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AN ENUMERATION PROCESS FOR RACKS

JIM HOSTE AND PATRICK D. SHANAHAN

Abstract. Given a presentation for a rack R, we define a process which sys-
tematically enumerates the elements of R. The process is modeled on the
systematic enumeration of cosets first given by Todd and Coxeter. This gen-
eralizes and improves the diagramming method for n-quandles introduced by
Winker. We provide pseudocode that is similar to that given by Holt, Eick,
and O’Brien for the Todd-Coxeter process. We prove that the process ter-
minates if and only if R is finite, in which case, the procedure outputs an
operation table for the finite rack. We conclude with an application to knot
theory.

1. Introduction

The fundamental quandle of an oriented knot or link is an algebraic invariant
which was proven to be a complete invariant of knots (up to mirror reversal) by
Joyce [8]. See also Matveev [9]. While it is easy to find a presentation of the quandle
of a link using a modification of the Wirtinger algorithm, it is usually difficult to
determine the quandle’s isomorphism class. A more tractable, but less sensitive,
invariant is the n-quandle of a link which is a certain quotient of the fundamental
quandle.

In his PhD thesis [12], Winker introduced a method to produce a Cayley di-
agram of the n-quandle of a link. His diagramming method is a graph-theoretic
modification of a fundamental process in computational group theory called the
Todd-Coxeter process [10]. This process was introduced to find the index of a
finitely generated subgroup H in a finitely presented group G. In addition, the
process produces a table which describes the right action of G on the set of cosets
of H. The process is incorporated in many computer algebra systems.

Sarah Yoseph made a preliminary investigation of a Todd-Coxeter like process
for the enumeration of n-quandles in her (unpublished) undergraduate senior thesis
directed by the second author. Her work complemented Winker’s by considering
a table-based approach to n-quandle enumeration and producing elementary pseu-
docode. In this paper, we apply the table-based approach to the more general
structure of a rack. Our development of an enumeration process for a rack R given
by a presentation 〈S |R 〉 will be modeled on the exposition of the Todd-Coxeter
process given in Holt-Eick-O’Brien [3]. The rack enumeration process we present
extends Winker’s work to the study of racks and provides pseudocode for its im-
plementation.

An important feature of the currently accepted Todd-Coxeter process is that if
the index of H is finite, then the process will terminate in a finite number of steps.
In [11], Ward showed that this was not true of the original process and provided
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a modification to the process to eliminate this problem. Using arguments similar
to those in [3], we prove that if our rack enumeration process completes, then the
resulting output is rack isomorphic to R and, moreover, that the process completes
if and only if R is finite. We also provide an example demonstrating the importance
of Ward’s modification in the rack setting as well.

In the special case of quandles, the Todd-Coxeter process could be used in theory
to determine the structure of any finite quandle. This is because Joyce proved that
every quandle Q is isomorphic to a quandle structure on the set of cosets of a
particular subgroup of the automorphism group of Q. However, employing this
approach would require determining a presentation for Aut(Q) and generators for
the appropriate subgroups which may not be practical. In the case of knot and link
quandles, Joyce also proved that the coset quandle of the peripheral subgroups of
the fundamental group is isomorphic to the fundamental quandle of the link. The
authors extend this result to n-quandles of links in [5]. Hence, the Todd-Coxeter
process can be used to investigate the structure of the n-quandle of a link, giving an
alternative to Winker’s method. Given these theoretical and practical limitations, it
is desirable to have an enumeration procedure which applies directly to any finitely
presented rack.

In Section 2 we review the basic definitions of racks and rack presentations.
We introduce enumeration tables and the rack enumeration process in Section 3.
We prove that the tables produced satisfy five basic properties which are used
later to prove the main result in Section 4. We also include pseudocode for the
processes introduced in this section. Finally, in Section 4, we prove that if the
process completes, then the output is isomorphic to the rack and, moreover, that
a finitely presented rack is finite if and only if the process completes. In Section 5,
we provide an example showing the importance of Ward’s modification in the rack
setting and discuss an alternative modification. We conclude with an application
to knot theory.

2. Racks and presentations

We begin with the definition and some basic properties of racks. Excellent
sources for this material are [2], [1], [7], [8], and [12].

Definition 2.1. A set R with two binary operations � and �−1 is a rack if the
following two properties hold:

R1. (x� y)�−1 y = (x�−1 y)� y = x for all x, y ∈ R, and
R2. (x� y)� z = (x� z)� (y � z) for all x, y, z ∈ R.

Properties R1 and R2 are sometimes referred to as the right cancellation and
right self-distributive axioms, respectively. It is easy to show that R1 and R2 imply
(x �ε y) �δ z = (x �δ z) �ε (y �δ z) for ε, δ ∈ {−1, 1}. In general, a rack is non-
associative and the following well-known lemma can be used to rewrite any product
as a left-associated product.

Lemma 2.2. Let R be a rack and x, y, z ∈ R. If ε, δ ∈ {−1, 1}, then x�ε (y�δ z) =
((x�−δ z)�ε y)�δ z.

Proof. Using the cancellation and one of the distributive properties we have:

x�ε (y �δ z) = ((x�−δ z)�δ z)�ε (y �δ z) = ((x�−δ z)�ε y)�δ z.

�
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A convenient notation introduced by Fenn and Rourke in [2] uses Lemma 2.2 to
avoid the use of parentheses. From this point on, we shall adopt Fenn and Rourke’s
exponential notation defined by

xy = x� y and xȳ = x�−1 y.

With this notation, xyz will represent (xy)z = (x� y)� z, whereas, by Lemma 2.2,
xz̄yz will be used to represent x(yz) = x� (y � z).

Given an integer m, we will also let xym

denote xy...y if m > 0, x if m = 0, and
xȳ...ȳ if m < 0, where in each case there are |m| factors of y or ȳ in the exponent.

Definition 2.3. A rack Q is called a quandle if x� x = x for all x ∈ Q. Further,
if n ≥ 2 is an integer, then a quandle Q is called an n-quandle if xyn

= x for all
x, y ∈ Q.

Notice that in an n-quandle we also have that xȳn

= x. A 2-quandle is also
called an involutory quandle.

Following Fenn and Rourke, we define a presentation 〈S |R 〉 of a rack with
generating set S and relations R as a quotient of a free rack. For any set S, let
F (S) denote the free group on S and in this group let w̄ represent the inverse of
the element w.

Definition 2.4. The free rack on S is the set of equivalence classes

FR(S) = {[aw] | a ∈ S,w ∈ F (S)},
where [au] = [bv] if a = b in S and u = v in F (S). The operations in FR(S) are

defined by [au]� [bv] =
[
auv̄bv

]
and [au]�−1 [bv] =

[
auv̄b̄v

]
.

From this point on, we will abuse notation and simply let au represent the
equivalence class [au].

