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ABSTRACT

A partial order on prime knots can be defined by declaring J ≥ K, if there exists
an epimorphism from the knot group of J onto the knot group of K. Suppose that
J is a 2-bridge knot that is strictly greater than m distinct, nontrivial knots. In this
paper, we determine a lower bound on the crossing number of J in terms of m. Using
this bound, we answer a question of Suzuki regarding the 2-bridge epimorphism number
EK(n) which is the maximum number of nontrivial knots which are strictly smaller than
some 2-bridge knot with crossing number n. We establish our results using techniques
associated with parsings of a continued fraction expansion of the defining fraction of a
2-bridge knot.

Keywords: 2-Bridge knot; epimorphism; knot group; partial order.

Mathematics Subject Classification 2010: 57M25

1. Introduction

Given two knots J and K in S3, an interesting question in knot theory, and one
which has received a great deal of attention, is whether there exists an epimorphism
from the fundamental group of the complement of J onto the fundamental group of
the complement of K. The existence of such an epimorphism defines a partial order
on the set of prime knots and we write J ≥ K if such an epimorphism exists. The
relation is clearly reflexive and transitive. Proving it is antisymmetric is nontrivial.
Suppose that φ : π1(S3 − J) → π1(S3 − K) and ρ : π1(S3 − K) → π1(S3 − J) are
epimorphisms. Then, the composition ρ ◦φ is an isomorphism because knot groups
are Hopfian (see [7, Lemma 14.2.5]). Hence φ is an isomorphism and J = K because
prime knots are determined by their knot groups [12].

‡Corresponding author.
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It is easy to obtain examples where J ≥ K. For example, if J is a periodic knot
with quotient knot K, then the quotient map induces the desired epimorphism.
Torus knots provide special cases of this. For example, the (2, 15)-torus knot T (2, 15)
has periods of both 3 and 5, with quotients T (2, 5) and T (2, 3), respectively. Note
that in these examples, the crossing number of T (2, 15) is 15, which is three times
as big as the crossing number of T (2, 5). If it were always the case that the crossing
number of J is at least 3 times the crossing number of K whenever J > K, then this
would provide a proof of Simon’s Conjecture, that a knot group can only map onto
finitely many other nontrivial knot groups. While Simon’s Conjecture is known to
be true [3], it is not true that the bigger knot must always have 3 times as many
crossings as the smaller knot, for Kitano and Suzuki have shown that the 8-crossing
knots 85, 810, 815, 818, 819, 820 and 821 are all greater than or equal to the trefoil knot
31 [8]. However, these 8-crossing knots are all 3-bridge knots, and in [11], Suzuki
shows that if one restricts to the class of 2-bridge knots then the (strictly) bigger
knot does indeed always have 3 times as many crossings as the smaller knot.

Focusing on the class of 2-bridge knots, Suzuki defines the 2-bridge epimorphism
number EK(n) to be the largest number of distinct nontrivial knots which are
strictly less than some 2-bridge knot with crossing number n. An important result
is that if J ≥ K and J is a 2-bridge knot, then K must also be a 2-bridge knot
[4]. Thus, to compute EK(n), we need to only count how many 2-bridge knots are
smaller than each 2-bridge knot with crossing number n. Examining all 2-bridge
knots up to 30 crossings, Suzuki determined that

EK(n) =




0, n = 3, 4, 5, 6, 7, 8,

1, n = 9, 10, 11, 12, 13, 14, 18, 19, 20, 24,

2, n = 15, 16, 17, 21, 22, 23, 25, 26, 27, 28, 29, 30.

(1)

Because the torus knot T (2, 45) is strictly larger than T (2, 3), T (2, 5), T (2, 9), and
T (2, 15), we have EK(45) ≥ 4. Suzuki then asked what happens between 31 and 45
crossings? How many crossings must a 2-bridge knot have in order to be strictly
larger than 3 or more nontrivial knots? In this paper, we answer this question by
proving the following theorem.

Theorem 1. Suppose J is a 2-bridge knot which is strictly greater than m distinct
nontrivial knots, then J has at least cm crossings where cm is the smallest, positive,
odd integer with at least m positive, nontrivial, proper divisors.

