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INTRODUCTION

Healthy coral reefs are dominated by benthic com-
munities of corals, crustose calcareous red algae, and
closely cropped algal turfs (reviewed by Fong & Paul
2011). The global decline in coral reefs is often asso-
ciated with phase shifts from these communities to
those of longer turfs and larger fleshy macroalgae
(Hughes et al. 2007); thus, research on factors that
sustain healthy benthic communities is imperative.
Corals have been studied extensively, yet little is

known about how anthropogenic impacts affect algal 
turfs (for a review, see Fong & Paul 2011). Algal turfs 
are important components of coral reefs as they sup-
port key ecosystem functions including high rates of 
primary production, trophic support, and nitrogen 
fixation (McCook 1999, Russ 2003, Fong & Paul 
2011); thus, they are often used as an indicator of reef 
health (e.g. Carpenter 1986, McCook 1999). In 
healthy, coral-dominated reef systems, herbivory is 
typically high and algae of almost all species are usu-
ally grazed down to form diverse turfs <1 cm tall,
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ABSTRACT: Closely cropped algal turfs support key ecosystem functions on healthy coral-
 dominated reefs, yet how this important reef component is affected by sedimentation, a key stres-
sor on reefs worldwide, is relatively unknown. We used a 2-factor caging experiment to evaluate 
the effects of varying sediment depth and presence of herbivorous fish on algal turf height on a 
fringing reef in Mo’orea, French Polynesia. Without herbivory, 2 mm of sediment reduced turf 
growth by ~50% compared to sediment removal treatments; in contrast, growth with 4 mm of sed-
iment was low or negligible regardless of herbivory treatment. Negative effects of sediment were 
linked to the development of black basal layers of sediment, indicating accumulation of hydrogen 
sulfide. Black sediment occurred in 60 to 70% of all 4 mm plots and in 43% of caged 2 mm plots 
but was not found in open 2 mm plots, implying that grazing ameliorated development of black 
sediment under 2 mm loads. Sediment levels of 2 mm did not deter herbivory, evidenced by the 
significant decrease in turf height in open compared to caged plots. Under 4 mm of sediment, 
black sediment inhibited both growth and herbivory where it occurred. Without black sediment, 
however, fish grazing balanced algal growth, resulting in negligible algal height changes across 
4 mm plots but with differing underlying mechanisms. Field surveys on other sedimented reefs 
with healthy herbivore communities confirmed an increase in the presence of black sediment at 
depths over 3 mm. Thus, deeper sediment depths inhibit turf growth, yet under moderate levels of 
sedimentation, intact herbivorous fish communities may maintain closely cropped, healthy turf 
communities by preventing the negative effects of black sediment.
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with the exception of areas and species with spatial,
chemical, or temporal refuges (e.g. Fong et al. 2006,
Smith et al. 2010a). Reduction of herbivory is often
associated with shifts to larger macroalgae (Bellwood
et al. 2004, Hughes et al. 2007, Smith et al. 2010b),
and past research suggests that closely cropped algal
turfs will dominate the algal community under condi-
tions of low nutrient supplies and relatively high her-
bivory pressure (e.g. Littler & Littler 1984, McClana-
han et al. 2003). Interactions between nutrients and
herbivory and other controlling factors such as sedi-
ment loads, however, may confound these relation-
ships (Airoldi 2003).

Sediments blanket algal turf tissue and, as a result,
may block herbivore access, enhancing the risk of
increased turf height and resultant negative commu-
nity-level effects. Goatley & Bellwood (2013) showed
that a pulse of sediment added to turfs on a high-
energy reef crest was as effective as a cage at
increasing net turf growth rates on the Great Barrier
Reef (GBR). Bellwood & Fulton (2008) measured a
64% increase in fish bite rates on algal turfs when
sediment loads were experimentally reduced from 18
to 0.9 mm, suggesting high sediment loads were
deterring consumption; this effect was later shown to
extend across 3 reef zones from crest to flat (Goatley
& Bellwood 2012). However, another study on the
GBR found that lower levels of sediment may have
been insufficient to deter herbivory on turfs (Bonaldo
& Bellwood 2011). If sediments reduce herbivory on
turfs and promote turf elongation, this may inhibit
reef resilience by direct and indirect negative effects
on coral (McCook 1999). For example, taller less-
grazed turfs can prevent settlement of new coral
recruits (Birrell et al. 2005). While deeper sediment
loads have been shown to diminish herbivore control
of algal turfs on the GBR, it is still unclear at what
sediment depth this control may no longer be effica-
cious. We hypothesize that herbivorous fish may tol-
erate sediment loads on algal turf to a critical tipping
point before consumption is significantly deterred.