A congruence on a rack R is an equivalence relation ∼ that respects the op-
erations. In particular, if R = FR(S), then a congruence is a relation with the
property that if as ∼ bt and xu ∼ yv, then asūxu ∼ btv̄yv and asūx̄u ∼ btv̄ȳv. Given
a congruence on FR(S), then the congruence classes form a quotient of FR(S) that
is itself a rack. This notion of a quotient rack allows us to define a rack in terms of
generators and relations.

Let S be a finite set of generators and let R be a finite set of relations in FR(S).
That is, R is a finite set of ordered pairs of the form (au, b) where a, b ∈ S and
u ∈ F (S). More formally,

R = {(aui
i , bi) | ai, bi ∈ S, ui ∈ F (S), 1 ≤ i ≤ r} ⊆ FR(S)× FR(S).

The rack given by the presentation 〈S |R 〉 is then defined to be the quotient of
FR(S) by the smallest congruence ∼R containing R. The smallest congruence is
described more concretely by Fenn and Rourke in terms of consequences of the
relations in R. Using their work we can derive the following proposition.

Proposition 2.5. If R = 〈S |R 〉, then xs ∼R yt if and only if xs can be taken
to yt by a finite sequence of the following substitutions or their inverses. For all
a, b, c ∈ S and u, v, w ∈ F (S):

(1) Replace auw with auvv̄w.
(2) If (au, b) ∈ R, then replace auw with bw.

(3) If (au, b) ∈ R, then replace cvw with either cvūaub̄w or cvūāubw.
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We shall refer to the substitutions in Proposition 2.5 as substitution moves.
The proof of the proposition requires showing that the congruence defined by the
substitution moves is the same as the congruence defined by consequences of the
relations described in Fenn and Rourke. We leave the details to the interested
reader.

Remark 2.6. Notice that since the word w is arbitrary in each of the substitution
moves in Proposition 2.5 it follows that if xs ∼R yt, then xsw ∼R ytw for any
w ∈ F (S).

As is customary with group presentations, we shall adopt the notation au = b
to represent a relation (au, b) ∈ R and xs = yt to denote xs ∼R yt in the rack
〈S | R〉. Notice that if all relations aa = a for a ∈ S are included in R, then
〈S |R 〉 is a quandle. Moreover, for a fixed n, if R additionally includes all relations
ab

n

= a for all distinct a, b ∈ S, then 〈S |R 〉 is an n-quandle. To see that this is
the case, first notice that if ab

n

= a, then it follows by substitution move (3) that

xb̄nabnā = x for all x. Thus, we obtain yab
n

= yb
na for all y by considering x = yb

n

.
Similarly, yāb

n

= yb
nā. Since this is true for all generators, it follows by induction

that ywbn = yb
nw for all words w ∈ F (S). Now consider arbitrary elements x = au

and y = bv. Since the relation ab
n

= a has been added and, in the case a = b,
aa

n

= a since 〈S |R〉 is a quandle, we have

xyn

= au(v̄bv)
n

= auv̄b
nv = ab

nuv̄v = au = x.

3. The rack enumeration process

In this section, we introduce the notion of an enumeration table and identify
important properties of these tables that will remain unchanged during the enu-
meration process. Let 〈S |R 〉 be a rack where S = {x1, . . . , xg} and R is a set of
relations xuk

ik
= xjk with uk a reduced word in F (S) for 1 ≤ k ≤ r and 1 ≤ ik, jk ≤ g.

Let S̄ = {x̄1, . . . , x̄g}. Following Winker, we call the relations in R primary rela-
tions. Notice that for each primary relation xuk

ik
= xjk and for any x ∈ 〈S | R〉 we

have, by substitution move (3), that

xūkxik
ukx̄jk = x.

These relations are called secondary relations by Winker. The word ūkxikukx̄jk

may not be reduced, in which case, we will use its reduced form in the procedure.
We denote the set of reduced secondary relations by R2.

Definition 3.1. An enumeration table E for a rack R = 〈S |R 〉 is a 4-tuple
(ω,A, τ, ρ) where ω is the number of rows in the table, A is a partial function from
{1, 2, . . . , ω} × (S ∪ S̄) to {1, 2, . . . , ω}, τ : {1, 2, . . . , ω} → R is a function, and
ρ : {1, 2, . . . , ω} → {1, 2, . . . , ω} is a function with the property that ρ(i) ≤ i for all
1 ≤ i ≤ ω.

We will denote A(i, y) by iy, and so iy may or may not be defined since A is a
partial function. Define the live elements of E to be the set Ω = {i | 1 ≤ i ≤
ω and ρ(i) = i} and call E complete if for every i ∈ Ω and for every y ∈ S ∪ S̄, we
have that ix is defined.

If R is a finite rack, we describe a process that produces a sequence of tables
E0, E1, . . . , Ef so that Ef is complete, Ω is a rack with operations provided by Ef , and
τ : Ω → R is an isomorphism. In our description of the process we will represent
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AN ENUMERATION PROCESS FOR RACKS 1431

an enumeration table by a rectangular array whose rows are numbered 1 through
ω and whose columns are labelled by the elements of S ∪ S̄, τ , and ρ. The entry
in row i and column y ∈ S ∪ S̄ is iy if it is defined and empty otherwise. The last
two columns give values of τ and ρ, respectively, for the row label i. We begin with
an example that illustrates the process before giving the details of the algorithms
involved.

Consider the rack with presentation

R = 〈a, b | aba = b, bba = a, abb = a, baa = b〉.
We initialize the enumeration table E by letting 1 represent the element a and 2
represent b. That is, we define τ (1) = a and τ (2) = b and we set ρ(1) = 1 and
ρ(2) = 2. We next find the set R2 of secondary relations. For each secondary
relation xw = x we record the reduced word w.

R2 = {āb̄abab̄, āb, b̄b̄abbā, āābaab̄}.
E a b ā b̄ τ ρ

1 a 1
2 b 2

The next step is to encode information from the primary relations. Consider
the first relation aba = b. Since τ (1) = a and τ (2) = b, we would like our table to
satisfy 1ba = 2. However, 1b is not defined in E so we define a new element 3 = 1b

and extend the map τ so that τ (3) = τ (1)b = ab. Since 1b = 3 we also add the

inverse entry 3b̄ = 1. We indicate where a definition is made by underlining the
defined entry in the table.

Notice that 1ba = 2 and 1b = 3 imply that 3a = 2. This is called a deduction
and we also encode it, and its inverse entry 2ā = 3, in our table. This is called
scanning the first primary relation and the process is illustrated by a helper table
shown to the right of the enumeration table below. Parentheses in the helper table
indicate where forward and backward scanning end. The deduction 3a = 2 occurs
where open parentheses meet. The corresponding entries added to E are enclosed
with open parentheses.

E a b ā b̄ τ ρ

1 3 a 1
2 (3) b 2

3 (2) 1 ab 3

b a

1 3) (2

Scanning the remaining primary relations gives another definition and three ad-
ditional deductions. Again we mark the modified entries in the table to indicate
whether they came from a definition or a deduction and include the helper tables
for the relations.