Values of cm for small values of m are given in Table 1. Thus, we can answer
one of Suzuki’s questions ([11, Problem 4.6]): A 2-bridge knot must have at least 45
crossings in order to be strictly greater than three nontrivial knots. Interestingly,

Table 1. Values of cm for 1 ≤ m ≤ 14.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
cm 9 15 45 45 105 105 225 315 315 315 945 945 945 945
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the answer is also 45 crossings in order to be strictly greater than four nontrivial
knots. However, the required number of crossings for a 2-bridge knot to be strictly
greater than five distinct nontrivial knots jumps to 105. Thus, EK(45) = 4. More
generally, we have the following corollary to Theorem 1.

Corollary 2. The epimorphism number EK(cm) = m if and only if cm+1 > cm.

Proof. The torus knot T (2, cm) has crossing number cm and is clearly greater
than or equal to T (2, d) if d is a divisor of cm. Since cm has at least m distinct
proper divisors, it follows that EK(cm) ≥ m. On the other hand, if J is a 2-
bridge knot that is strictly greater than m + 1 nontrivial, 2-bridge knots, then by
Theorem 1, we have cr(J) ≥ cm+1. If cm+1 > cm, then EK(cm) < m + 1 and so
EK(cm) = m. To prove the converse, first note that for all m, we have cm+1 ≥ cm,
by the definition of cm. Arguing by contradiction, if EK(cm) = m and cm = cm+1,
then T (2, cm) = T (2, cm+1) implies that EK(cm) ≥ m + 1, a contradiction.

Theorem 1, its Corollary, and examples derived by a construction explained
in Sec. 4 allow us to extend Suzuki’s table of values of EK(n) for n ≤ 45. We
postpone this discussion until Sec. 4. Interestingly, EK is not an increasing or even
nondecreasing, function, as the values given in (1) show. However, we will prove
the following theorem in Sec. 4.

Theorem 3. For all N ≥ 3n ≥ 9, we have EK(N) ≥ EK(n).

From this, we obtain the following corollaries. In the first, the upper bound was
previously shown in [11].

Corollary 4. For all n ≥ 3, we have EK(�n
3 �) ≤ EK(n) ≤ �n−3

6 �, where �x�
denotes the largest integer less than or equal to x.

Corollary 5. The function EK can take on any given value at most finitely many
times.

Proof. Let k be any nonnegative integer. The torus knot T (2, ck+1) is strictly
greater than at least k + 1 nontrivial knots and hence EK(ck+1) ≥ k + 1. Now,
EK(m) ≥ k + 1 for all m ≥ 3ck+1. Hence, the value of k can only be taken on at
most finitely many times.

Note that Corollary 5 implies limn→∞ EK(n) = ∞.
If J ≥ K and J is a 2-bridge knot then, as has already been mentioned, K

must also be a 2-bridge knot [4]. Moreover, it is shown in this case (see [1 and
2]) that the epimorphism of fundamental groups is actually induced by a branched

fold map on the complements of the knots, as described by Ohtsuki et al. in [9].
It is not necessary in this paper to describe their construction. Instead, we rely
entirely on the results in [6], where a branched fold map between two 2-bridge knot
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Fig. 1. The 2-bridge knot defined by the sequence a1, a2, . . . , ak.

complements is described entirely in terms of the continued fraction expansions
associated with the two knots. This interpretation allows one to easily determine
all 2-bridge knots that are smaller than a given 2-bridge knot. In the next section,
we review and build on the notation and main results of [6]. In Sec. 3, we prove a
few necessary facts about the function cm and then prove Theorem 1. In Sec. 4, we
prove Theorem 3 and determine EK(n) for 31 ≤ n ≤ 45.

This paper grew out of an undergraduate research project completed by Joshua
Ocana Mercado that was directed by the third author and supported by the McNair
Scholars Program [10].

2. Two-Bridge Knots and Continued Fractions

Recall that a 2-bridge knot is one having a 4-plat diagram, as shown in Fig. 1. Here,
a box labeled ai denotes ai right-handed half-twists if ai > 0, and −ai left-handed
half-twists otherwise. Note that by using −ai half-twists when i is even produces
an alternating diagram when all the ai’s have the same sign. Such a diagram is
completely determined by the sequence a1, a2, . . . , ak.

If we form the continued fraction

p/q = [a1, a2, . . . , ak] =
1

a1 +
1

a2+
.. .