Sediment loads also have inherent costs to algae,
though these costs have usually been studied for
fleshy macroalgae, not turfs. For example, while the
macroalga Sargassum microphyllum is tolerant of
current sediment loads on nearshore reefs of the
GBR, experimental increases in sediment depth
reduced recruitment, growth, survival, and vegeta-
tive regeneration (Umar et al. 1998). A review docu-
mented numerous additional negative effects of sed-
iment on algae and other marine organisms,
including physical damage from scouring or abrasion
and burial (Airoldi 2003). One study on temperate

turf assemblages found that negative effects of sedi-
ment are strongly modulated by light availability
(Irving & Connell 2002). Sediment burial of embryos
of the temperate rocky shore macroalga Fucus serra-
tus limited light availability and diffusion of meta-
bolic waste products, creating localized areas with
black sediment that contained hydrogen sulfide
(H2S), which not only inhibited growth, but also lim-
ited survival (Chapman & Fletcher 2002). Extrapola-
tion from these studies indicates that the negative
effects of sediment on tropical algal turf growth may
also depend on sediment depth.

Although evidence exists that both inhibition and
facilitation of algal turf growth may occur with sedi-
mentation, no studies have directly examined these
effects across a range of sediment depths, despite
evidence suggesting they may be dependent on sed-
iment depth and mediated by herbivory. To address
this knowledge gap, we conducted an experiment
examining how varying sediment depths affected
algal turf net growth under ambient and reduced lev-
els of fish herbivory on a fringing reef flat.

MATERIALS AND METHODS

This study was conducted in May 2012 on a fring-
ing reef along the north shore of Mo’orea, French
Polynesia. The experimental site was located within
the lagoon on the northeast side of Opunohu Bay, in
patch reefs roughly 50 m from shore (17° 29’ 30’’ N,
149° 51’ 4’’ W). To determine how sediment depth
and herbivory affected change in algal turf height, a
2-factor fully crossed experiment was conducted
manipulating sediment depth (0, 2, or 4 mm) and
access to herbivorous fish (± complete cages) using
haphazardly chosen plots. Replication was 10-fold
except for 2 treatments where replicates were lost to
physical damage (open 4 mm: n = 8; caged 2 mm: n =
7). In order to ensure results were realistic approxi-
mations of local sediment conditions, sediment treat-
ment levels were chosen within the range measured
on 2 fringing reefs of Mo’orea (average = 2.49 ±
0.17 mm, range = 0−7 mm, n = 94), including the
study reef (average = 1.89 ± 0.19 mm, range =
0−4 mm, n = 51). Herbivorous fish communities were
measured as the number of acanthurids and scarids
(no kyphosids or siganids were observed) within 1 m
on either side of a 50 m transect tape while swim-
ming at a constant speed (n = 12). The length of each
individual was recorded as 1 of 4 size classes: <5, 5 to
<10, 10 to <15, and >15 cm. All experimental plots
were located between 1 and 2 m depth. Plots were
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established on the algal turf-covered tops of dead
colonies of Porites sp. that were killed during a
recent Acanthaster planci outbreak (Kayal et al.
2012). Semi-isolated heads of mainly Porites sp. are
characteristic of the fringing and back reef systems in
this area (Hench et al. 2008).

