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Abstract. In this paper, we propose a stochastic model for the microbial fer-

mentation process under the framework of white noise analysis, where Gaussian
white noises are used to model the environmental noises and the specific growth

rate is driven by Gaussian white noises. In order to keep the regularity of the

terminal time, the adjustment factors are added in the volatility coefficients
of the stochastic model. Then we prove some fundamental properties of the

stochastic model: the regularity of the terminal time, the existence and unique-
ness of a solution and the continuous dependence of the solution on the initial

values.
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1. Introduction. In recent years there has been an increasing attention in mi-
croorganisms and their activities. This is due to their lower cost, higher production
and no pollution in industrial applications [13, 14, 2]. In order to understand the
exact mechanism of microbial fermentation, many works have been done to develop
mathematical models simulating the actual microbial fermentation processes. We
take the production of L-glutamic acid (LGA) by Corynebacterium glutamicum
as an example, where LGA is produced commercially under aerobic fermentation
conditions, the C. glutamicum undergo stresses, and the specific growth rate of C.
glutamicum is continuously decreasing with the increase of product concentration
(i.e. product inhibition occurs) and a low level of dissolved oxygen concentration
([5, 18, 4, 7, 8]). On the base of formal kinetic approach, Bona and Moser [3] pro-
posed a mathematical model for L-glutamic acid production process, which includ-
ed formal growth inhibition with product and production repression with substrate.
Suresh et al. [16] developed the model in [3] by considering the growth-associated
product formation conditions. Tian et al [17] presented a mathematical model of
bioprocess with product inhibition and impulse effect. In these models, the micro-
bial fermentation process are described by deterministic differential equations.

The deterministic microbial fermentation model requires that the parameters in-
volved are completely known. However, in the real-world system, some parameters
of the microbial fermentation model may fluctuate due to the environmental nois-
es, which are usually random. Therefore stochastic influences are considered by
many authors in the model to conform with the actual fermentation. For example,
Soboleva et al [15] presented a stochastic model for calculating the time-dependent
probability distribution of the microbial population size under arbitrary changes of
temperature through time. Albert et al [1] gave a stochastic Listeria monocyto-
genes growth model in milk at the farm bulk tank stage. Kutalik et al [9] presented
deterministic models of the lag and subsequent growth of a bacterial population
and analyzed their connection with stochastic models for the lag and subsequent
generation times of individual cells. Li and Mao considered a non-autonomous sto-
chastic Lotka-Volterra competitive system in [10]. Wang et al [19, 20] formulated a
stochastic model for the bioconversion of glycerol to 1,3-propanediol by Klebsiella
pneumoniae in batch culture, where the microbial fermentation process is described
by the stochastic differential equations driven by five-dimensional Brownian mo-
tion. Considering the actual microbial fermentation process, the stochastic models
in [19, 20] may lose the regularity of the terminal time, for the initial value of
the substrate concentration may be greater than the maximum concentrations of
substrate and no product comes into being at the beginning of the microbial fer-
mentation process. The regularity of the terminal time is an essential factor for
the rationality of the stochastic system [11]. If the terminal time is irregular, it
is possible that the terminal time → 0 occurs, which is irrational for a stochastic
microbial fermentation model. Therefore, the stochastic models in [19, 20] require
to be modified to ensure the regularity of the terminal time, which motivates our
work.

In this paper we propose a stochastic microbial fermentation model under the
framework of white noise analysis. Gaussian white noises are used to model the
environmental noises and the specific growth rate is driven by Gaussian white noises.
In order to ensure the regularity of the terminal time, we add two adjustment
factors in the volatility coefficients of the stochastic model. Then, in the proposed
stochastic model, we prove the regularity of the terminal time, the existence and
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uniqueness of a solution and the continuous dependence of the solution on the initial
value, which are fundamental properties for the further analysis of the stochastic
microbial fermentation model.

The paper is organized as follows: in Section 2 we formulate a stochastic model for
the microbial fermentation process, where Gaussian white noise is used to model the
environmental noises and the specific growth rate is driven by Gaussian white noise.
Some properties of the stochastic microbial fermentation model are considered in
Section 3, such as the regularity of the terminal time, the existence and uniqueness
of a solution and the continuous dependence of the solution on the initial value.
Finally we conclude this paper in Section 4.