+
1
ak

then we may denote the knot as Kp/q. It is well known that Kp/q and Kp′/q′ are
ambient isotopics, as unoriented knots if and only if q′ = q and p′ ≡ p±1 (mod q)
(see [5] for details). In this paper, we will not distinguish between a knot Kp/q

and its mirror image K−p/q. Therefore, two 2-bridge knots Kp/q and Kp′/q′ are
equivalent if and only if q′ = q and either p′ ≡ p±1 (mod q) or p′ ≡ −p±1 (mod q).
It turns out that because the 4-plat diagram is of a knot, rather than a link, we
must have q odd. Furthermore, given any relatively prime pair of integers p and q,
with q odd, and −q < p < q, there is a 2-bridge knot with associated fraction p/q.

1950060-4
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Any reduced fraction p/q can be expressed as a continued fraction r +
[a1, a2, · · · , ak] in infinitely many ways. However, there are various schemes for pro-
ducing a canonical expansion. The following lemma is proven in [6].

Lemma 6. Let p
q be a reduced fraction with q odd. Then, we may express p/q

uniquely as
p

q
= r + [a1, a2, . . . , ak],

where each ai is a nonzero, even integer. Moreover, k must be even and p and r

have the same parity.

It is common to assume that each partial quotient ai is not zero; however, we can
easily make sense of continued fractions that use zeroes. A zero can be introduced
or deleted from a continued fraction as follows:

[. . . , ak−2, ak−1, 0, ak+1, ak+2, . . .] = [. . . , ak−2, ak−1 + ak+1, ak+2, . . .].

Using this property, every continued fraction with all even partial quotients can be
expanded so that each partial quotient is either −2, 0, or 2. For example, a partial
quotient of 6 would be expanded to 2, 0, 2, 0, 2 and −4 to −2, 0,−2. This leads us
to the following definition.

Definition 1. Let Seven be the set of all integer vectors (a1, a2, . . . , ak) such that

(1) k is even,
(2) each ai ∈ {−2, 0, 2},
(3) a1 
= 0 and ak 
= 0,
(4) if ai = 0 then ai−1 = ai+1 
= 0.

We call Seven the set of expanded even vectors of even length.

We may define an equivalence relation on Seven by declaring that a,b ∈ Seven are
equivalent if a = ±b or a = ±b−1, where −b is obtained by negating every entry
in b, and b−1 is b read backwards. We denote the equivalence class of a as â and
the set of all equivalence classes as Ŝeven. The following proposition appears in [6].

Proposition 7. If Φ(â) is defined to be the knot Kp/q where p/q = [a], then Φ is
a bijection between Ŝeven and the set of equivalence classes of 2-bridge knots.

We will make use of the following two results from [11]. If a ∈ Seven, let �(a)
denote the length of a and cr(a) the crossing number of Φ(â).

Theorem 8 (Suzuki). Suppose a ∈ Seven. Then

(1) the crossing number of Φ(â) is equal to the sum of the absolute values of the
components of a minus the number of sign changes in a, and

(2) �(a) + 1 ≤ cr(a) ≤ 2�(a).

Note that the second part of Theorem 8 follows immediately from the first part.
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The partial order on 2-bridge knots can be described entirely in terms of vectors
in Seven. To do so, we introduce some notation. First, if g and h are vectors, we
denote their concatenation by (g,h). Next, if c is an even integer, we define the
vector c to be (0) if c = 0 and otherwise as ±(2, 0, 2, 0, . . . , 2), where the sum of all
the entries is c. Ohtsuki et al. show that J ≥ K, if and only if there exist vectors a
and b, representing the knots J and K, respectively, such that of a can be parsed
with respect to b, which means that a can be written as

a = (b, c1, ε2b−1, c2, ε3b, c3, . . . , εnb), (1)

where each εi is ±1 and each cj is an even integer. Moreover, we require that if
ci = 0, then εi = εi+1. This statement does not require that a and b are in Seven. The
advantage of passing to expanded even vectors of even length is that parsings cannot
be hidden by using the wrong vector. For example, the knot K38/85 is represented by
the vector a = (2, 4, 4, 2) which does not parse with respect to any vector. But, using
a′ = (2, 2, 0, 2, 2, 0, 2, 2) ∈ Seven instead, reveals that K38/85 ≥ K2/5 = Φ((2, 2)).