Water sample (via Niskin bottles) data collected
within this fringing reef system twice yearly (summer
and winter) from 2005 to 2013 showed physical
parameters similar to other fringing reefs in the
South Pacific (data obtained with permission from
the Mo’orea Coral Reef Ecosystem LTER; Alldredge
& Carlson 2013). Water temperature ranged from
25.7 to 29.2°C, averaging 26.2°C in the winter and
28.3°C in the summer. Salinity was 36.1 ± 0.04 PSU
(mean ± SE). Nutrients were variable with no consis-
tent seasonal pattern, ranging from 0.26 to 1.40 µmol
l−1 nitrite + nitrate (0.55 ± 0.03 mean ± SE) and 0.09 to
0.27 µmol l−1 phosphate (0.17 ± 0.006). Turbidity
averaged 0.61 ± 0.01 V. Previous work in this reef
system has shown that water exchange over the reef
crest and in the shallow back reef is wave-driven and
flushing is rapid (Hench et al. 2008). Although no
data are available for the fringing reef, flow is likely
much slower in this area (see also Schmitt & Hol-
brook 2002, who measured 1.6 cm s−1 flow in the
lagoon).

Each experimental unit was delineated by a cylin-
der (15 cm diameter by 6 cm high) constructed of thin
metal mesh (hardware cloth, <1 mm thick) with 1 cm2

openings. A random selection of half the plots chosen
to exclude herbivorous fish were topped with mesh
lids (hereafter referred to as ‘caged’ plots); the other
half of the plots (‘open’ plots) lacked lids. Visual
observations of fish herbivory (measured as bite
rates) within open-topped cages compared to fully
open but otherwise similar substrate (50 replicate
5 min intervals) confirmed fish were not significantly
deterred by cage sides (data taken at the study site in
April 2014, t-test, p = 0.70; V. Phan unpubl. data).
This is likely because acanthurids, the dominant her-
bivorous fish in this system, prefer to feed on flat sur-
faces on which they bite down (see Choat & Bellwood
1985). ‘Urchin barriers’ (sensu Carpenter 1986) were
constructed around open plots (extended mesh pan-
els folded back) to ensure exclusion of other herbi-
vores larger than 1 cm2 (mainly echinoids). Fully
open cage controls were not used in this experiment
as previous work utilizing this caging material found
no reduction of flow or any effects on the biota (Wart-
ian 2006, Muthukrishnan & Fong 2014). Moreover,
subsequent measurements of flow within compared
to outside cages at the study site found no difference

in flow rate among partial cages, full cages, or com-
pletely open plots (ANOVA, F2,26 = 0.53, p = 0.59, n =
10; S. Bittick unpubl. data). The reduction of irradi-
ance by the caging material was <10% (R. Clausing
unpubl. data).

Prior to beginning the experiment, algal turf height
was measured in each plot using a steel wire marked
at 1 mm intervals. Initial heights were averages of
turf height measured at 10 haphazardly chosen
points inside each experimental unit. Mean initial
turf height across treatments was 1.45 ± 0.059 mm
(mean ± SE). Sediment was removed from all treat-
ment plots with gentle fanning. Sediment additions
were applied by sifting sediment from the benthos
surrounding each experimental unit with a 1 mm
sieve to reach the assigned treatment depth, also
measured with the calibrated wire. Sediment compo-
sition was 43% sand, 18% clay and 39% silt, with
2.24 ± 0.05% organic material (mean ± SE, n = 3).
Natural sediment used in this experiment likely con-
tained a complex assemblage including detrital
material, small invertebrates, microbes, and inor-
ganic materials such as adsorbed nutrients. While
hereafter we refer to this assemblage as sediments
for simplicity, it is important they are distinguished
from sediments that have been cleaned of other con-
stituents. Sediment depths for all replicates were
maintained twice over the course of 11 d by adding or
removing sediment as needed. Only 0 mm plots
needed sediment removal; sediment depths in 2 and
4 mm plots never exceeded the treatment depth.
While maintaining the treatments, black sediment
was observed in the basal sediment layers of some
plots. Black sediment is a well-established and com-
monly used indicator of the presence of H2S and low
oxygen conditions in estuarine sediments (e.g.
Rhoads & Germano 1982, Nilsson & Rosenberg 1997,
Cicchetti et al. 2006, Sutula et al. 2014). Shifts in sed-
iment color as an indicator for H2S have also been
used in experiments on juvenile temperate intertidal
algae, where sediment treated with seawater con-
taining H2S changed from light to dark within 5 d
(Chapman & Fletcher 2002). Thus, we considered the
shift from light to black sediment to indicate the tran-
sition from oxidized to hypoxic sediments (Rhoads &
Germano 1982, Cicchetti et al. 2006). At the end of
the experiment, final algal height was measured as
above. All measurements were made at least 2 cm
from the cage barriers around each plot to avoid
potential edge effects. After measuring final turf
height, sediment was brushed from each experimen-
tal unit and the presence or absence of black sedi-
ment near the benthos noted.
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Change in average turf height over the course of the
experiment was calculated by subtracting average ini-
tial height in each plot from the average final height.
Because the assumptions of factorial ANOVA were
not met (data could not be transformed to achieve nor-
mality), data were analyzed using a bootstrapped 2-
way factorial ANOVA to simulate the null hypothesis
and examine the significance level of individual and
interacting effects of sediment depth and herbivory on
algal turf net growth (Davison & Hinkley 1997, Manly
1997). Proportion data of presence/absence of black
sediment were also analyzed using a bootstrapped 2-
factor ANOVA. Because the presence of H2S has
strong negative effects on algal growth, particularly at
early life stages (e.g. Chapman & Fletcher 2002), we
examined differences in change in turf height within
treatments between plots with vs. those without black
sediment. Since black sediment developed as a result
of experimental treatments rather than as a controlled
factor, only 2 and 4 mm caged, and 4 mm open treat-
ments had enough plots with black sediment to ana-
lyze (see Fig. 2 caption for sample size). Examining
change in turf height between 4 mm caged and open
plots as a function of the presence of black sediment
allowed us to differentiate between negative effects
on height due to herbivory versus those due to inhibi-
tion of growth. Differences in turf height between
2 mm caged plots with and without black sediment
were analyzed with a t-test, while differences among
4 mm caged and open plots were analyzed with a
2-factor ANOVA, with access to herbivorous fish and
black sediment as factors. These data met assumptions
of normality and homogeneity of variance.

