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This paper investigates noise attenuation problems for systems with unmodelled dynamics and unknown noise characteristics.
A unique methodology is introduced that employs signal estimation in one phase, followed by control design for noise
rejection. The methodology enjoys certain advantages in its simple control design process, accommodation of unmodelled
dynamics, and non-conservative noise rejection performance. Under mild information on unmodelled dynamics, we first
derive robust performance bounds on noise attenuation with respect to unmodelled dynamics without noise estimation
errors. Then more general results are presented for systems that are subject to both stochastic signal estimation errors and
unmodelled dynamics. Examples are also presented to demonstrate our findings.

Keywords: noise attenuation; unmodelled dynamics; signal estimation

1. Introduction

This paper investigates noise attenuation problems for sys-
tems with unmodelled dynamics, which are central in many
feedback control problems. For instance, in regulation prob-
lems, output deviations from the set values must be con-
trolled to ensure control qualities. This is evidenced by
motor speed control, voltage regulation for high-precision
sensing devices, thickness control in pulp-paper industry,
satellite position control for global monitoring systems,
doping control in semiconductor industry, etc.

Fundamental research on noise attenuation problems
can be traced back to the 1940s when extensive research
was conducted and fundamental progress was made, espe-
cially on the well-known Wiener filters (see Wiener, 1949)
in the continuous-time domain and Kolmogorov filters in
the discrete-time domain. Later, such filters were further
extended to Kalman filters by employing state space model
structures (see Anderson & Moore, 1979), and to more
general recursive structures in adaptive filters and stochas-
tic approximation algorithms (Kushner & Yin, 2003). Noise
attenuation in a feedback control setting is inherently a non-
linear structure since operator inverses are involved. How-
ever, by employing the Youla parametrisation (see Youla,
Jabri, & Bongiorno, 1976a), all stabilising controllers in
linear time invariant (LTI) systems are parametrised by a
stable operator in an affine structure; as such the design
problem is reduced to solutions to an integral equation.
Consequently, the design problem can be solved by using
the Wiener–Hopf method, especially in the frequency do-

∗
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main (see Youla et al., 1976a; Youla, Jabri, & Bongiorno,
1976b); see also related works of Nguyen, Veselya, and
Rosinova (2013)and Zhao, Liu, and Wang (2013)). Usu-
ally, these classical filtering theories do not consider model
uncertainties. In that sense, they are not robust.

Robust noise attenuation problems drew intensive at-
tention in the 1980s in the framework of robust control and
H∞ sensitivity minimisation (Zames, 1981). It is in that
framework the unmodelled dynamics have become a key
component in noise attenuation problems. H∞ sensitivity
optimisation relies on noise characterisation information.
That information is described as a weighting function in
its minimisation problem. When this information is not
available, modified methods must be developed. In addi-
tion, computational complexity in H∞ is higher than the
traditional Wiener filters and Kalman filters, which are pro-
jection operators and easy to compute. Also, due to its
worst-case design foundation, H∞ designs are often con-
servative since they select controllers that attenuate all pos-
sible worst-case noises in a large class, rather than a special
noise as in Wiener and Kalman filters.

This paper introduces a methodology to address some
essential issues from these approaches. First, the process
employs noise estimation so that noise characteristics do
not need to be predetermined. The estimates are then used
in control design to minimise output mean-square errors.
Since estimated noises are used in the design process, its
algorithms are of least-squares (LS) structures and, hence,
are computationally very efficient. On the other hand, to

C© 2014 Taylor & Francis
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accommodate unmodelled dynamics, we analyse and de-
rive error bounds due to unmodelled dynamics and noise
estimation errors. As such, robustness is embedded in our
methodology.

In some limited aspects, this paper is related to sig-
nal estimation, system identification, and adaptive controls,
which have received considerable attention in the control
and systems theory literature. There is a vast literature;
see for example, Chen and Guo (1991), He, Wang, and
Yin (2013), Ljung (1987), Milanese and Belforte (1982),
Milanese and Vicino (1991), Milanese and Vicino (1993),
Poolla and Tikku (1994), Sayeed (2003), Wiener (1949),
Wang, Yin, Zhang, and Zhao (2010), Zames (1981), and
references therein. Consistency of parameter estimates and
optimality of adaptive design have been well studied. Many
important issues have been investigated. In reference to
these developments, this paper examines the problems from
a different angle. We focus on noise attenuation for systems
involving stochastic noise and unmodelled dynamics. Our
approach includes both worst-case analysis that is of truly
deterministic feature as well as stochastic analysis for noisy
systems.