In (2), the vectors ci are called b-connectors and separate the b-tiles εkb(−1)k+1
.

Note that n must be odd and we say that the parsing is an n-fold parsing. (See
[6, 9] for more details.)

In this paper, we will be particularly interested in vectors of the form

v = (a,m, a−1,n, a,m, a−1,n, . . . ,a), (2)

where a ∈ Seven and m and n are even integers. We call such a vector two-connector
alternating and will denote it as a2p+1

m,n , where a appears 2p+1 times. If a is empty,
then we prefer to write a2p+1

m,n as (m,n)p instead. Note that when a is nonempty,
v parses with respect to a in a special way — the only connectors are m and n
which alternate in the parsing, and the a-tiles are never negated. If v is a two-
connector alternating vector, it may be possible to write v in the form given in (3)
in more than one way. For example, if a = (2, 2), b = (2, 2, 0, 2, 2, 4, 2, 2) and
c = (2, 2, 0, 2, 2, 4, 2, 2, 0, 2, 2, 4, 2, 2), then

a15
0,4 = b5

0,4 = c3
0,4.

Note that b = a3
0,4 and that c = a5

0,4. Moreover, it is easy to see that

(u2p+1
m,n )2q+1

m,n = u(2p+1)(2q+1)
m,n ,

for all vectors u and even integers m and n. The following result is proven in [6].

Theorem 9 ([6]). If v can be written in the form v = a2q+1
m,n , then m and n are

unique. Moreover, there is a unique shortest vector g for which v = g2P+1
m,n and

a = g2p+1
m,n where 2P + 1 = (2p + 1)(2q + 1).

When a two-connector alternating vector is expressed as g2P+1
m,n , where g is of

minimal length, we say that the expression g2P+1
m,n is generated by g.

1950060-6
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The main result of [6] is the following.

Theorem 10 ([6]). If c parses with respect to ai for all 1 ≤ i ≤ m, and ai does
not parse with respect to aj if i 
= j (in other words, the knots Φ(ai) are pairwise
incomparable), then there exists g ∈ Seven, possibly empty, even integers r and s,

and integers pi such that ai = g2pi+1
r,s for each i. Moreover, if 2P + 1 is the least

common multiple of the set {2pi + 1}m
i=1, then c′ = g2P+1

r,s parses with respect to
each ai and no vector that parses with respect to each ai is shorter than c′.

Note that because of Theorem 9, we may assume in Theorem 10, that g generates
each of the expressions g2P+1

r,s and g2pi+1
r,s for 1 ≤ i ≤ m.

Lemma 11. (1) If P ∈ N, m and n are even integers, g is nonempty, and g2P+1
m,n

is generated by g, then g2P+1
m,n parses with respect to b if and only if either

b = g2q+1
m,n and 2q + 1 divides 2P + 1, or g parses with respect to b.

(2) If m, n ∈ 2Z−{0}, p ∈ N, and b ∈ Seven, then (m,n)p d-fold parses with respect
to b if and only if b = (m,n)q and 2p + 1 = d(2q + 1).

Proof. To prove item 1, suppose that g and b are incomparable, that is, neither
parses with respect to the other. By [6], it follows that g = f2p+1

j,k and b = f2q+1
j,k for

some vector f ∈ Seven and even integers j and k. Because g2P+1
m,n parses with respect

to b, and yet g and b are incomparable, we have that �(g) 
= �(b). Assume that
�(g) < �(b). Comparing the beginning and end of the vector g2P+1

m,n to the first and
last b-tile in its parsing with respect to b gives that j = m and k = n. But now g
is not a generator for the expression g2P+1

m,n . If instead, �(g) > �(b), then again we
obtain j = m and k = n and again reach a contradiction. Thus, g and b must be
comparable.

If b parses with respect to g, then because g2P+1
m,n parses with respect to b, it

follows that b = g2q+1
m,n and 2q +1 divides 2P +1. If not, then g parses with respect

to b, as desired.
Item 2 is simply the restatement of item 1 in the case where g is empty.

3. Proof of the Main Result

In this section, we begin with a few results regarding the length of a vector and the
function cm before proving Theorem 1. If a admits a d-fold parsing with respect
to b, then it is a simple matter to compare their lengths and obtain the following
result.