E a b ā b̄ τ ρ

1 3 (4) (3) a 1
2 (3) 4 3 b 2

3 2 (1) (2) 1 ab 3

4 (1) 2 bb 4

b a

2 4) (1

b b

1 3) (1

a a

2) (3 2

The table E above represents the conclusion of a definite loop in the rack enu-
meration process that scans all primary relations. The next loop in the process
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1432 JIM HOSTE AND PATRICK D. SHANAHAN

scans each secondary relation for each live row. Since scanning may introduce new
live rows, this loop is indefinite.

Consider scanning the first secondary relation āb̄abab̄ for live row 1. A helper
table for this scan is shown below. Notice that scanning forward from 1 we have
1āb̄ab = 1 is defined but we cannot scan forward further because 1a is not defined.
So we begin scanning backwards from 1. In doing so we have that 1bā = 2 is defined
and we have arrived at a coincidence where two different values, 1 and 2, appear
in the same location in the helper table (which we denote by [12]).

ā b̄ a b a b̄

1 4 2 3 [12] 3 1

To resolve this coincidence, we eliminate the larger index 2 and merge any data
from row 2 into row 1 of the table. We do this by first changing the value of ρ(2)
to be 1, which indicates that 2 is a dead row and that all occurrences of 2 will
eventually be replaced. Then for each x ∈ {a, b, ā, b̄} we do one of three things. If
2x is undefined, we proceed to the next value for x. If 2x = i and 1x is undefined,
then we remove 2x = i and ix̄ = 2 from E and add 1x = i and ix̄ = 1 to E . Notice
this situation occurs for x = a. Otherwise, if 2x = i and 1x = j, then we also
remove 2x = i and ix̄ = 2 but, instead of adding new entries, we queue up a new
coincidence between i and j. Notice this situation occurs for x = b and x = ā
and, in both cases, the new coincidence is [43]. After resolving the coincidence [43]
in the same manner, no new coincidences appear and the resulting table is shown
below. The entries in the table changed by the coincidences are marked by closed
parentheses and rows 2 and 4 are now dead rows.

E a b ā b̄ τ ρ

1 [3] 3 [3] 3 a 1
2 �3 �4 �3 b 1

3 [1] 1 [1] 1 ab 3

4 �1 �2 bb 3

At this stage the enumeration table is complete but the process is not. Continu-
ing to scan the secondary relations will never lead to a new definition or deduction,
however, there could be additional coincidences. The reader can verify that all
remaining scans complete correctly, that is, forward scanning reaches the end of
the relation without any definitions, deductions, or coincidences needed. It now
follows, as we show later, that the rack is of order 2 with R = {a, ab}. Moreover, a
multiplication table for the rack can now be derived from the complete enumeration
table using the rack axioms.

In Algorithm 1, we present pseudocode for the rack enumeration process de-
scribed in the example. The pseudocode contains several subroutines that will be
defined subsequently. Since the process contains an indefinite loop, a run limit is
used to guarantee that the process terminates. We say that the Enumerate pro-
cess completes when it returns a complete table in line 24. Specifically note that,
if the process completes, then all secondary relations have been scanned for all live
rows.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ENUMERATION PROCESS FOR RACKS 1433

Algorithm 1 The rack enumeration process

1: procedure Enumerate(S,R,M)
2: Input: generators S, primary relations R, run limit M
3: (R2, T ) := Init(S,R) � derive R2, initialize table
4: for xu

i = xj ∈ R do � scan primary relations
5: Scan(∼T ,Rep(i), u,Rep(j))
6: end for
7: i := 1
8: while i ≤ max(Ω) and i ≤ M do
9: for w ∈ R2 do � scan secondary relations

10: if i ∈ Ω then
11: Scan(∼T , i, w, i)
12: else
13: break � i is dead, stop scanning
14: end if
15: end for
16: if i ∈ Ω then
17: for y ∈ S ∪ S̄ and iy undefined do
18: Define(∼T , i, y) � fill undefined entries in row i
19: end for
20: end if
21: i := i+ 1
22: end while
23: if i > max(Ω) then
24: return E � process completes
25: else
26: return run limit exceeded
27: end if
28: end procedure

Before we describe the subroutines called by Enumerate, we list five properties
which we will show to be true after the enumeration table is initialized and which
remain true after each step of the procedure. These properties will then allow us
to produce the rack isomorphism τ : Ω → R when the process completes. First, we
need some additional definitions. Let w = y1y2...yt ∈ F (S) and let j ∈ {1, 2, . . . , ω}.
We say jw is defined and equal to k if j0 = j and for 1 ≤ i ≤ t we have ji = jyi

i−1

is defined and jt = k. As seen in the example, the function ρ will be used to record
when coincidences occur. Let orbit(i) = {ρt(i) | t ≥ 0} where ρt is ρ composed with
itself t times. Define the least representative of i by Rep(i) = min(orbit(i)).

Property 1. 1 ∈ Ω and τ (i) = xi for all 1 ≤ i ≤ g.

Property 2. If i, j ∈ {1, 2, . . . , ω} and y ∈ S ∪ S̄, then iy = j if and only if jȳ = i.

Property 3. If i, j ∈ {1, 2, . . . , ω}, y ∈ S ∪ S̄, and iy = j, then τ (i)y = τ (j) in R.

Property 4. If j ∈ Ω, then there exists i ∈ Ω, 1 ≤ i ≤ g, and w ∈ F (S) such that
j = iw.

Property 5. If i ∈ {1, 2, . . . , ω}, then τ (i) = τ (Rep(i)) in R.
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1434 JIM HOSTE AND PATRICK D. SHANAHAN

Notice that the single element y ∈ S ∪ S̄ in both Properties 2 and 3 can be
replaced by any word w ∈ F (S). This is easily proven by inducting on the length
of w.

Next, we introduce Algorithms 2 and 3. The first initializes the enumeration
table and produces a set of reduced secondary relations. The second creates a new
row in the table and two new entries. The notation ∼ T in the argument list of
Define (and already appearing in Algorithm 1) means that the procedure changes
E . We adopt this convention throughout.

Algorithm 2 Initializing the table

1: procedure Init(S,R)
2: Input: generators S, primary relations R
3: ω := g; A := φ; R2 := φ
4: for xu

i = xj ∈ R do � derive secondary relations R2

5: w := ūxiux̄j (reduced)
6: R2 := R2 ∪ {w}
7: end for
8: for 1 ≤ i ≤ ω do
9: τ (i) := xi

10: ρ(i) := i
11: end for
12: T := (ω,A, τ, ρ)
13: return (R2, T )
14: end procedure

Algorithm 3 Defining iy

1: procedure Define(∼T , i, y)
2: Input: T , i ∈ Ω, y ∈ S ∪ S̄
3: ω := ω + 1 � add new row to table
4: iy := ω; ωȳ := i
5: τ (ω) := τ (i)y

6: ρ(ω) := ω
7: end procedure

It is straightforward to show the following.

Proposition 3.2. Properties 1–5 are true after calling Init and they are preserved
by each call to Define.