The rest of the paper is arranged as follows. Section 2
describes the control design process for optimal noise at-
tenuation. The well-known Youla parametrisation (Youla
et al., 1976a) is employed to transform the feedback design
problem into a signal matching problem. A two-phase de-
sign process is introduced in which noise estimation is fol-
lowed by a control design that is much simplified from H∞

minimisation. Section 3 focuses on noise-free systems that
involve unmodelled dynamics. Here the worst-case analysis
techniques are used to derive explicit bounds on the impact
of unmodelled dynamics. These results are of value for
selecting model orders to ensure noise attenuation perfor-
mance requirements. Section 4 expands to more complex
system environments that involve both unmodelled dynam-
ics and signal estimation errors. Error bounds are derived.
Simulation examples are presented to demonstrate the is-
sues discussed in this paper. For conciseness and clarity,
more extensive proofs are placed in an appendix at the end
of the paper. Finally, Section 5 summarises the main find-
ings and highlights a few open issues.

2. Optimal noise attenuation: controller
parametrisation and optimisation

We begin with a regulation problem under the LTI plant P
and controller F in Figure 1. For convenience of algorithm
development, we will work in the discrete-time domain.
The output x is to be controlled to follow the constant refer-
ence value xr. The system output is subjected to stochastic
disturbance d. Since the system is LTI, the output can be

Figure 1. The original regulation problem.

expressed in its transfer function form as

X(z) = F (z)P (z)

1 + F (z)P (z)
Xr (z) + 1

1 + F (z)P (z)
D(z)

= U (z) + 1

1 + F (z)P (z)
D(z),

where the systems are represented by their z-transfer func-
tions and the signals by their z transforms, and U (z) =

F (z)P (z)
1+F (z)P (z)Xr (z). x is measured. Denote yk = xk − xr. Since
xk is measured and xr is known, yk is also a measured signal.
Then,

Y (z) = (U (z) − Xr (z)) + 1

1 + F (z)P (z)
D(z).

The first term U(z) − Xr(z) is deterministic and the second
term is stochastic.

If the controller F is stabilising and the system is at least
of type 1 (including at least one integrator in the forward
path), then the first term converges to zero exponentially
fast. Since this is a very fast transient and our interest here
is in noise rejection in a persistent sense, we will mandate
a stabilising controller in our design and then ignore this
term in our analysis on noise attenuation. As a result, we
will focus on

Y (z) = 1

1 + F (z)P (z)
D(z),

which can be represented by the diagram in Figure 2. Our
goal is to attenuate the impact of the noise d on the output
y. For simplicity, assume that P is an exponentially stable
system.

Since the transfer function P(z) is exponentially stable,
we may represent it by a finite impulse response (FIR) filter

Figure 2. A basic feedback configuration for noise attenuation.
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P0(z) (the modelled part), plus an unmodelled dynamics δ,

P (z) = P0(z) + δ(z). (1)

More precisely,

P (z) = p0 + p1z
−1 + · · · + pnz

−n + δ(z), (2)

where δ(z) = ∑∞
j=n+1 pjz

−j and
∑∞

j=n+1 |pj | ≤ εn. Due
to exponential stability, |εn| ≤ κλn for some κ > 0 and
0 < λ < 1, namely, it is an exponentially decaying function
with respect to n. An immediate implication of this is that
for a given required bound ε on the modelling error, a
model order n (model complexity) can be predetermined
such that εn ≤ ε. In our subsequent results, all bounds due
to unmodelled dynamics should be interpreted as a function
of model complexity n.

2.1. Parametrisation of stabilising controllers

The following parametrisation of stabilising controllers is
the Youla parametrisation (Youla et al., 1976a). In the spe-
cial case of stable plants, it is called Q parametrisation
(Francis, 1987; Francis & Zames, 1984).