Lemma 12. Suppose that a,b ∈ Seven and that a admits a d-fold parsing with
respect to b. (Note that this implies d is odd). Then, �(a) ≥ d �(b) + d − 1.

1950060-7
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Proof. Suppose that

a = (b,m1, ε2b−1,m2, . . . ,md−1, εdb)

where each mi is even. Since each connector mi has length at least 1, the result
follows easily.

Definition 2. For each natural number m, define cm to be the smallest, positive,
odd integer having at least m positive, nontrivial, proper divisors. If m = 0, we
define c0 = 3 for convenience.

We will need the following observations about cm.

Lemma 13. (1) cm ≤ cm+1 for all m ≥ 0.
(2) cm ≤ 3cm−1 for all m ≥ 1.
(3) For all natural numbers r and s, crcs ≥ cr+s+1.

Proof. If a positive odd integer has at least m + 1 proper divisors, then clearly it
has at least m such. Hence, cm ≤ cm+1 for all m > 0. It is easy to see that c1 = 9,
so the result is also true when m = 0.

Note that defining c0 = 3 makes the second assertion a special case of the
third, which we will now prove. If the prime factorization of n is n = pk1

1 pk2
2 · · · pkj

j

then the total number of divisors of n is
∏j

i=1(ki + 1). Because this depends
only on the exponents k1, k2, . . . , kj , and because cm is the smallest possible,
positive, odd integer with at least m positive, nontrivial, proper divisors, we
see that the prime factorization of any cm must employ consecutive odd primes
starting at 3.

Let r and s be any nonnegative integers and suppose the prime factorizations
of cr and cs are

cr = 3a15a2 · · · paj

j and cs = 3b15b2 · · · pbk

k .

Without loss of generality, we may assume that k ≥ j. Now, the total number of
divisors of cr cs is

j∏
i=1

(ai + bi + 1)
k∏

i=j+1

(bi + 1),

where the product from j+1 to k is replaced with 1 if j = k. When
∏j

i=1(ai+bi+1)
is multiplied out, there will be 3j terms corresponding to the different ways in which
one may choose one of the three summands from each factor. The terms can be
placed in three sets, R, S, and T as follows. The set R consists of those terms where
either ai or 1 is chosen from each factor, the set S consists of those terms where
either bi or 1 is chosen from each factor, and the set T are all the remaining terms.
The sets R and S have one term in common, namely 1 = 1 · 1 · · · · · 1. Let R̄, S̄

and T̄ be the sums of all the terms in each of the sets R, S, and T , respectively.

1950060-8
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Thus,
j∏

i=1

(ai + bi + 1) = R̄ + S̄ − 1 + T̄ .

But R̄ =
∏j

i=1(ai + 1) and S̄ =
∏j

i=1(bi + 1). Thus, the number of divisors of crcs

is at least

(r + 2 + s + 2 − 1 + T̄ )
k∏

i=j+1

(bi + 1) ≥ r + s + 3.

Hence, crcs ≥ cr+s+1.

We are now ready to prove our main result

Theorem 1. Suppose J is a 2-bridge knot which is strictly greater than m dis-
tinct nontrivial knots. Then, J has at least cm crossings, where cm is the smallest,
positive, odd integer with at least m positive, nontrivial, proper divisors.

Proof. Suppose J = Φ(â) is strictly greater than m distinct nontrivial knots
K1, K2, . . . , Km. Because each Ki must be 2-bridge, there exists vectors bi ∈ Seven

with Ki = Φ(b̂i) for 1 ≤ i ≤ m. We will prove that �(a) ≥ cm − 1 which when
combined with Theorem 8, will give the desired result.

We proceed by induction on m. If m = 1 and a admits a d-fold parsing with
respect to b1, then d is at least 3 and we have �(a) ≥ 3�(b1)+2 ≥ 3 ·2+2 ≥ c1−1.

Assuming the result is true in the case of fewer than m knots, suppose now that
J is greater than m distinct nontrivial knots {K1, K2, . . . , Km}. Let A be the set
of all Ki such that there does not exist Kj with J > Kj > Ki.