By saying a call to Define preserves the properties, we mean that if they are
true before a call to Define, then they remain true after the call. We next define
the procedure Scan in Algorithm 4. It will call on Define and the additional
routines Deduction and Coincidence, that will be given in Algorithms 5 and 9,
respectively.
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Algorithm 4 Scanning the relation iw = j

1: procedure Scan(∼T , i, w, j)
2: Input: T , i, j ∈ Ω, w = y1y2...yt ∈ F (S), reduced
3: f := 1; b := t; � initialize forward and backward counters
4: k := i; 	 := j; � initialize forward and backward scans
5: while f ≤ b do
6: while f ≤ b and kyf defined do � scan forward
7: k := kyf ; f := f + 1
8: end while
9: while f ≤ b and 	ȳb defined do � scan backward

10: 	 := 	ȳb ; b := b− 1
11: end while
12: if f < b then
13: Define(∼T , k, yf ) � extend forward scan
14: else if f = b then
15: Deduction(∼T , k, yf , 	) � scans meet
16: break � break from while loop
17: else if k �= 	 then � b < f
18: Coincidence(∼T , k, 	) � scans overlap incorrectly
19: else
20: break � scan completes correctly
21: end if
22: end while
23: end procedure

The Scan procedure scans forward as far as possible and then scans backward
as far as possible. After doing so, if there is a gap, then a definition is made and the
cycle is repeated until the scans meet or overlap. This leads to a Deduction or
Coincidence, respectively. Furthermore, it is not difficult to prove that because
the word w is reduced, if Define is called, then the procedure ends with a call to
Deduction.

Algorithm 5 Making the deduction iy = j

1: procedure Deduction(∼T , i, y, j)
2: Input: T , i, j ∈ Ω, y ∈ S ∪ S̄
3: iy := j; jȳ := i
4: end procedure

In order to see that a call to Scan preserves Properties 1–5, it suffices to show
that each call to the subroutines Deduction and Coincidence preserves the
properties.
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1436 JIM HOSTE AND PATRICK D. SHANAHAN

Proposition 3.3. Properties 1–5 are preserved by each call to Deduction.

Proof. Since no new rows are added and no values of τ and ρ are changed by
Deduction, Properties 1, 4, and 5 are clearly preserved. Property 2 is preserved
since Deduction adds both iy = j and jȳ = i to the table.

We now discuss Property 3. We need only consider the case where ky is undefined
before the call to Deduction and ky = l after the call. Suppose this occurred from
a call to Scan(i, y1y2 . . . yt, j). Then, the f = b, iy1...yf−1 = k, kyf is not defined,
jȳt...ȳb+1 = 	, and 	ȳb is not defined. The deduction adds two new entries kyf = 	
and 	ȳf = k to the table, so we must prove τ (k)yf = τ (	) and τ (	)ȳf = τ (k).

Because Properties 1-5 were satisfied up to this call to Deduction, we have that
τ (k) = τ (i)y1...yf−1 and τ (	) = τ (j)ȳt...ȳf+1 . Now there are two cases depending on
whether the scan was applied to a primary or secondary relation.

Case 1. Assume 1 ≤ i, j ≤ g and xy1...yt

i = xj is a primary relation. With the
notation above, we have

τ (k) = τ (i)y1...yf−1

τ (k)yf = τ (i)y1...yf Remark 2.6

= x
y1...yf

i from Init(S,R)

= x
y1...yf yf+1...ytȳt...ȳf+1

i Prop. 2.5 (1)

= x
ȳt...ȳf+1

j Prop. 2.5 (2)

= τ (j)ȳt...ȳf+1 from Init(S,R)

= τ (	).

It follows from Remark 2.6 and Proposition 2.5 (1) that τ (	)ȳf = τ (k) as well.

Case 2. Assume i = j and y1 . . . yt ∈ R2. We now have

τ (k) = τ (i)y1...yf−1

τ (k)yf = τ (i)y1...yf Remark 2.6

= τ (i)y1...yf yf+1...ytȳt...ȳf+1 Prop. 2.5 (1)

= τ (i)ȳt...ȳf+1 Prop. 2.5 (3)

= τ (	).

As in Case 1, this implies τ (	)ȳf = τ (k) as well. �

Before giving the Coincidence procedure we describe three additional routines
Merge, Rep, and Update which will all be used by Coincidence. The procedure
Rep(i) finds the least representative of i and the related procedure Update(i)
changes E so that ρ(j) = Rep(i) for all j ∈ orb(i). Notice that ρ(i) ≤ i is required
for the procedure Rep to find the least representative.
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Algorithm 6 Finding the least representative of i

1: procedure Rep(i)
2: Input: E , i ∈ {1, 2, . . . , ω}
3: j := i
4: while ρ(j) < j do
5: j := ρ(j)
6: end while
7: return j
8: end procedure

Algorithm 7 Setting ρ(j) = Rep(i) for all j ∈ orb(i)

1: procedure Update(∼T , i)
2: Input: E , i ∈ {1, 2, . . . , ω}
3: ε = Rep(i); n := i; m := ρ(n)
4: while m < n do
5: ρ(n) := ε; n := m; m := ρ(n)
6: end while
7: end procedure

The Coincidence procedure is called when scanning forward and backward
produce two distinct values k and 	 in the same location of the helper table. The
procedure changes ρ of the larger of the two values, replaces all occurrences of the
larger value with its new smallest representative, and merges information from the
larger value’s row into the row for its smallest representative. Sometimes the merg-
ing of rows will introduce new coincidences. Hence, our procedure must produce
a queue of coincidences that will be resolved in order. The Merge procedure in
Algorithm 8 adds to the queue of coincidences and changes values of ρ to record
which elements are to be killed.

Algorithm 8 Adding a coincidence to the merge queue

1: procedure Merge(∼Q,∼ρ,m, n)
2: Input: ρ, Q a queue of coincidences, m ≡ n a coincidence
3: μ := Rep(m); ν := Rep(n)
4: if μ �= ν then
5: append max(μ, ν) to Q
6: ρ(max(μ, ν)) := min(μ, ν)
7: end if
8: end procedure

Notice that only live elements are added to the queue but then are immediately
killed. This means that the queue is always a distinct set of dead elements. Notice
also that Rep(m) = Rep(n) after a call to Merge(m,n). We are now prepared to
define Coincidence.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1438 JIM HOSTE AND PATRICK D. SHANAHAN

Algorithm 9 Resolving a coincidence m ≡ n

1: procedure Coincidence(∼T ,m, n)
2: Input: T , m,n ∈ Ω, m ≡ n a coincidence
3: Q := φ
4: Merge(∼Q,∼ρ,m, n) � queue coincidence m ≡ n
5: q := 1
6: while q ≤ length(Q) do
7: d := Q(q); q := q + 1 � take qth element off Q
8: for x ∈ S ∪ S̄ do
9: if dx = e then

10: undefine dx and ex̄ � remove inverse pair
11: δ := Rep(d); Update(d)
12: ε := Rep(e); Update(e)
13: if δx is defined then
14: Merge(∼Q,∼ρ, ε, δx) � queue new coincidence
15: else if εx̄ is defined then
16: Merge(∼Q,∼ρ, δ, εx̄) � queue new coincidence
17: else
18: δx := ε; εx̄ := δ � add inverse pair
19: end if
20: end if
21: end for
22: end while
23: end procedure

The Coincidence procedure involves an indefinite loop since the length of Q
can increase. However, since Q is a finite list of distinct elements from {1, 2, . . . , ω}
and since no process in Coincidence changes the number of rows ω of E , the loop
will terminate. We need the following lemma to prove that Coincidence preserves
Properties 1–5.