Let S represents the space of exponentially stable sys-
tems. For internal stability, the closed-loop systems,

1

1 + FP
,

F

1 + FP
,

P

1 + FP
, and

FP

1 + FP

must all be (exponentially) stable, that is, belong to S.
Denote

Q = F

1 + FP
∈ S. (3)

Since P ∈ S, if Q ∈ S, we have

PQ = FP

1 + FP
∈ S

⇒ 1

1 + FP
= 1 − FP

1 + FP
∈ S

⇒ P

1 + FP
∈ S. (4)

Thus, the stability requirement is satisfied if we choose
Q ∈ S, and design

F = Q

1 − QP
. (5)

This implies that F in Figure 2 can be implemented by
using this Q parametrisation as shown in Figure 3. Note
that a positive feedback is used due to the presence of 1 −
QP in the expression for F.

Figure 3. Feedback controller using the Q parametrisation.

Let Y(z) and D(z) be the Laplace transforms of the
output y and disturbance d, respectively. Then we have

Y (z) = 1

1 + FP
D(z) =

(
1 − FP

1 + FP

)
D(z)

= (1 − QP ) D(z).

Let W(z) = P(z)D(z). Then Y(z) = D(z) − QW(z). From

D(z) = d0 + d1z
−1 + · · · ; W (z) = w0 + w1z

−1 + · · · ,

we obtain the recursive representation,

yk = dk − Q ∗ wk.

Suppose that Q is an FIR of order m. Then

yk = dk − (q0wk + q1wk−1 + · · · + qmwk−m)

= dk − [wk,wk−1, . . . , wk−m][q0, q1, . . . , qm]′

= dk − φ′
kθ, (6)

with φ′
k = [wk,wk−1, . . . , wk−m]. Note that

wk =
∞∑

j=0

pjdk−j

=
n∑

j=0

pjdk−j +
∞∑

j=n+1

pjdk−j

= [dk, dk−1, . . . , dk−n]p + [dk−(n+1), . . .]p
∗

= ψ ′
kp + ψ̃ ′

kp
∗, (7)

where p = [p0, . . . , pn]′ represents the modelled part
of the plant and p∗ = [pn + 1, pn + 2, . . .]′ represents
the unmodelled dynamics, and ψ ′

k = [dk, dk−1, . . . , dk−n],
ψ̃ ′

k = [dk−(n+1), . . .].

Assumption 1: (1) dk is estimated by d̂k = dk + ek . ek is
stationary, Eek = 0, Ee2

k ≤ σ 2 < ∞. (2) The modelled part
p is known. The unmodelled dynamics p∗ has a uniform
norm bound εn.
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Under Assumption 1, we have

ψ̂ ′
k = [d̂k, d̂k−1, . . . , d̂k−n] = [dk + ek, dk−1

+ ek−1, . . . , dk−n + ek−n] = ψ ′
k + ξ ′

k,

where ξ ′
k = [ek, ek−1, . . . , ek−n]. It follows that

wk = ψ ′
kp + ψ̃ ′

kp
∗ = ψ̂ ′

kp − ξ ′
kp + ψ̃ ′

kp
∗ = ŵk + ε̃k,

(8)

where

ŵk = ψ̂ ′
kp, ε̃k = −ξ ′

kp + ψ̃ ′
kp

∗.

Consequently,

yk = dk − [wk,wk−1, . . . , wk−m][q0, q1, . . . , qm]′

= d̂k − ek − [ŵk + ε̃k, ŵk−1 + ε̃k−1, . . . , ŵk−m + ε̃k−m]

× [q0, q1, . . . , qm]′

= d̂k − ek − φ̂′
kθ − ζ ′

kθ,

where φ̂′
k = [ŵk, ŵk−1, . . . , ŵk−m] and ζ ′

k = [̃εk, ε̃k−1,

. . . , ε̃k−m]. It is observed that ζ k is affected by both the
unmodelled dynamics and signal estimation errors.

For estimation, after N observations the available re-
gression data are

D̂N =

⎡
⎢⎣

d̂1
...

d̂N

⎤
⎥⎦ ; �̂N =

⎡
⎢⎣

φ̂′
1
...

φ̂′
N

⎤
⎥⎦ .