To evaluate the relationship between sediment
depth and the presence of black sediment, we con-
ducted surveys of sediment depth and noted the
color of the sediments near the benthos on 2 near-
shore fringing reefs of Mo’orea, one of which was our
study site. The sites were located at the mouths of the
2 northern bays. Within these areas, measurements
and observations were made at randomly selected
points along 50 m transects haphazardly placed
within the 1 to 2 m depth contour (n = 51 and 43 repli-
cate points at the experimental site and a similar
fringing reef, respectively). As a result, sediment
depths were measured on all types of substrate upon
which the transect line landed, including both dead
coral heads and flatter, hard benthos. Data from the 2
reefs were combined and frequency histograms of
sediment depth and presence/absence of black sedi-
ment constructed. All data were analyzed using the R
programming language version 2.15.1 (R Develop-
ment Core Team 2012).

RESULTS

The presence of sediment had strong negative
effects on algal turf growth, but this was only
detectable in the absence of herbivorous fish (caged
plots), resulting in an interaction between sediment
and herbivore access (Fig. 1; bootstrapped 2-way
factorial ANOVA, interaction p = 0.0089). In caged
plots, sediment drastically reduced turf growth.
When sediment was removed (0 mm), turf grew
nearly 4 mm in 11 d, but natural levels of sediment
(~2 mm treatment) reduced growth by ~50%, and
there was virtually no growth under 4 mm of sedi-
ment. In contrast, turfs exposed to herbivorous fish
(open plots) changed little (if at all) in height,
demonstrating strong top-down control by herbi-
vores rather than by sediment, at least in the 0 and
2 mm treatments where open plots showed substan-
tially lower change in height compared to caged
plots (90 and >80% reduction in 0 and 2 mm treat-
ments, respectively).

There was a significant effect of sediment depth on
the development of black sediment (bootstrapped 2-
way factorial ANOVA, sediment depth p = 0.029)
(Fig. 2a). In caged plots with no access to herbivorous
fish, black sediment was found in 43% of 2 mm plots
(3 of 7), but the activity of fish in 2 mm open plots pre-
vented black sediment from ever occurring. In con-
trast, in 4 mm plots, there appeared to be no effect of
fish activity as open and caged plots showed similar
frequencies of black sediments (63%; 5 of 8 and
70%; 7 of 10, respectively).
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The presence of black sediment appeared to have
effects on change in algal turf height, though signifi-
cance of tests were marginal due to low sample size
(Fig. 2b). In 2 mm caged treatments, the presence of
black sediment reduced growth to roughly 20% of
that of the plots without black sediment (Fig 2b; t-
test, p = 0.082). We did not analyze 2 mm open plots,
as black sediment was not observed. In plots with
4 mm of sediment, herbivory was only apparent in
units where black sediment did not occur (Fig. 2c; 2-
way ANOVA, interaction p = 0.064). In plots where
black sediment developed, algal turf did not grow
regardless of the presence of fish herbivores. In con-
trast, with neither herbivorous fish (caged plots) nor
black sediment, turf grew about 1 mm, whereas in
open plots with no black sediment, fish herbivores
significantly consumed turf, reducing turf height by
about 0.35 mm from initial height. This indicates that
where 4 mm sediment loads did not develop black
basal layers, herbivory remained substantial, although
overall herbivore control was weaker than in 2 mm
plots where sediment had smaller negative effects on
growth.