Lemma 3.4. If iy = j where i, j ∈ Ω and y ∈ S ∪S before a call to Coincidence,
then Rep(i)y = Rep(j) after the call.

Proof. Notice that Property 2 remains true after a call to Coincidence because
entries in E are only removed or added in inverse pairs by the procedure. The Coin-

cidence routine incrementally builds a queue of distinct elements from {1, 2, . . . , ω}
that are all dead and have been removed from E by the time the procedure has com-
pleted. Let Q′ denote the final queue created by Coincidence. The initial call to
Merge in line 4 initializes the queue by adding either m or n to it.

Assume iy = j before a call to Coincidence. If i, j �∈ Q′, then iy = j is not
removed from E and after the call we have i = Rep(i) and j = Rep(j). Therefore,
Rep(i)y = Rep(j) after the call. So assume then that i or j is in Q′. We will
show that after executing lines 9–20, there exists p and q such that py = q, qȳ = p,
Rep(p) = Rep(i), and Rep(q) = Rep(j).

Assume first that iy = j, i ∈ Q′, and if j ∈ Q′, then j appears after i in the
queue. We leave the other case to the reader. Since j does not appear before i in
Q′, there is a point in the execution of the procedure where we reach line 9 with
d = i, x = y, and e = j. Starting at line 10, first iy = j and jȳ = i are removed
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from the table and then δ = Rep(i) and ε = Rep(j) are defined. There are three
cases to consider.

(1) If δy = f , then f ȳ = δ (since Property 2 is satisfied) and a call to
Merge(ε, f) is made. After this call we have Rep(f) = ε = Rep(j) and
Rep(i) = δ. If we now define p = δ and q = f , then py = q, qȳ = p,
Rep(p) = Rep(i), and Rep(q) = Rep(j).

(2) If δy is undefined but εȳ = f , then fy = ε and a call to Merge(δ, f) is
made. Similar to above, we have Rep(f) = δ = Rep(i) and ε = Rep(j)
after the merge. In this case, define p = f and q = ε and the result is true.

(3) If δy and εȳ are both undefined, then we add the entries δy = ε and εȳ = δ
to E . Since no values of ρ are changed in this case, we still have that
Rep(i) = δ and Rep(j) = ε. In this case, define p = δ and q = ε and the
result is true.

Notice that in every case, neither p nor q can appear before i in Q′.
We are now prepared to prove that if iy = j before a call to Coincidence,

then Rep(i)y = Rep(j) after the call. Set i0 = i and j0 = j. If i0, j0 �∈ Q′, then
we are done. Otherwise, as shown above, there exists i1, j1 such that iy1 = j1,
Rep(i0) = Rep(i1), and Rep(j0) = Rep(j1). If i1, j1 �∈ Q′, then we are done.
Otherwise, note that the first occurrence of either i0 or j0 in Q′ must precede the
first occurrence of i1 or j1 by our remark above. Since Q′ is finite, this implies
that the process must terminate with a last equation iy� = j� where i�, j� �∈ Q′.
Therefore,

Rep(i)y = Rep(i�)
y = iy� = j� = Rep(j�) = Rep(j).

�
We are now prepared to prove that Coincidence preserves Properties 1–5.

Proposition 3.5. Properties 1–5 are preserved by each call to Coincidence.

Proof. Notice that 1 ∈ Ω after a call to Coincidence because Merge will never
change ρ(1). Furthermore, none of the procedures alter τ so Property 1 remains
true. As already seen in the proof of Lemma 3.4, Property 2 remains true after a
call to Coincidence.

It is convenient to prove Properties 3 and 5 together. Assume both properties are
true before a call to Coincidence. We first consider the initial call to Merge on
line 4. The Merge procedure does not change values of A nor τ and so Property 3
is still true after line 4. On the other hand, Merge does change values of ρ
and so we must show Property 5 remains true after line 4. There are two cases to
consider depending on whether Coincidence was called by Scan when considering
a primary or a secondary relation. First consider Scan(i, y1 . . . yt, j) with 1 ≤ i, j ≤
g and xy1...yt

i = xj ∈ R a primary relation. A coincidence occurs when iy1...yf−1 = k
is defined, jȳt...ȳf = 	 is defined, k �= 	, and k, 	 ∈ Ω. Hence, Rep(k) = k and
Rep(	) = 	 before the call to Coincidence. Since Property 3 is true before the

call, we have that τ (k) = x
y1...yf−1

i and τ (	) = x
ȳt...ȳf

j . Therefore,

τ (k) = x
y1...yf−1

i

= x
y1...yf−1yf ...ytȳt...ȳf

i Prop. 2.5 (1)

= x
ȳt...ȳf

j Prop. 2.5 (2)

= τ (	).
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Assume that k > 	 and so after the call to Merge(k, 	) in line 4 we have Rep(k) =
Rep(	) = 	. Therefore, τ (	) = τ (Rep(	)) and τ (k) = τ (	) = τ (Rep(k)) so Prop-
erty 5 remains true after line 4. The case where k < 	 is similar as is the case when
Scan is applied to a secondary relation.

We next show that the two properties are preserved by inducting on the number
of times lines 4 and 13 are executed. The previous argument for the call to Merge

in line 4 establishes the base case. So assume that both properties are true and we
arrive at line 13 with d ∈ Q, x ∈ S ∪ S̄, dx = e, δ = Rep(d), and ε = Rep(e).
Thus, at this point, τ (d)x = τ (e), τ (d) = τ (δ), and τ (e) = τ (ε) by our inductive
hypothesis. There are three cases to consider: we may call Merge on lines 14 or
16, or add two entries to the table on line 18. In no case are values of τ changed,
but Merge may changes values of ρ. Thus, Property 5 will remain true if line 18
is executed and we must still show that it remains true if line 14 or 16 is executed.
Similarly, Property3 will remain true if line 14 or 16 is executed and we must still
show that it remains true if line 18 is executed.

Suppose δx = f and we call Merge(ε, f) in line 14. So, by Property 3, τ (δ)x =
τ (f). Suppose now that 	 is arbitrary. We want to show that τ (	) = τ (Rep(	))
after the call to Merge(ε, f). Assume that ε > Rep(f) = φ in which case Merge

will set ρ(ε) = φ. If before the call to Merge, Rep(	) �= ε, then Rep(	) will
be unchanged and after the call we will still have τ (	) = τ (Rep(	)). However,
if Rep(	) = ε before the call, then τ (	) = τ (ε) and, after the call, we will have
Rep(	) = φ. Using all of the above, we have

τ (	) = τ (ε) = τ (e) = τ (d)x = τ (δ)x = τ (f) = τ (φ) = τ (Rep(	)).