Case 1: Suppose A contains only one knot, say K1. By our inductive hypothesis,
�(b1) ≥ cm−1−1 and now �(a) ≥ 3�(b1)+2 ≥ 3(cm−1−1)+2 ≥ 3cm−1−1 ≥ cm−1,
using Lemma 13.

Case 2: Suppose A contains two or more knots, say K1, K2, . . . , Kn with n > 1. It
must be the case that K1, K2, . . . , Kn are pairwise incomparable. It now follows from
Theorem 10 that there exists g ∈ Seven, possibly empty such that Ki = Φ(g2pi+1

r,s )
for some even integers r and s and nonnegative integers pi for 1 ≤ i ≤ n. Because
these knots are incomparable, it follows that 2pi +1 | 2pj +1 if and only if i = j. Let
2P + 1 = l cm(2p1 + 1, 2p2 + 1, . . . , 2pn + 1) and a′ = g2P+1

r,s . If g does not generate
the expression g2P+1

r,s , then we may pass to the unique shortest vector that does.
Hence, we may assume that g generates each of the expressions under consideration.
It also follows from Theorem 10 that every vector in Seven that parses with respect
to g2pi+1

r,s for 1 ≤ i ≤ n is at least as long as a′.
We now consider two cases: g is empty or not. Suppose first that g is empty.

Rewriting the vectors under consideration, we have Ki = Φ((r, s)pi) for 1 ≤ i ≤ n

and we let a′ = (r, s)P . Furthermore, a′ also parses with respect to every bi for

1950060-9
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n < i ≤ m. By Lemma 11, we conclude that bi = (r, s)pi for n < i ≤ m and
that 2pi + 1 | 2P + 1. The integer 2P + 1 now has m proper factors, 2p1 + 1, 2p2 +
1, . . . , 2pm + 1, and hence 2P + 1 ≥ cm. Thus,

�(a) ≥ �(a′) ≥ �((r, s)P ) ≥ P (�(r) + �(s)) ≥ 2P ≥ cm − 1.

Alternatively, suppose that g is nonempty. As before, g2P+1
r,s parses with respect

to each bi for n < i ≤ m. By Lemma 11, we conclude that for each i > n, either
bi = g2pi+1

r,s or that g parses with respect to bi. Assume that the former is true
for K1, K2, . . . , Kt where n ≤ t ≤ m and the latter is true for Kt+1, . . . , Km. Of
course, if t = m, the latter set is empty. Note that Φ(g) > Ki for all i > t. Hence,
by induction, �(g) ≥ cm−t − 1. Also, 2p1 + 1, 2p2 + 1, . . . , 2pt + 1 give at least t− 1
nontrivial, proper factors of 2P +1 because at most one of them might be 1. Hence,
2P + 1 ≥ ct−1. We now have

�(a) ≥ �(a′)

≥ �(g2P+1
r,s )

≥ (2P + 1)�(g) + P (�(r) + �(s))

≥ (2P + 1)�(g) + 2P

≥ (2P + 1)(�(g) + 1) − 1

≥ ct−1cm−t − 1

≥ cm − 1.

4. Additional Values of EK(n)

We begin by determining EK(n) for n < 45. One way to proceed would be to exam-
ine every 2-bridge knot with a given crossing number (by means of computer) to
determine the maximum number of strictly smaller nontrivial 2-bridge knots. Pre-
sumably, this is what Suzuki did to produce the values in (1). We did this for n ≤ 29
and obtained the same values. Unfortunately, for n > 29, the time required to exam-
ine every 2-bridge knot with crossing number n makes this approach impractical.

However, Theorem 1 implies that EK(n) < 3 for n < 45. Thus, for each n < 45,
if we simply find one 2-bridge knot whose crossing number is n and which is strictly
greater than two other 2-bridge knots, we will have shown that EK(n) = 2. This
approach allows us to establish the following theorem, which extends the values of
EK(n) given in (1).

Theorem 2. If 26 < n < 45, then EK(n) = 2.