Notations: Throughout this paper, Let X1(t) denote the biomass concentration
(gl−1); X2(t) the substrate concentration (gl−1); X3(t) the product concentration
(gl−1); µmax ∈ R the maximal specific growth rate (h.1); K2 ∈ R the substrate
saturation constant (gl−1); K3 ∈ R growth inhibition constant by product (gl−1);
q1,2 ∈ R yield coefficient biomass from substrate (gg−1); q3,2 ∈ R yield coefficient
product from substrate (gg−1); q3,1 ∈ R denotes the growth-associated constan-
t (gg−1); W (t) denotes a 1−dimensional (1-parameter) Gaussian singular white
noise process; (S)∗ denotes a Hida distribution space; {Bt}t≥0 denotes a standard
Brownian Motion defined on a probability space (Ω,F , P ).

2. A stochastic model for the microbial fermentation process under un-
certainty. A microbial fermentation model is composed of three equations: a
growth equation, a substrate equation, and a product equation. Taking the pro-
duction of L-glutamic acid (LGA) by Corynebacterium glutamicum as an example,
they describe the kinetic behaviors of the concentration of bacteria X1(t), the sugar
(glucose) X2(t), and LGA X3(t), respectively. In this paper, we use the microbial
fermentation model developed by Bona and Moser (1997) [3] and Suresh et al.(2009)
[16] as follows:

dX1(t)

dt
= µ(X2, X3)X1(t), (1)

dX2(t)

dt
= − 1

q1,2
· dX1(t)

dt
− 1

q3,2
· dX3(t)

dt
, (2)

dX3(t)

dt
= q3,1

dX1(t)

dt
, (3)

where µ(X2, X3) is the specific growth rate and it is given by

µ(X2, X3) =
µmaxX2(t)

X2(t) +K2(1 +X3(t)/K3)
.

µmax ∈ R is the maximal specific growth rate. K2 ∈ R is the substrate sat-
uration constant and K3 ∈ R denotes growth inhibition constant by product.
q1,2, q3,2, q3,1 ∈ R yield coefficient biomass from substrate, coefficient product from
substrate and the growth-associated constant, respectively. The initial conditions
are given by X1(0) = x1 ∈ R, X2(0) = x2 ∈ R and X3(0) = x3 ∈ R.

The modeling of the system (1)-(3) requires that the parameters involved are
completely known. However, in the real-world system, the specific growth rate
µ(X2, X3) may fluctuate due to some environmental noises, which are random.

This paper is designated to propose a realistic stochastic model for the microbial
fermentation process. We use the Gaussian white noises to model the environmental
noises. Let W (t) be a 1−dimensional (1-parameter) Gaussian singular white noise



384 Y. WANG, L. WANG, Y. X. ZHAO, A. M. SONG AND Y. P. MA

process defined on a Hida distribution space (S)∗. Assume that the specific growth
rate µ(X2, X3) is subject to the Gaussian white noises W (t) as follows:

µ(X2, X3) +W (t).

Then the deterministic microbial fermentation model (1)-(3) is improved as the
stochastic model driven by Gaussian white noises:

dX1(t)

dt
= µ(X2, X3)X1(t) +X1(t) �W (t), (4)

dX2(t)

dt
= −

(
1

q1,2
+
q3,1
q3,2

)
µ(X2, X3)X1(t)−

(
1

q1,2
+
q3,1
q3,2

)
X1(t) �W (t), (5)

dX3(t)

dt
= q3,1 · µ(X2, X3)X1(t) + q3,1 ·X1(t) �W (t), (6)

where X1(t) �W (t) is the Wick product of two elements X1(t),W (t) ∈ (S)∗ and∫
X1(t) �W (t)dt is interpreted as an (S)∗-valued Pettis integral. (We refer to [6]

for more information about the framework of Gaussian white noise.)
The stochastic model (4)-(6) can be transformed into the stochastic differential

equations driven by Brownian motion under the framework of Gaussian white noise,
for the full information of X1(t) is available at time t. Let (Ω,F , P ) be a probability
space and let {Bt}t≥0 be a standard Brownian Motion defined on it. Ft = σ(Bs; 0 ≤
s ≤ t) denotes the natural filtration generated by {Bt}t≥0. Then we have