In a nominal-system-based design procedure, the control
parameter Q is then designed by

θN = (
�̂′

N�̂N

)−1
�̂′

ND̂N .

If we define

�N =

⎡
⎢⎣

φ′
1
...

φ′
N

⎤
⎥⎦ ; 
N =

⎡
⎢⎣

ζ ′
1
...

ζ ′
N

⎤
⎥⎦ ; EN =

⎡
⎢⎣

e1
...

eN

⎤
⎥⎦ ,

then

�N = �̂N + 
N (9)

and

YN = D̂N − EN − �̂Nθ − 
Nθ.

These will be useful for error analysis.

2.2. Two-phase mechanism for signal estimation
and noise rejection

In this section, we discuss the signal estimation aspect of
our noise attenuation scheme, which is based on sample
paths. This idea differs from the classical Wiener filter de-
sign (Wiener, 1949) or H∞ sensitivity minimisation (Doyle,
Francis, & Tannenbaum, 1990; Zames, 1981). We first elab-
orate on some aspects of available signals for control design.
Although yk is measured, usually dk is not available. How-
ever, the following observations will explain why certain
signals can be approximately extracted for control design.

We note that after a controller F is designed and im-
plemented, if the design is successful the output yk will be
small due to the rejection of disturbance by the feedback
system. Under this environment, yk contains nearly no in-
formation that can be used for control design. This phase
will be called ‘noise rejection phase’.

However, suppose that the disturbance dk is stationary
and its power spectrum density is limited in certain fre-
quency bands. As a result, there exists an open-loop causal
and stable filter H(z) such that H(z)D(z) ≈ 0 in a certain
sense. H(z) is an annihilating filter for dk. It follows that if
such a filter is inserted into the feedback loop in Figure 2
for a period of time, shown in Figure 4, the plant output vk

will be

V (z) = FP

1 + FPH
HD ≈ 0.

It follows that during that period, the signal dk can be esti-
mated by

yk ≈ dk.

Consequently, in the following control design, we should
use the available signal,

yk = d̂k = dk + ek, (10)

where d̂k is an estimate of dk with estimation error ek. This
phase will be called ‘signal estimation phase’.

Figure 4. Modified feedback configuration by using annihilating
filters for signal estimation.
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Figure 5. Using open-loop control for signal estimation when
the plant is stable.

The approach of using annihilating filters can poten-
tially work for unstable plants. On the other hand, for stable
plants, a simple and general open-loop scheme works for
the signal estimation phase. Suppose that P(z) is stable.
Let the direct current (DC) gain of the plant be K = P(1).
Then, by switching to the open-loop control illustrated in
Figure 5, the actual output vk of the plant (which is, how-
ever, not known) is a deterministic signal and converges to
xr exponentially. Consequently, the measured yk becomes
dk after an exponentially fast convergent transient. This ap-
proach does not require any prior information on dk. In this
case, we also have yk = d̂k = dk + ek .

In this two-phase approach illustrated in Figure 6, con-
trol design is performed during the signal estimation phase.
As a result, in the following algorithms, d̂k will be available
in control design. The impact of signal estimation error ek

on noise rejection will be analysed.

Example 1: For an example of this approach, we consider
a plant with transfer function, before sampling, 1

s+2 . The

Figure 6. The two-phase design.

DC gain of this plant is 0.5. As a result, the open-loop
controller is K = 2. Suppose that the disturbance is dk =
aksin (200τk), where τ is the sampling interval and τ =
0.001. ak is independent and identically distributed (i.i.d.)
and uniformly distributed in [ − 5, 5]. Now, in the first two
seconds, we run this system open loop. Then in t ∈ [2, 10],
we switch on the feedback controller which is a high-gain
feedback F = 20, 000. The trajectories of the disturbance
dk and the targeted yk are shown in Figure 7 .

2.3. Noise attenuation problems

We will introduce the following two design procedures.

(1) Nominal design procedure: Suppose that dk is un-
known but can be estimated by d̂k with error ek.

Figure 7. The example on the two-phase design.
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The nominal plant P0 is known. The unmodelled
dynamics � 
= 0 and its norm bound is εn. The
control parameter Q is designed by

θN = (�̂′
N�̂N )−1�̂′

ND̂N . (11)

(2) Robust design procedure: As an alternative de-
sign, we will also consider a modified design for Q.
In Equation (11), Q is designed on the basis of

min
Q

(D̂N − �̂Nθ )′(D̂N − �̂Nθ ).