The case where ε < φ is similar. If δx is undefined and εx̄ is defined, then the
argument is similar.

Consider now the third possibility where δx and εx̄ are both undefined. In this
case, two entries δx = ε and εx̄ = δ are added to E by line 18. By the inductive
hypotheses, we have

τ (δ)x = τ (d)x = τ (e) = τ (ε).

Therefore, Property 3 remains true after executing line 18.
Finally, consider Property 4. If j ∈ Ω after the call to Coincidence, then

before the call, j ∈ Ω and there exists i ∈ Ω ∩ {1, 2, . . . , g} and w ∈ F (S) such
that j = iw. Because j ∈ Ω after the call we have j = Rep(j). Moreover, from
Lemma 3.4, j = Rep(j) = Rep(i)w after the call. Because Rep(i) ≤ i, this
establishes Property 4. �

Combining the results in this section we have the following theorem.

Theorem 3.6. If Enumerate(S,R,M) completes, then E is complete and satisfies
Properties 1–5.

Note that even if Enumerate(S,R,M) returns a run limit exceeded statement,
then the table produced up to that point still satisfies Properties 1–5. The table
may even be complete, however, the secondary relations have not been scanned for
all i ∈ Ω.

4. Complete tables and the rack isomorphism

In this section we establish our main results regarding the relationship between
E and R when Enumerate completes. We begin with a useful lemma.
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Lemma 4.1. If Enumerate(S,R,M) completes, then for all i, j ∈ {1, 2, . . . , ω}
we have Rep(i) = Rep(j) if and only if τ (i) = τ (j) in R.

Proof. By Theorem 3.6 we know that E satisfies Properties 1–5. Therefore, if
Rep(i) = Rep(j), then by Property 5 we have

τ (i) = τ (Rep(i)) = τ (Rep(j)) = τ (j).

Conversely, assume that τ (i) = τ (j). Since E satisfies Properties 1–5 and Rep(i),
Rep(j) ∈ Ω, there exists a, b ∈ Ω ∩ {1, 2, . . . , g} and α, β ∈ F (S) such that aα =

Rep(i), bβ = Rep(j), τ (Rep(i)) = xα
a , and τ (Rep(j)) = xβ

b . We now have

xα
a = τ (Rep(i)) = τ (i) = τ (j) = τ (Rep(j)) = xβ

b .

Therefore, there is a finite sequence of substitution moves that take xα
a to xβ

b . We
will show that for each substitution move, if xu

e is taken to xv
f , then Rep(e)u =

Rep(f)v in E . Therefore, after the finite sequence of moves that takes xα
a to xβ

b ,
we have

Rep(i) = aα = Rep(a)α = Rep(b)β = bβ = Rep(j).

Move (1): Assume move (1) takes xuw
e to xuvv̄w

e . Since E is complete and satisfies
Property 2 we have that 	vv̄ = 	 for all 	 ∈ Ω. Therefore, Rep(e)uw = Rep(e)uvv̄w.
Move (2): Assume move (2) takes xuw

e to xw
f where xu

e = xf is a primary re-

lation. Then Scan(Rep(e), u,Rep(f)) was called in the Enumerate procedure.
Therefore, Rep(e)u = Rep(f) in E and so Rep(e)uw = Rep(f)w.
Move (3): Assume move (3) takes xvw

e to xvūxcux̄dw
e where xu

c = xd is a primary
relation. Then, Scan(Rep(e)v, ūxcux̄d,Rep(e)

v) was called in the Enumerate

procedure because Rep(e)v ∈ Ω. Therefore, Rep(e)vūxcux̄d = Rep(e)v in E and so
Rep(e)vūxcux̄dw = Rep(e)vw. The other case of substitution move (3) is similar. �

Notice that if Enumerate(S,R,M) completes, then for all j ∈ Ω there exists
k ∈ Ω ∩ {1, 2, . . . , g} and w ∈ F (S) such that j = kw. In this case we may define
two operations on Ω by

(1) ij = iw̄xkw and ij̄ = iw̄x̄kw.

Theorem 4.2. If Enumerate(S,R,M) completes, then Ω with operations given
by (1) is a rack and τ : Ω → R is a rack isomorphism.

Proof. We first show the operations are well-defined. Assume j = kw = 	v with
k, 	 ∈ Ω ∩ {1, 2, . . . , g} and w, v ∈ F (S). Since E is complete, kw and 	v are
both in Ω and hence, by Lemma 4.1, τ (kw) = τ (	v). Property 3 now implies that
τ (k)w = τ (	)v and by Property 1, xw

k = xv
� . Hence, the rack axioms tell us that

τ (i)w̄xkw = τ (i)v̄x�v and using Property 3 again, τ (iw̄xkw) = τ (iv̄x�v). Now by

Lemma 4.1, iw̄xkw = iv̄x�v. Therefore ij is well-defined. The proof for ij̄ is similar.
Suppose that i, j ∈ Ω and j = kw. We have

(ij)j̄ = (iw̄xkw)j̄ = iw̄xkww̄ x̄kw = i.

Similarly, (ij̄)j = i. Thus, the first rack axiom holds.
Let 	 = mv. Then

(ij)� = (iw̄xkw)� = iw̄xkwv̄xmv

and
(
i�
)(j�)

=
(
iv̄xmv

)(jv̄xmv)
=

(
iv̄xmv

)(kwv̄xmv)
= iv̄xmvv̄x̄mvw̄xkwv̄xmv = iw̄xkwv̄xmv.

Therefore, the second rack axiom is satisfied.
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The function τ : Ω → R in injective by Lemma 4.1. Now suppose xw
i ∈ R where

1 ≤ i ≤ g. Then Rep(i) ∈ Ω and Properties 1–5 imply

τ (Rep(i)w) = τ (Rep(i))w = τ (i)w = xw
i .

Therefore, τ is also surjective.
Finally, assume i, j ∈ Ω with j = kw. Now

τ (ij) = τ (iw̄xkw) = τ (i)w̄xkw.

On the other hand

τ (i)τ(j) = τ (i)τ(k
w) = τ (i)(τ(k)

w) = τ (i)(x
w
k ) = τ (i)w̄xkw.

Thus, τ (ij) = τ (i)τ(j). Hence, τ (i) = τ (ij̄j) = τ (ij̄)τ(j). It now follows that

τ (ij̄) = τ (i)τ(j). Therefore, τ is a rack isomorphism. �

An important step in the Enumerate procedure is the Define command in
line 18 which represents Ward’s modification of the Todd-Coxeter process in the
rack setting. This line requires that after scanning and filling all secondary relations
for row i ∈ Ω we make additional definitions, if necessary, so that iy is defined for
all y ∈ S ∪ S̄. We do this before moving to the next live row. While this step
can increases the size of Ω, it has the benefit of producing a table that is filled
in through row i after completing all secondary relation scans for row i. This is
important in the proof of the following theorem.