Theorem 2.1. For T > 0, the stochastic model driven by Gaussian white noises
(4)-(6) can be transformed into the SDEs on [0, T ] as follows

dX1(t) = µ(X2, X3)X1(t)dt+X1(t)dB(t), (7)

dX2(t) = −
(

1

q1,2
+
q3,1
q3,2

)
µ(X2, X3)X1(t)dt−

(
1

q1,2
+
q3,1
q3,2

)
X1(t)dB(t), (8)

dX3(t) = q3,1µ(X2, X3)X1(t)dt+ q3,1X1(t)dB(t) (9)

with initial conditions X1(0) = x1 ∈ R, X2(0) = x2 ∈ R and X3(0) = x3 ∈ R.

Proof of Theorem 2.1. It suffices to prove Eq.(7), for the proofs of Eq.(8) and Eq.(9)
are similar. Let

∫
X1(t)δB(t) be Skorohod integral of X1(t) (see Definition 2.5.1. in

[6]). Then, by the relation of the Wick product to Skorohod integral (see Theorem
2.5.9 in [6]), Eq.(4) can be written as

dX1(t) = µ(X2, X3)X1(t)dt+X1(t)δB(t). (10)

Since the full information of X1(t) is available at time t, X1(t) is Ft−adapted
processes such that ∫ T

0

E
[
X2

1 (t)
]
dt <∞ for T > 0.

In view of the relation between Skorohod integral and Itô integral (see Proposition
2.5.4 in [6] ), we can write Eq.(10) as Eq.(7) on [0, T ].

For the sake of simplicity, we define the systemic state X(t) of a microbial fer-
mentation process as

X(t) =

 X1(t)
X2(t)
X3(t)

 with X(0) = x =

 x1
x2
x3

 .
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Then, by the stochastic model (7)-(9), the systemic state X(t) is of the following
form

dX(t) =

 µ(X2, X3)X1(t)

−
(

1
q1,2

+
q3,1
q3,2

)
µ(X2, X3)X1(t)

q3,1 · µ(X2, X3)X1(t)

 dt+

 X1(t)

−
(

1
q1,2

+
q3,1
q3,2

)
X1(t)

q3,1 ·X1(t)

 dB(t).

(11)
Now we consider the terminal time of the stochastic system (11). The microbial

fermentation process X(t) is restricted on an interval [0, T ] and on a Borel set G.
In reality, G is of the following form

G = {x = (x1, x2, x3) ∈ R3; 0 < x1 < ρ1, 0 < x2 ≤ ρ2, 0 ≤ x3 < ρ3},

where the constants ρ1, ρ2 and ρ3 denote the maximum concentrations of biomass,
substrate and product in the bioreactor medium (gl−1), respectively. Let τG be the
first exiting time of G for X(t), i.e.,

τG = inf{t > 0;X(t) /∈ G}.

Then the terminal time is T ∧ τG for the stochastic system (11).
The regularity of the terminal time T ∧τG is an essential factor for the rationality

of the stochastic system (11). If the terminal time T ∧ τG is regular, it is impossible
that the event T ∧ τG → 0 occurs. In the following, we define the regularity of the
terminal time.

Definition 2.2. [11] Let T ∈ (0,∞). The terminal time T ∧ τG is called regular for
the stochastic system (11) if there exists a constant δ > 0 such that τG > δ almost
surely for all initial values x ∈ G.

Considering the actual microbial fermentation process, we find that the terminal
time is possibly irregular in the stochastic system (11), which is due to two facts:

• It is possible that the initial value of the substrate concentration X2(t) is
greater than ρ2. Then, depending on (8), the probability of X2(∆t) > ρ2 is
greater than 0 as ∆t→ 0 .

• It is usually assumed that X3(0) = x3 = 0, for no product comes into being
at the beginning of the microbial fermentation process. According to (9), the
probability X3(∆t) < 0 is greater than 0 as ∆t→ 0.