Here, the design criterion is modified to

min
Q

max
�∈�

(
D̂N−(�̂N+�)θ

)′ (
D̂N−(�̂N+�)θ

)
,

where � is the bounded set for 
N.

Remark 1: We now comment on our approaches.

(1) This problem involves both worst-case and stochas-
tic uncertainties and, hence, is of hybrid type. The
error bounds derived in the paper reflect this nature
with both worst-case components and probability
bounds.

(2) Noise attenuation and sensitivity minimisation
problems have been very extensively studied in
the past, most notably in classical filter designs of
Wiener–Hopf types and more advanced robust con-
trol in H∞ and other related areas. To understand
our approach, we point out that Wiener filters are
based on a fixed and known noise spectrum, and
the filter is optimally designed on the basis of this
prior information. To overcome this drawback, the
H∞ sensitivity minimisation aims to reject robustly
a class of noises with the prior knowledge of their
spectrum bounds. While the Wiener filter is an or-
thogonal projection and hence easy to design, H∞

design is more involved. Also, by targeting a class
of noises, the H∞ design becomes naturally more
conservative.
Our approach does not require prior knowledge on
the noise spectrum. By using an open-loop control
for a small period of time, we observe the noise
partially and temporarily. Then the controller is de-
signed based on the actual noise. Since the noise
is stationary, such designed controller can achieve
targeted noise rejection for the specific noise class
and, therefore, less conservative than the H∞ de-
sign. By using the signal-based least-squares de-
sign, it is computationally much easier than the
H∞ design. In comparison to the Wiener filter, our
approach does not require prior knowledge on the
noise spectrum. Rather, the noise information is ac-

quired in real time and used immediately in control
design.

(3) Naturally, one may suggest the following two-step
design. When the noise is partially observed, one
can first estimate the noise spectrum. Then in the
second step, one designs a Wiener filter on the ba-
sis of the estimated spectrum. This approach can
be viewed as an ‘indirect’ design to borrow the
term from adaptive control. This approach is, how-
ever, more cumbersome than our approach. Our
approach may be viewed as a ‘direct’ design in
which the available data are used directly in control
design.

(4) Our design is a least-squares type of algorithm. As
a result, it is simple and easily recursified. Further-
more, a rich literature on LS algorithms will support
further extension of our approach to accommodate
other practical issues in noise rejection problems.

(5) For performance analysis, we distinguish the fol-
lowing two stages. In the learning stage (in the sig-
nal estimation phase), the signal is estimated and
controller is designed. In this case, d̂k is known
approximately and used in design. In the controller
execution phase, yk is the output and the disturbance
will be different from the first case but will have
the same stochastic properties as in the first phase.
Consequently, the designed controller will achieve
noise attenuation with desirable performance.

3. Unmodelled dynamics and robust noise
attenuation

In this section, we analyse impact of unmodelled dynam-
ics and investigate suitable control design that can attenu-
ate noise effects on the system output. For clarity, we will
concentrate on unmodelled dynamics only in this section.
Hence, ek ≡ 0 in this section. As a result, some previous
expressions are simplified to

d̃k = dk, ψ̂
′
k = ψ ′

k = [dk, . . . , dk−n], ξ ′
k = 0,

wk = ψ ′
kp + ψ̃ ′

kp
∗.

The observation equation is simplified to

YN = DN − (�̂N + 
N )θ,

where

�̂N =

⎡
⎢⎣

φ̂′
1
...

φ̂′
N

⎤
⎥⎦ , 
N =

⎡
⎢⎣

ζ ′
1
...

ζ ′
N

⎤
⎥⎦

and φ̂′
k = [ψ ′

kp, ψ ′
k−1p, . . . , ψ ′

k−mp] and ζ ′
k = [ψ̃ ′

kp
∗,

ψ̃ ′
k−1p

∗, . . . , ψ̃ ′
k−mp∗].
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The set of uncertainty for 
N will be denoted by �,
which is the set that includes all possible unmodelled dy-
namics p∗ whose norm is bounded by εn.