Field surveys of sediment depth showed a thresh-
old pattern, where sediment depths of 3 mm or

greater frequently had black sediment at their base
(Fig. 3a) while at depths less than 3 mm, none of the
plots showed any evidence of black sediment. Fish
communities were comparable to other Mo’orean
fringing reefs: high densities of smaller acanthurids
and very small scarids in lower numbers (Adam et al.
2011, Fig. 3b).

DISCUSSION

Sediment had a strong negative effect on net algal
growth in this experiment, likely as a result of anoxic
conditions that promoted the production and accu-
mulation of H2S. Kawamata et al. (2012) also docu-
mented strong negative effects of sediment on the
macroalga Sargassum duplicatum on temperate
rocky reefs, where sediment depths as thin as 0.5 mm
limited growth while 2 to 4 mm of sediment
decreased growth by 90%. Likewise, Chapman &
Fletcher (2002) found that 3 mm of fine sediment sig-
nificantly reduced embryo survival of the temperate
macroalga Fucus serratus, and even 1 mm of organi-
cally-rich sediment was enough to impact recruit sur-
vival. Moreover, they found that H2S alone was suffi-
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cient to cause algal mortality, whereas low oxygen
levels alone were not. When covering coral on tropi-
cal reefs, sediment has also been found to produce
anoxia and H2S (Weber et al. 2012). Sediment may
promote conditions for anoxia by reducing light
 penetration and thereby photosynthesis, restricting
oxygen diffusion and removal of metabolic waste
products, and providing more organic material for
de composition and production of H2S. Moreover,
because natural sediment was used in this experi-
ment, increased metabolic activity resulting from
moderate organic content (2.25%) and intact micro-
bial communities may have contributed to the deple-
tion of oxygen (Barott & Rohwer 2012). In addition,
previous work in Mo’orea demonstrated that natural
sediments retained on macroalgal thalli had substan-
tially higher organic matter and smaller grain size
than the surrounding benthic sediment (R. J. Claus-
ing & P. Fong unpubl. data); if turf algae also differ-
entially retain smaller grain sizes, this could amplify
negative effects. Anoxic conditions resulting from
sediment are likely to negatively affect all benthic
communities. Thus, further research is needed to
determine the environmental conditions and sedi-
ment characteristics under which black sediment is
likely to occur, as well as the mechanism (H2S or
hypoxia) by which turfs and other benthic organisms
are negatively affected.

The presence of herbivorous fish ameliorated the
occurrence of black sediment up to a critical sedi-
ment depth. While similar frequencies of black sedi-

ment were observed in 4 mm plots regardless of the
caging treatment, herbivory prevented the occur-
rence of black sediment in turfs with 2 mm of sedi-
ment. As a significant amount of turf was consumed
under 2 mm of sediment, this suggests herbivorous
fish may be preventing H2S production or accumula-
tion at this depth by disturbing and thus oxygenating
the sediment as they forage. Some species of acan-
thurids have the capability to ingest large quantities
of sediments while grazing (Goatley & Bellwood
2010, Krone et al. 2011), suggesting they may con-
tribute to bioturbation. The inability of fish to reduce
instances of black sediment under 4 mm of sediment
indicates that foraging no longer provided sufficient
bioturbation to prevent anoxia, whether by ineffec-
tive or simply reduced levels of foraging. Surveys
supported this conclusion, providing evidence that
black sediment did not occur until depths of at least
3 mm when herbivore fish communities were pres-
ent. In contrast, in studies of rocky reef turf assem-
blages in the Mediterranean, sediment deposition
was found to promote dominance of several filamen-
tous turf species, either with direct increases in
growth rates (Balata et al. 2007) or indirectly by
adaptations in turf to reduce negative impacts rela-
tive to erect algae (Airoldi & Cinelli 1997, but sedi-
ment had no effect on turf dominance in Airoldi
1998). The lack of negative effects of sediment on
temperate algal turf may be related to increased flow
or bioturbation (see also Gorgula & Connell 2004 for
a study in South Australia). Regardless, our results
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demonstrated that in moderate sedimentation
regimes, intact fish assemblages may reduce the
negative effects of  sediment on tropical reefs by pre-
venting the development of low or no-oxygen condi-
tions, thus maintaining the existence of productive
algal turf com munities while limiting turf height.