In both of the above cases, the terminal time T ∧ τG loses the regularity in the sto-
chastic system (11), for the probability of τG → 0 is greater than 0. Consequently, It
is indispensable that the stochastic system (11) is improved to ensure the regularity
of the terminal time.

We make improvement on the stochastic system (11) by adding respectively
adjustment factors

χ{X2(t)<ρ2}(X2(t)− ρ2)

X1(t)
and

χ{X3(t)>0}X3(t)

X1(t)

in the volatility coefficient of (8) and Eq.(9), where χE is the indicator function of
an event E. As such, the stochastic system (11) is modified as

dX(t) = b(X(t))dt+ σ(X(t))dB(t), (12)

X(0) = x ∈ G,
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where

b(X(t)) =

 µ(X2, X3)X1(t)

−
(

1
q1,2

+
q3,1
q3,2

)
µ(X2, X3)X1(t)

q3,1µ(X2, X3)X1(t)


and

σ(X(t)) =

 X1(t)

−
(

1
q1,2

+
q3,1
q3,2

)
χ{X2(t)<ρ2}(X2(t)− ρ2)

q3,1χ{X3(t)>0}X3(t)

 .

Thus we propose the stochastic microbial fermentation model (12) described by
the stochastic differential equation (12). It is obvious that the state X(t) of the
stochastic system (12) is an Itô diffusion.

3. The properties of the stochastic microbial fermentation model. In this
section, we discuss some properties of the stochastic model (12), such as the reg-
ularity of the terminal time, the existence and uniqueness of a solution and the
continuous dependence of the solution on initial value. These properties are funda-
mental for the further analysis of the stochastic microbial fermentation model.

Firstly we consider the regularity of the terminal time for the stochastic system
(12).

Theorem 3.1. Let T ∈ (0,∞). The terminal time T∧τG is regular in the stochastic
system (12).

Proof of Theorem 3.1. In the stochastic system (12), We get by Itô formula that

X1(t) = x1 exp{B(t) + (µ(X2, X3)− 1/2)t}.

X1(t) is a geometric Brownian motion. Therefore X1(t) > 0 a.s. for all X1(0) =
x1 ∈ (0, ρ1). Let

τ1 = inf{t > 0;X1(t) /∈ (0, ρ1)}.
Since the path of X1(t) is continuous a.s., there exists a constant δ1 > 0 such that
τ1 > δ1 holds a.s. for all x1 ∈ (0, ρ1).

By adding regular factor
χ{X2(t)<ρ2}(X2(t)−ρ2)

X1(t)
, it is obvious that X2(t) ≤ ρ2 holds

a.s. for all X2(0) = x2 ∈ (0, ρ2]. Let

τ2 = inf{t > 0;X2(t) /∈ (0, ρ2]}.

Since the paths of X2(t) are continuous a.s., there exists a constant δ2 > 0 such
that τ2 > δ2 holds a.s. for all x2 ∈ (0, ρ2].

Similarly, we have X3(t) > 0 holds a.s. for all X3(0) = x3 ∈ [0, ρ3). Let

τ3 = inf{t > 0;X3(t) /∈ [0, ρ3)}.

Since the paths of X3(t) are continuous a.s., there is a constant δ3 > 0 such that
τ3 > δ3 holds a.s. for all x3 ∈ [0, ρ3).

It is obvious that

τG = τ1 ∧ τ3 ∧ τ3.
Let δ := δ1 ∧ δ2 ∧ δ3. Then there is a constant δ > 0 such that τG > δ holds a.s. for
all x ∈ G. Therefore the terminal time T ∧ τG is regular in the stochastic system
(12).
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Next we discuss the existence and the uniqueness of a solution for the stochastic
system (12) on [0, T ∧ τG ] in G. In the theory of stochastic differential equations,
Lipschitz continuity of the coefficients is typically required to ensure the existence
and the uniqueness of a solution. Therefore, we begin by stating a lemma which
shows the coefficients is Lipschtiz continuous in stochastic system (12). Note that
we may extend, for technical reasons, the discussions on [0, T ] due to the fact that
[0, T ∧ τG ] ⊂ [0, T ].

Lemma 3.2. Let T > 0. Then the drift coefficient b(·) and the volality coefficient
σ(.) of the stochastic system (12) are Lipschitz continuous on [0, T ], i.e.,

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|; for x, y ∈ R3, t ∈ [0, T ] (13)

for some constant D.

