomass (kg m™ wet wt)
335 Gracilariopsis
(b)
336 experiment
—~ O
Y QA
g N | { <=~ Piece 195% Cl
337 There was a p - i ---  Piece 2 95% Cl
° 8 | "~ __- --- breakpoint
338 significant negative linear % il
. = o
339 orquasi-linear (exponential % oS
C b
(<))
340 decay) relationship betweer O -
5 8-
341 Gracilariopsis abundance 5
o —

342 and final shoot density T T 1 T T
0.0 0.5 1.0 1.5 2.0
343  (Figure 4 a). The sigmoid Algal Biomass (kg m™ wet wt)
Figur(§4. Response of shoot density@oacilariopsis abundance
(kg m ) comparing (a) linear, exponential and sigmoid etsd
(n=19) and (b) piecewise regression for shoot dgmgth 95%

2
confidence intervals at breakpot1 (p=0.03, R=0.25). Black

dashed horizontal lines indicate initial valuesZb)¥ vertical dotted
lines are the breakpoints for the piecewise regress

344  curve was smooth with

345 MLE of t=2.8, but this
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parameter was not significant (Table 1). While tF
piecewise model was significant with the
breakpointS,;=1, it was least preferred BAICc
(Table 1). As there was no difference according
AAICc between the linear and exponential decay

models, we included both as preferred models
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Blade Elongation (cm) per shoot

(Table 1).

betweenGracilariopsis abundance and final
measurements of blade elongation (cm shpot
epiphyte load per shoot, or epiphyte load pér m
Rather, blade elongation (cm shdpover the final

two weeks was highly variable (Figure 5 a).

There were no significant relationships

Epiphyte load (g) per shoot

0.00

Although there was a trend towards a negative

linear (p=0.14) relationship when epiphyte load (

was considered at thescale, this trend is weak &

m

and primarily driven by a few high values (Figure 2

5¢).

Figureb. Scatter plots of responses with no
significant relationship t&racilariopsis abundance,
(a) shoot growth over last two-week period (n=19),
(b) epiphyte load (g) per shoot (h=20), and (c)
epiphyte load per meter (n=19). Black dotted
horizontal lines indicate initial values (n=20).tdo
that there is no initial value for growth becausis ts
a measurement over a t-week perioc

Epiphyte load

21

100 150

50

0.10

0.05

15

10

(a)

0.0 05 1.0 1.5 2.0
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T
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365 As in theUlva experiment, none of the treatments recovered tmttial epiphyte

366 load values.

367 Discussion

368 We documented a linear or quasi-linear functiorkdtronship between the biotic
369 stress gradient produced by macroalgal blooms anlihé ofZostera marina, a critical
370 foundation species of seagrass. This result cdatvath patterns found for many other
371 foundation species that exhibited strongly nondmar threshold functional responses to
372 stressors (e.g., forested systems in Ellison &04l5 and coral reefs in Hughes et al.
373 2010). Several have argued that threshold respoosphase-shifts, may be the “new
374 normal” in systems subject to human disturbdresause examples of strongly non-
375 linear shifts have become so numerous across tieateaquatic, and marine systems
376 worldwide (see examples in Scheffer and Carperti®82Folke et al. 2004). Highly non-
377 linear shifts have also been predicted for seadreds (e.g. Viaroli et al. 2008, Unsworth
378 etal. 2015, Hughes et al. 2018). However, whenested seagrass response across a
379 gradient of macroalgal stress we found the funetioelationship was more similar to the
380 incremental changes in response to global warmthibeged by alpine plants and salt
381 marsh/mangrove systems. For example, Lesica anduMe(2004) found the majority of
382 alpine plants tested declined linearly in relationcreased temperatures. There was also
383 anincremental shift from dominance by salt madsints to invasion by mangroves as
384 winter temperatures increased in temperate lat@8eintilan et al., 2014). Similarly, we
385 found that health of. marina declined incrementally with increased abundance of

386 macroalgae, and this pattern of decline was cangidr two bloom-forming algal

387 species. While our experimental results do not oulethe possibility of a threshold shift
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388 at even higher macroalgal biomasses, our experichdniclude the highest levels

389 measured in the field (see Olyarnik and Stacho®@i2). Thus, for a wide range of this
390 stressor gradient, the relationship between thenmamity of interest (seagrass) and the
391 environmental stressor (macroalgae) was predictidegradual rather than being a
392 tipping point with a resultant “ecological surpfigeensu King 1995, Lindenmayer et al.

393 2010).

394 A linear or quasi-linear functional response ofgsaas to macroalgal stress

395 implies that the mechanisms that may produce nwegtfities in some seagrass systems
396 may not have large effects in all seagrass systeamgnportant consideration for

397 managing these systems. Strongly non-linear osliole responses occur when

398 feedbacks in a system are strong (MuthukrishnarFand, 2014; Scheffer and

399 Carpenter, 2003), including abiotic processes &mmhg interspecific interactions

400 (Hughes et al., 2018; Maxwell et al., 2017). Feettbahat may stabilize seagrass include
401 sediment stabilization maintaining a clear watatesand grazers that may limit negative
402 effects of nutrient enrichment (Maxwell et al., ZQ¥an der Heide et al., 2007).