Theorem 4.3. If R = 〈S | R〉 is a finite rack, then Enumerate(S,R,M) com-
pletes for some M .

Proof. Towards contradiction, assume R is finite and that Enumerate(S,R,M)
returns a run limit exceeded statement for all M ≥ 1. For a fixed M , let ΩM be the
live elements at the completion of Enumerate(S,R,M) and define Ω = ∩M≥1ΩM .

Thus, Ω is the set of elements that are not killed in any call of Coincidence. By
Property 1, we have 1 ∈ Ω, so this set is nonempty. Now if i ∈ Ω and y ∈ S ∪ S̄,
then for all M ≥ i we have that line 18 of Enumerate(S,R,M) guarantees that iy

is defined. Notice that, as we increase M , the values of iy are nonincreasing since
Coincidence replaces dead values with their least representative. The values of
iy are bounded below by 1, therefore, at some point iy becomes stable. Since S ∪ S̄
is finite, this implies that given i ∈ Ω there is an Mi ≥ i such that iy is defined and
stable for all M ≥ Mi and for all y ∈ S ∪ S̄. Notice also that the stable value of iy

is in Ω for all y ∈ S ∪ S̄.
If Ω were finite, then the set {Mi | i ∈ Ω} would also be finite. In this case,

we could choose N ≥ max{Mi | i ∈ Ω} and Enumerate(S,R,N) would create an
enumeration table in which iy is defined and iy ∈ Ω for all i ∈ Ω and y ∈ S ∪ S̄.
Hence, for all w ∈ F (S), we would have iw ∈ Ω as well. Increase N , if necessary,
so that ΩN ∩ {1, 2, . . . , g} = Ω∩ {1, 2, . . . , g}. Now by Property 4, for any n ∈ ΩN ,
there exists an i ∈ Ω∩{1, 2, . . . , g} and w ∈ F (S) such that iw = n. However, i ∈ Ω
implies iw = n ∈ Ω and, hence, Ω = ΩN . Since N ≥ Mi ≥ i for all i ∈ Ω = ΩN ,
this implies that Enumerate(S,R,N) completes. Hence we have a contradiction.
Therefore, Ω must be infinite.

Now consider the infinite enumeration table T∞ whose (infinitely many) rows
are the elements of Ω and whose entries are the stable values of iy for i ∈ Ω.
This table is complete and satisfies Properties 1–5. Therefore, by the argument in
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Theorem 4.2, we have that τ : Ω → R is a rack isomorphism. This contradicts that
R is finite. �

The following is an immediate corollary of Theorems 4.2 and 4.3.

Corollary 4.4. A finitely presented rack R = 〈S | R〉 is finite if and only if there
is an M such that Enumerate(S,R,M) completes.

5. Modifications to enumerate

Recall that the Define command in line 18 of the Enumerate procedure rep-
resents Ward’s modification to the Todd-Coxeter procedure in the rack setting.
Ward’s modification was motivated by examples, given in [11], where the original
Todd-Coxeter process failed to complete even though the subgroup index was finite.
A similar example exists in the rack setting. Consider the rack R with presentation

(2) 〈a, b | aa = a, bb = b, ababab̄ = a, bbabab̄ = b〉.

Then Enumerate(S,R, 11) completes with E , shown below.

E a b ā b̄ τ p

1 1 1 1 1 a 1
2 6 2 6 2 b 2
6 2 6 2 6 ba 6

From the table it is clear that R is an involutory quandle of order 3. However, if
we omit the command in line 18 of Enumerate, then the process never completes.

Proposition 5.1. If W(S,R,M) is the rack enumeration procedure with line 18
omitted, then there is no M for which W(S,R,M) completes for the finite rack
presented by (2).

Strong evidence for the veracity of the proposition can be obtained by coding
the Enumerate procedure with line 18 omitted and running it for presentation
(2) with large values of M . A formal proof of the remark can be given by using
induction to prove that there is a sequence 4 = n0 < n1 < n2 < n3 < · · · with
the property that, for all i ≥ 1, W(S,R, ni − 1) produces a run limit exceeded
statement and an incomplete table which contains the following lines (here, a 0 in
E represents an undefined entry).

T a b ā b̄ ρ
...

ni−1 ni ∗ ∗ 0 4
...

ni 0 ni + 1 ni−1 0 ni

ni + 1 ni + 2 0 ni + 3 ni ni + 1
ni + 2 0 ni + 3 ni + 1 0 ni + 2
ni + 3 ni + 1 0 0 ni + 2 ni + 3

...

The inductive step requires a careful analysis of the helper tables for the scans of
the secondary relations for rows 1 through ni+1 − 1 and how they affect the entries
of E . We leave the details for the interested reader.
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The inclusion of line 18 is a simple way to avoid the problem in Proposition 5.1,
however, there may be other ways to alter Enumerate to achieve this. For exam-
ple, our Init routine does not attempt to produce the most efficient set of secondary
relations. Notice that if xw = x for all x, then xw̄ = x for all x as well. For this
reason it is unnecessary to have both w and w̄ in the set R2 of secondary relations.
Similarly, if xuv = x is a secondary relation and given any y ∈ R, if we let x = yū,
then the secondary relation gives yūuv = yu. Hence, yvu = y for all y ∈ R. There-
fore, given any secondary relation xw = x, we are free to cyclically permute the
letters in w to obtain an equivalent secondary relation. This allows us to record any
secondary relation xw = x with the unique word w′ which is minimal amongst all
words obtained from w and w̄ by cyclic permutation and reduction. Here minimal
means of shortest length and, among words of the same length, lexicographically
smallest where the order on S ∪ S̄ is x1 < x2 < ... < xg < x̄g < ... < x̄1.

Consider once more the rackR defined by (2). With Init defined by Algorithm 2,
the set of secondary relation words is R2 = {bāb̄āb̄ababab̄ā, bāb̄ābabab̄b̄}. On the
other hand, if instead we consider the minimal representatives of these words, then
our secondary relations would be R′

2 = {ababab̄ābāb̄āb̄, ababāb̄āb̄}. Running a mod-
ification of Enumerate with line 18 omitted and R2 replaced by R′

2, the process
completes. We do not know if this is true in general, that is, if the secondary
relations are chosen in this way, then is line 18 still necessary?

As mentioned in the introduction, the Todd-Coxeter process was designed to
find the index of a finitely generated subgroup of a group. That is, it is designed
to enumerate cosets. The order and Cayley graph for the group can be found by
enumerating the cosets of the trivial subgroup. It is natural to ask if the Enu-

merate process can be modified to enumerate something more general than the
elements of the rack. The natural analogy is to consider a finitely generated subrack
Σ ⊆ R = 〈S | R〉. If x ∈ R, then define the rack coset Σx to be the set of elements
{σx | σ ∈ Σ}. Unfortunately, the collection of all rack cosets of a given subrack
does not, in general, partition the rack. We consider three interesting examples.