Proof of Lemma 3.2. Let x = (x1, x2, x3) ∈ R3 and y = (y1, y2, y3) ∈ R3. For
notational simplicity, we define

θ := 1/q1,2 + q3,1/q3,2 and κ :=
√

1 + θ2 + q23,1.

We firstly consider

|σ(x)− σ(y)| =
(

(x1 − y1)2 + θ2
(
χ{x2<ρ2}(x2 − ρ2)− χ{y2<ρ2}(y2 − ρ2)

)2
+q23,1

(
χ{x3>0}x3 − χ{y3>0}y3

)2)1/2
.

There are four cases of
(
χ{x3(t)>0}x3(t)− χ{y3(t)>0}y3(t)

)2
with respect to the val-

ues of x3 and y3.

1. If x3 ≤ 0 and y3 ≤ 0, we have
(
χ{x3>0}x3 − χ{y3>0}y3

)2
= 0;

2. If x3 > 0 and y3 ≤ 0, we have
(
χ{x3>0}x3 − χ{y3>0}y3

)2
= x23 ≤ (x3 − y3)2;

3. If x3 ≤ 0 and y3 > 0, we have
(
χ{x3>0}x3 − χ{y3>0}y3

)2
= y23 ≤ (x3 − y3)2;

4. If x3 > 0 and y3 > 0, we have
(
χ{x3>0}x3 − χ{y3>0}y3

)2
= (x3 − y3)2.

Hence we conclude that(
χ{x3>0}x3 − χ{y3>0}y3

)2 ≤ (x3 − y3)2. (14)

Similarly we have(
χ{x2<ρ2}(x2 − ρ2)− χ{y2<ρ2}(y2 − ρ2)

)2 ≤ (x2 − y2)2. (15)

Let

ι1 = 1 ∨ θ2 ∨ q23,1.
we get by combining (14) and (15)

|σ(x)− σ(y)| ≤
√
ι1|x− y| for x, y ∈ R3 (16)

Next we consider

|b(x)− b(y)| ≤κ
√

(µ(x2, x3)x1 − µ(y2, y3)y1)2

=κ
√

2(µ(x2, x3)− µ(y2, y3))2x21 + 2µ(y2, y3)2(x1 − y1)2
(17)

Since µ(y2, y3) and x1 are continuous on [0, T ], there exist M3 ∈ [0,∞) and M4 ∈
[0,∞) such that |µ(y2, y3)| ≤M3 and |x1| ≤M4. By the definition of µ(x2, x3), we
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have

|µ(x2, x3)− µ(y2, y3)|

=µmax

∣∣∣∣K2(x2 − y2) + (K2/K3)y3(x2 − y2) + (K2/K3)y2(y3 − x3)

(x2 +K2 + (K2/K3)x3) (y2 +K2 + (K2/K3)y3)

∣∣∣∣ . (18)

Since y2 and y3 are continuous on [0, T ], there exist M1 ∈ [0,∞) and M2 ∈ [0,∞)
such that |y2| ≤M1 and |y3| ≤M2 . Moreover K2 ≥ 0 and K3 ≥ 0 hold. Thus (18)
gives

|µ(x2, x3)− µ(y2, y3)|

≤µmax (K2|x2 − y2|+ (K2/K3)|y3||x2 − y2|+ (K2/K3)|y2||x3 − y3|)
(|x2|+K2 + (K2/K3)|x3|) (|y2|+K2 + (K2/K3)|y3|)

≤(µmax/K
2
2 ) [(K2 + (K2/K3)M2) |x2 − y2|+ (K2/K3)M1|x3 − y3|] .

(19)

Therefore, by combining (17) and (19), we get

|b(x)− b(y)| ≤κ
[
2M2

4 (µx − µy)2 + 2M2
3 (x1 − y1)2

] 1
2

≤κ
[

4M4µ
2
max(1 +M2/K3)2

K2
2

(x2 − y2)2

+
4M4µ

2
maxM

2
1

K2
2K

2
3

(x3 − y3)2 + 2M2
3 (x1 − y1)2

] 1
2

Let

ι2 =
4M4µ

2
max(1 +M2/K3)2

K2
2

∨ 4M4µ
2
maxM

2
1

K2
2K

2
3

∨ 2M2
3 .