403 However, it is possible that the feedbacks thatajly occur in seagrass systems are
404 context-dependent. For example, Bodega Harborwvesdimited terrestrial runoff and is
405 strongly tidally flushed twice daily (Olyarnik ar&tachowicz 2012), resulting in

406 estuarine water that is largely free of suspeneéedhgents or the influence of

407 anthropogenic nutrients that may stimulate epiplodes. Hessing-Lewis et al. (2011)
408 also found that up-welling influenced, high flonageass systems were not negatively
409 affected by high loads of macroalgae. Therefor¢héncontext of Bodega Bay and other

410 systems like it, feedbacks that stabilize sedimantslimit increases in epiphytes may
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not have strong effects on seagrass health. Howevether systems that receive more
terrestrial nutrients and sediment, the effecthe$e feedbacks may strengthen and drive
strong nonlinearities. Thus, in order to managgisss ecosystems, it is important to
broaden our understanding of shifts beyond jusepabut to the processes that drive
these different patterns.

We found that epiphytes on seagrass, at leasedbwer abundances found in
our study (e.g. compare to mean July values ini&i$ and Ruckelhaus, 1993), declined
linearly or quasi-linearly with the biotic stressamlded macroalgae. This relationship
was driven by the decline in seagrass itself rathem a decrease in epiphyte cover per
shoot. As in our study, others found that degradatir replacement of foundation
species caused cascading effects, including lafd@gher trophic levels as their habitat,
food source, or both disappeared (tropical raiedts, Turner 1996; kelp forests, Graham
2004; grasslands, Krauss et al. 2010; coral r&&fgal et al. 2012). In seagrass systems,
many organisms rely on epiphytes as a food resdtiteghes et al., 2004, 2018),
including epifaunal invertebrates (Thayer et 8#78) that may in turn be a food resource
to juvenile fish (Marsh, 1973). However, there bacomplex interactions between
macroalgae, seagrass, epiphytes, and invertelthatiedo not always result in a cascade
of negative effects (Scott et al., 2018). For exXammacroalgae may have positive
effects on invertebrates that can utilize it asadfresource (Everett, 1991; Whalen et al.,
2013), but negative effects on other invertebrttasavoid it (Hughes et al. 2018). In
another study, seagrass was indirectly affectegrégiation and nutrient enrichment,
which directly controlled mesograzers and epiphgtgae (Baden et al., 2010). Negative

effects to epiphytes in our system were strongedtlfva, possibly due to greater light

24



434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Bittick et al.—Two macroalgal blooms

attenuation from the sheet-like morphology compaoettie more open branching pattern
of Gracilariopsis, a meta-snalysis four@racillaria, a similar genus tGracilariops's,

had weaker negative effects tHalva, though, as in our study the differences were
highly variable (Thomson et al. 2012), possiblyaeting these complex interactions.

Ulva also had strong negative effects on trophic suppantertidal mudflats (Green et

al., 2014, Green and Fong 2015). Thus, it is ingurto extend our approach in future
work to assess the relationship between epiphgedad invertebrate and fish abundance

to fully understand the impact of this communitgrisition.

We hypothesize that, while biotic and abiotic cabtikely affects the negative
relationship between macroalgae and seagrass coitigsum systems without strong
feedback effects the changes will be to the ratdecfine (slope) and background shoot
density in the absence of macroalgae (intercefiirdhan the overall linear pattern. To
test this hypothesis, our relatively simple expemtal approach could be utilized in
other locations; however, we found linear or quisar negative effects tostera
marina and its epiphytes at abundance$Jbfa andGracilariopsis that are found to
occur naturally in seagrass beds around the wedd $tudies with similar species from
East Coast USA, Hauxwell et al. 2001; Australiam@uns et al. 2004; Portugal,
Cardoso et al. 2004; Japan, Sugimoto et al. 20@&t\Woast USA, Huntington and
Boyer 2008, Olyarnik and Stachowicz 2012; DenmRi&smussen et al. 2012). Further,
our study was conducted near the mouth of Bodeghdtdan California, in an expansive
eelgrass bed under high flow and flushing condgi@@lyarnik and Stachowicz, 2012);
under this best-case scenario, we still identifiedative effects of macroalgal loads.

Unless nutrient input into systems that supportiseess is reduced it is likely that
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macroalgal blooms will continue to occur, propaggfiurther seagrass decline with
concurrent trophic disruptions. However, our statdgwed that the pattern of this
degradation, at least in some systems, can be lomepuasi-linear, not an ecological
surprise or sudden transition. The discovery ahaath and predictable x, y (stressor-
response) relationship is critical information fesource managers because, rather than
managing for unpredictable and catastrophic crashasagers can monitor incremental
increases in macroalgal biomass as an indicatfutafe declines in seagrass heath and

initiate management action before negative effeet®me severe.
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Highlights: A tale of two algal blooms, Bittick et al.

» Seagrass shoot density is negatively impacted by the biotic stressor of
macroalgal loading

» Epiphyte abundance is also negatively impacted by increased macroalgal load

* These patterns were true for two genera of macroalgae that are common
worldwide

* The functional response of seagrass and epiphytes to macroalgae was quasi-
linear and predictable

» With the predictable response, managers can monitor macroalgae as an indicator of
future declines
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