First, consider the fundamental 4-quandle of the righthand trefoil knot given by
the presentation

R1 = 〈a, b | aa = a, bb = b, abbbb = a, baaaa = b, aba = b, bab = a〉.

From the Enumerate process we find thatR1 = {a, b, ab, ba, abb, baa}. Moreover, it
is not hard to show that Σ = 〈a, abb〉 = {a, abb} is a subrack (in fact, a subquandle).
By direct calculation, this subrack has three distinct cosets Σ, Σb, and Σba which
partition R1. The Enumerate process can be modified to enumerate these cosets
and determine the action of R1 on the cosets. Namely, initialize the process with
1 representing the coset Σ. Since Σ is a subrack, it is fixed by the action of
both generators a and abb. So the modified process first scans these two subrack
generator relations: 1a = 1 and 1b̄b̄abb = 1. Next the modified process scans all
secondary relations (from the presentation of R1) and an additional secondary

relation ib̄b̄abbā = i, since the action by different generators of Σ should be the
same, for all live i. The modified process completes and enumerates the three
distinct cosets given above.

As a second example, consider the involutory quandle of the (2, 4)-torus link
which has a presentation

R2 = 〈a, b | aa = a, bb = b, abb = a, baa = b, abab = a, baba = b〉.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ENUMERATION PROCESS FOR RACKS 1445

The Enumerate process determines that R2 = {a, b, ab, ba}. This rack contains

the subrack Σ = 〈a, ab〉 = {a, ab}. Notice that Σ = Σa = Σb = Σab

= Σba and
so the cosets of the subrack do not partition R2. On the other hand, consider the
rack with presentation

R3 = 〈a, b, c | aa = a, bb = b, cc = c, ab = a, ac = a, ba = b, , ca = c, bccb = c, bc̄bb = c〉
which has order 6. The subrack Σ = 〈a, b〉 = {a, b} has five distinct cosets all of
which contain a and whose union is the entire rack. It is not immediately clear
how the enumeration process can be modified in these last two examples in order
to enumerate the distinct cosets.

6. An application to knot theory

We close with a sample calculation related to knot theory. Associated to every
link is its fundamental quandle, which, of course, is a rack. However, the quandle of
a knot or link is almost always infinite. If we pass to the quotient 2-quandle, then
there are many knots and links for which this is finite. A complete list of links with
finite n-quandles for some n is given in [5]. One such link is shown in Figure 1.

a

b
c

Figure 1. A link with finite 2-quandle.

A presentation for the 2-quandle of the link can be obtained from the diagram by
labeling each arc of the diagram with a generator and then recording one relation
at every crossing as indicated in Figure 2. In addition to these relations, we must
also include the relations xx = x for every generator and xyy = x for every pair
of distinct generators x and y. See [5] for more information on presentations of 2-
quandles of links. If we use one generator for each arc, we will create a presentation
with redundant generators. Instead, it is always possible to label some subset of the
arcs with generators and then use the relations at each crossing to derive the labels
on all of the other arcs. Arcs for which labels can be so derived in two different
ways then give rise to the necessary relations.

If we label the three arcs shown in Figure 1 with the generators a, b, c, and
follow the above procedure, we obtain the presentation

R = 〈a, b, c, | aa = a, bb = b, cc = c,

abb = a, acc = a, baa = b, bcc = b, caa = c, cbb = c,

abc = a, bacbcbca = c, bcbcacacb = c〉.
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xixj

xk

Figure 2. This crossing gives the relation xxi
j = xk.

Applying Enumerate to this presentation yields a finite 2-quandle with two
algebraic components corresponding to the two components of the link. One al-
gebraic component has four elements including the generator a and the other has
twenty elements including the generators b and c. The Cayley graph of the 2-
quandle can be immediately derived from the enumeration table and is shown in
Figure 3. The generators a, b, and c, correspond to the solid, dashed, and dotted
edges, respectively.

a

b

c

Figure 3. The 2-quandle of the link in Figure 1.

7. Implementation

Since its implementation on a computer, there have been multiple modifications
made to the Todd-Coxeter process that decrease the run-time or memory usage. In
[3], Holt, Eick, and O’Brien characterize the performance of a coset enumeration
process in terms of the maximum number of live elements at any stage of the
process. That is, the maximum value of |Ω| at any point. They also remark that
the total number of cosets defined would also be a reasonable measure. Holt, Eick,
and O’Brien declare a procedure to perform well if max{|Ω|} is roughly less than
125% of the index [G : H].
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Table 1. Performance of Enumerate for a sample of Montesinos
link quandles.

p q e t O L E L/O E/O
2 23 2 0.11 1008 4646 8109 4.6 8.0
53 61 2 0.20 992 9832 22148 9.9 22.3
2 49 −1 4.61 10000 117876 615021 11.8 61.5
2 11 5 0.24 1008 13893 30482 13.8 30.2
2 61 5 25.84 30008 559137 2483138 18.6 82.7
4 41 4 4.91 9996 198559 593150 19.9 59.3
31 39 5 7.56 10000 367832 1039894 36.8 104.0
4 49 −3 18.73 20000 838911 2312936 41.9 115.6
5 9 −4 0.46 1000 47906 64245 47.9 64.2
19 45 −1 10.11 10028 500924 1132344 50.0 112.9
27 53 5 28.64 19980 1194349 3942721 59.8 197.3
39 64 −2 87.98 30030 1954031 4726305 65.1 157.4
19 52 5 34.04 20034 1394756 4635357 69.6 231.4
25 64 5 128.65 30030 2321654 8237209 77.3 274.3
31 57 −3 126.44 30044 3027595 7312811 100.8 243.4
12 43 −4 35.56 19976 2069917 4988150 103.6 249.7
16 39 −5 41.27 20000 2507287 5651463 125.4 282.6
17 27 −5 16.27 10024 1334984 2521252 133.2 251.5
31 47 −5 166.36 30048 4338376 9511360 144.4 316.5

We apply this analysis to the enumeration of involutory quandles of a family
of links. In [4], it was shown that the order of the involutory quandle of the
(1/2, 1/2, p/q; e)-Montesinos link is 2(q + 1)|(e − 1)q − p|. A selection of 21, 15,
and 16, such quandles with orders near 10000, 20000, and 30000, respectively, were
used. Run-times varied from 3.8 to 16.3 seconds for the first group, 18.7 to 41.3
seconds for the second group, and 24.2 to 166.4 seconds for the last group. Not sur-
prisingly, run-times were roughly proportional to the number of elements defined
during execution. This number ranged from about 40 to 320 times the order of
the quandle. The largest number of live elements during execution was generally
between 12 to 145 times the order of the quandle. We coded our implementation
of Enumerate using Python and our program may be downloaded from the Com-
puTop.org software archive. A small selection of data is included in Table 1. In this
table, t is the run-time in seconds, L is the maximum value of |Ω| at any point in
the process, E is the total number of quandle elements defined by the process, and
O is the order of the quandle. We suspect that our procedure could be improved
in order to perform well with respect to Holt’s measure.
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