Then we have

|b(x)− b(y)| ≤ κ
√
ι2|x− y|. (20)

Combining (16) and (20), we get

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ (
√
ι1 + κ

√
ι2)|x− y|, for x, y ∈ R3,

where κ, ι1 and ι2 are constants. Let D =
√
ι1 +κ

√
ι2. Then we obtain (13), which

completes the whole proof.

We are now able to obtain the existence and the uniqueness of a solution for the
stochastic system (12).

Theorem 3.3. Let T > 0. Then the stochastic system (12) has a unique t−con-
tinuous solution X(t, ω) on [0, T ] in G, with the properties that

X(t, ω) is adapted to the filtration Ft (21)

and

E

[∫ T

0

|X(t)|2dt

]
<∞. (22)

Proof of Theorem 3.3. We have obtained the drift coefficient b(·) and the volality
coefficient σ(.) of (12) are Lipschitz continuous on [0, T ] in Lemma 3.2. It is obvious
that the stochastic system (12) is an Itô diffusion. In the case of Itô diffusion,
Lipschitz continuity of b(·) and σ(.) implies that b(·) and σ(·) are at most linear
growth on [0, T ], i.e.

|b(x)|+ |σ(x)| ≤ α(1 + |x|); x, y ∈ R3, t ∈ [0, T ]
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for some constant α. By the classical existence and uniqueness theorem for SDE (see
Theorem 5.2.1 in [12]), we conclude that (12) has a unique t−continuous solution
X(t, ω) on [0, T ] in G, with the properties (21) and (22).

Remark 1. Here the uniqueness that we obtain is called strong or pathwise unique-
ness. It means that if X(t, ω) and Y (t, ω) be two t−continuous stochastic processes
satisfying (12), (21), and (22), then X(t, ω) = Y (t, ω) for all t ≤ T , a.s..

At the end of this section, we give the continuous dependence of the solution on
the initial value in the stochastic system (12) on [0, T ].

Theorem 3.4. For T > 0, let X(t;x) and X(t; y) be solutions of Eq. (12) with
initial values x and y on [0, T ], respectively. Then

E

[
sup

0≤t≤T
|X(t;x)−X(t; y)|2p

]
≤ C|x− y|2p (23)

holds for any fixed 2 ≤ p < ∞, where C is a constant that depends only on T and
p.

Proof of Theorem 3.4. Applying Itô formula to |X(t;x)−X(t; y)|2, we have

d|X(t;x)−X(t; y)|2 =d (X(t;x)−X(t; y))
2

=2 (X(t;x)−X(t; y)) (b(X(t;x))− b(X(t; y))) dt

+ 2 (X(t;x)−X(t; y)) (σ(X(t;x))− σ(X(t; y))) dBt

+ (σ(X(t;x))− σ(X(t; y)))
2
dt.

(24)

Using the Cauchy-Schwarz inequality we obtain

(X(t;x)−X(t; y)) (b(X(t;x))− b(X(t; y)))

≤|X(t;x)−X(t; y)||b(X(t;x))− b(X(t; y))|.

Therefore, by Lipschitz continuity of b and Lipschitz continuity of σ, (24) gives

d|X(t;x)−X(t; y)|2 ≤(2κ
√
ι2 + ι1)|X(t;x)−X(t; y)|2dt

+ 2 (X(t;x)−X(t; y)) (σ(X(t;x))− σ(X(t; y))) dBt,
(25)

where κ
√
ι2 is the Lipschitz constant of b and

√
ι1 is the Lipschitz constant of σ.

We write (25) as the corresponding stochastic integral equation of the following
form

|X(t;x)−X(t; y)|2 ≤|x− y|2 + (2κ
√
ι2 + ι1)

∫ t

0

|X(s;x)−X(s; y)|2ds

+ 2

∫ t

0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs.

Then, for p ≥ 2, there exists a constant cp such that

|X(t;x)−X(t; y)|2p

≤cp|x− y|2p + cp(2κ
√
ι2 + ι1)p

[∫ t

0

|X(s;x)−X(s; y)|2ds
]p

+ 2cp

(∫ t

0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs

)p
.