Proof. In Table 2, we list one or more 2-bridge knots for each crossing number n

from 27 to 44. It is easy to check that each of these knots is strictly greater than
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Table 2. Examples showing EK(n) = 2 for 26 < n < 45.

n p/q p/q n p/q p/q

27 1/27 35 1/35
28 17/315 36 29/595
29 35/621 19/351 37 349/5075 91/1647
30 577/5499 35/639 38 107/1935
31 1189/10395 53/945 39 125/2241
32 883/8415 40 2107/20079
33 1/33 1801/15903 41 127/2295 4249/37935
34 23/495 42 143/2583
35 461/5313 43 161/2889

44 2719/25911

two nontrivial knots by first finding the expanded even sequence and then checking
that it parses two different ways. Because EK(n) cannot be 3 in this range, it must
therefore, be equal to 2.

The knots given in Table 2 appear in six sets, with each set surrounded by a
box. In each set, any one of the entries can be used to produce the other entries
in the set by means of a construction we call “negating between seams,” which we
describe in the next paragraph. Three of the six sets were found by considering the
(2, 27), (2, 33) and (2, 35)-torus knots. The other three sets were found by searching
2-bridge knots of a given crossing number until one was found whose expanded even
sequence parsed in two ways. That knot was then used to generate the other knots
in that box.

To describe this construction, suppose that a,b, and c are all in Seven and that c
parses with respect to both a and b. A seam of c is a place to cut c into two pieces
so that with respect to each parsing, each piece is composed of a whole number
of tiles and connectors. We illustrate the situation using T (2, 27) = K1/27. The
expanded even sequence for this knot, c, parses with respect to both a and b as

c=

a︷ ︸︸ ︷
2,−2, 2,

a−1︷ ︸︸ ︷
−2, 2,−2,

a︷ ︸︸ ︷
2,−2︸ ︷︷ ︸

b

, 2,

a−1︷ ︸︸ ︷
−2, 2,−2,

a︷ ︸︸ ︷
2,−2, 2,

a−1︷ ︸︸ ︷
−2, 2︸ ︷︷ ︸

b−1

,−2,

a︷ ︸︸ ︷
2,−2, 2,

a−1︷ ︸︸ ︷
−2, 2,−2,

a︷ ︸︸ ︷
2,−2︸ ︷︷ ︸

b

There are four seams, located at positions 8, 9, 17, and 18, which cut c into five
pieces. Between any pair of seams, each parsing consists of a whole number of tiles
and connectors. Thus, if we negate the portion of c that lies between any two seams
(or before the first seam or after the last seam) to obtain a new vector d, then d will
still parse with respect to both a and b. When going from c to d, we will not change
the sum of the absolute values of the entries of the vector, but the number of sign
changes may change. Thus, by Theorem 8, the crossing number of Φ(d̂) will differ
from Φ(ĉ) by the change in the number of sign changes. In this example, the sum
of the absolute values of the components of c is 52 and the number of sign changes
is 25, which is the most possible. Hence, by Theorem 8, the crossing number of
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this 2-bridge knot is 27. Suppose d is obtained from c by negating everything after
the last seam. This will give the knot K17/315 with crossing number 52 − 25 = 28.
Similarly, negating between the third and fourth seams gives K35/621, between the
second and third and after the fourth gives K577/5499, and lastly, between the first
and second and between the third and fourth gives K1189/10395.

Finally, we can comment on a few values of EK(n) for 45 ≤ n ≤ 105. Corollary 2
implies that EK(45) = 4 and that EK(105) = 6. The (2, 63)-torus knot is strictly
greater than four torus knots and hence EK(63) = 4. Using the (2, 45) and (2, 63)-
torus knots, negating between seams give examples that show that EK(n) = 3 or 4
for n = 46, 47, 48, 49, 64, 65, 66, 67.

We close with a proof of Theorem 3.

Theorem 3. For all N ≥ 3n ≥ 9, we have EK(N) ≥ EK(n).

Proof. Let n be any natural number and c a vector that has crossing number n

and parses EK(n) ways. We will use c to build a vector d that has any crossing
number N ≥ 3n and which also parses in as many ways as c. This will give that
EK(N) ≥ EK(n).

If N − 3n is even, choose m so that |m| = N − 3n and, if not zero, m has the
same sign as the last entry of c. Let d = (c,m, c−1, 0, c). Using Theorem 8, we
find that the crossing number of d is 3n + |m| = N . If N − 3n is odd, then let
m = N − 3n + 1 and d = (c,m,−c−1, 0,−c). Theorem 8 now implies the crossing
number of d is 3n + m − 1 = N . In either case, if c parses with respect to a, then
so does d.
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