Our results suggest a novel mechanism by which
sediments inhibit herbivory on coral reefs: the
development of hypoxia and H2S. In our study, only
black sediment appeared to deter herbivores. Her-
bivory was strong under 2 mm of sediment, and
even in 4 mm plots; as long as there was no black
sediment, herbivores readily consumed turf. In con-
trast, several studies on the GBR found that deeper
depths of oxygenated sediment (e.g. 15 to 18 mm)
deterred herbivores (Bellwood & Fulton 2008, Goat-
ley & Bellwood 2012, 2013). Bellwood & Fulton
(2008) showed that after sediment removal, fish con-
tinued to reduce turf height until the accumulation
of 7 mm of sediment roughly 4 h later, indicating in -
hibition of herbivory began between 7 and 18 mm —
deeper depths than were examined in our study.
The lack of development of black sediment in these
studies was likely caused by the high-flow environ-
ments in which they were conducted (outer reef flat:
Bellwood & Fulton 2008; reef crest: Goatley & Bell-
wood 2013, reef base, crest and flat: Goatley & Bell-
wood 2012) and the relatively coarse calcareous
sediments. Our study took place on a nearshore
fringing reef where lower flow, sediment turnover,
and grain size as well as increased organic content
may all amplify the chance of anoxia developing.
The effects of sediment on suppression of herbivory
may also differ with herbivore community composi-
tion and size−frequency distribution, as some species
and sizes of fish may be more adapted to ingesting
sediment than others (Goatley & Bellwood 2010,
Krone et al. 2011). Thus, our results combined with
work on the GBR suggest that sediment alone may
only deter herbivory while facilitating turf growth if
substantially deep sediments accumulate without
anoxia developing. In contrast, under conditions in
which heavy sediment loads lead to H2S accumula-
tion, sediment may ultimately inhibit turf growth
rather than stabilize an alternate turf state as Bell-
wood & Fulton (2008) suggest.

In summary, our results suggest that under even
moderate loads of natural sediment, algal turf com-
munities may be susceptible to a toxic build-up of
H2S. Intact communities of herbivores may amelio-
rate these negative effects, acting to maintain impor-
tant ecosystem functions while preventing develop-
ment of tall algal turfs that may negatively affect

coral. While burrowing infauna are known to be
important for oxygenation of marine sediments (see
review by Kristensen 2000), to our knowledge the
importance of fish foraging in preventing anoxic con-
ditions on reefs has not been demonstrated. Studies
directly observing fish feeding behaviors and meas-
uring sediment oxygen levels are needed to better
understand this relationship. Moreover, the positive
effects of herbivory are dependent on sediment
depth; this relationship is likely dependent on envi-
ronmental context including hydrodynamics, fish
community composition and abundance, and sedi-
ment type and organic content. With higher sediment
loads, fish activity may no longer ameliorate negative
effects, and low-oxygen conditions may degrade
benthic communities, further inhibiting herbivory
and reducing ecosystem function. While we found no
indication that sediments facilitate algal turfs, it
could be that lower-flow, fringing reefs close to sub-
stantial human activity (such as this study reef) may
be more susceptible to degradation by sediment due
to greater availability of organic matter for decompo-
sition and low sediment disturbance and turnover. If
anthropogenic sources of sedimentation are to
increase as projected (UNEP 2006), a greater under-
standing of how sediment loads affect entire benthic
communities will be essential to maintain reef health.
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