(26)
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By Hölder’s inequality, the following inequality holds for p ≥ 2[∫ t

0

|X(s;x)−X(s; y)|2ds
]p
≤
∫ t

0

|X(s;x)−X(s; y)|2pds.

Therefore, (26) gives

E

[
sup

0≤t≤T
|X(t;x)−X(t; y)|2p

]
≤cp|x− y|2p + cp(2κ

√
ι2 + ι1)pE

[
sup

0≤t≤T

∫ t

0

|X(s;x)−X(s; y)|2pds
]

+ 2cpE

[
sup

0≤t≤T

(∫ t

0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs

)p] (27)

Since

E

[
sup

0≤t≤T

(∫ t

0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs

)p]

is a continuous local martingale with 2 ≤ p <∞, we get by Burkhölder inequality

E

[
sup

0≤t≤T

(∫ t

0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs

)p]

≤E

[〈∫ ·
0

(X(s;x)−X(s; y)) (σ(X(s;x))− σ(X(s; y))) dBs

〉 p
2

t

]

=E

[
2
p
2

(∫ t

0

(X(s;x)−X(s; y))
2

(σ(X(s;x))− σ(X(s; y)))
2
dt

) p
2

]

≤2
p
2 κpE

[(∫ t

0

|X(s;x)−X(s; y)|4ds
) p

2

]
.

Therefore, we can write (27) as

E

[
sup

0≤t≤T
|X(t;x)−X(t; y)|2p

]
≤cp|x− y|2p + cp(2κ

√
ι2 + ι1)pE

[∫ T

0

|X(s;x)−X(s; y)|2pds

]

+ 2
p
2 κpcpE

[(∫ t

0

|X(s;x)−X(s; y)|4ds
) p

2

]

≤cp|x− y|2p +
(
cp(2κ

√
ι2 + ι1)p + 2

p
2 κpcp

)
E

[∫ T

0

|X(s;x)−X(s; y)|2pds

]

≤
(
cp(2κ

√
ι2 + ι1)p + 2

p
2 κpcp

)
E

[∫ T

0

sup
0<r<s

|X(r;x)−X(r; y)|2pds

]
+ cp|x− y|2p.

(28)
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Applying Fubini Theorem and Gronwall inequality to (28), we obtain

E

[
sup

0≤t≤T
|X(t;x)−X(t; y)|2p

]
≤
(
cp(2κ

√
ι2 + ι1)p + 2p/2κpcp

)∫ T

0

E

[
sup

0<r<s
|X(r;x)−X(r; y)|2p

]
ds

+ cp|x− y|2p

≤cp|x− y|2p exp
{(
cp(2κ

√
ι2 + ι1)p + 2p/2κpcp

)
T
}
.

Let

C = cp exp
{(
cp(2κ

√
ι2 + ι1)p + 2p/2κpcp

)
T
}
.

Then we have (23), which completes the proof.

Remark 2. The indicator function in the modified stochastic microbial fermen-
tation model (12) services several purposes: 1) keep the regularity of the terminal
time; 2) guarantee the existence and uniqueness of a solution and the continuous
dependence of the solutions on initial value; 3) make the expectation value of X(t)
still satisfy the deterministic model (1)-(3) which is an essential and necessary re-
quirement when adding stochastic terms. There should be other ways of modifying
the stochastic microbial fermentation model which service these purposes in similar
manner, and will be part of our future work.

4. Conclusion. In this paper, taking the production of LGA by Corynebacteri-
um glutamicum as an example, we propose a continuous-time stochastic model for
the microbial fermentation process under the framework of Gaussian white noise
analysis. Then we prove the regularity of the terminal time, the existence and u-
niqueness of a solution and the continuous dependence of the solution on initial
value. These properties are fundamental for the further analysis of the stochastic
microbial fermentation model. Based on this stochastic model, the control problems
of a microorganism culture process, such as feedback controls, are stochastic opti-
mal control problems. Therefore it is a demanding task to deal with the stochastic
optimal control problems in the stochastic microbial fermentation model. We leave
this for future research.
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