3.1. Nominal design

Without signal estimation errors, in the design phase, dk

is correctly estimated. The nominal plant P0 is known, so
p is known. The nominal design ignores the unmodelled
dynamics in the design consideration. Hence, it minimises

min
θN

(DN − �̂NθN )′(DN − �̂NθN ),

and the resulting control parameter θ is

θN = (
�̂′

N�̂N

)−1
�̂′

NDN. (12)

For performance analysis, we consider the residual of noise
attenuation when θN from Equation (12) is used,

μN (
N,DN )

= 1

N
(DN − (�̂N + 
N )θN )′(DN − (�̂N + 
N )θN )

= 1

N
(DN − (�̂N + 
N )

(
�̂′

N�̂N

)−1
�̂′

NDN )′

× (DN − (�̂N + 
N )
(
�̂′

N�̂N

)−1
�̂′

NDN )

= 1

N
D′

N (I − (�̂N + 
N )
(
�̂′

N�̂N

)−1
�̂′

N )′

× (I − (�̂N + 
N )
(
�̂′

N�̂N

)−1
�̂′

N )DN

= 1

N
D′

N�′(DN,
N )�(DN,
N )DN,

where

�(DN,
N ) = I − (�̂N + 
N )
(
�̂′

N�̂N

)−1
�̂′

N,

whose dependence on DN stems from the fact that �̂N

depends on DN. Then, the worst-case performance is

μN (DN ) = max

N ∈�

μ(
N,DN ).

The dependence of �̂N on DN can be explicitly derived.
First, the vector ŵ = [ŵ1, . . . , ŵN ]′ can be expressed as

ŵ = HpDN,

where Hp is the Hankel matrix,

Hp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 0 · · · 0 0
p1 p0 · · · 0 0
...

...
pn pn−1 · · · 0 0
0 pn · · · 0 0
...

...
0 0 · · · p0 0
0 0 · · · p1 p0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, define the p × p shifting matrix,

G

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xp−1

xp

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
x1
...

xp−2

xp−1

⎤
⎥⎥⎥⎥⎥⎦ ,

namely

G =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

...
0 · · · 1 0

⎤
⎥⎥⎥⎦ .

Then,

�̂N (DN ) = [I,G, . . . ,Gm−1](Im ⊗ HpDn),

where ⊗ is the Kronecker product.
We will impose the following assumption on DN.

Assumption 2:

DN ∈ MD = {‖DN/
√

N‖2 ≤ σ 2}.

This is a sample-path version of disturbances variances
being bounded by σ 2.

The disturbance attenuation performance is defined in
the worst-case sense as

μ = max
DN ∈MD

μN (DN ).

To obtain bounds on μ, we first normalise the signal.

Let ‖DN/
√

N‖2 = λ and define vN = DN /
√

N
λ

with ‖vN‖2

= 1. For DN ∈ MD, λ ≤ σ 2. Then,

�̂N (DN ) = [I,G, . . . , Gm−1](Im ⊗ HpDn)
= √

Nλ[I,G, . . . ,Gm−1](Im ⊗ Hpvn)
= √

Nλ�̂N (vN ).
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Denote σ min as the smallest singular value of a matrix,
and

bmin = min
‖vN‖2=1

σmin(�̂N (vN )).

Due to normalisation, bmin is independent of the size of DN.
Also, denote

f (εN ) = max

N ∈�

‖
N‖√
N

,

where εN is the bound on unmodelled dynamics.

Theorem 1:

μ ≤ f (εN )

bmin
.

Proof:

1

N
D′

N�′(DN,
N )�(DN,
N )DN

= v′
N (λ�(DN,
N ))′(λ�(DN,
N ))vN,

in which

λ�(DN,
N ) = λ(I − (�̂N (DN ) + 
N )

× (
�̂′

N (DN )�̂N (DN )
)−1

�̂′
N (DN ))

= λ(I − (
√

Nλ�̂N (vN ) + 
N )

× 1√
Nλ

(
�̂′

N (vN )�̂N (vN )
)−1

�̂′
N (vN ))

= λ

(
I −

(
�̂N (vN ) + 
N√

Nλ

)

× (
�̂′

N (vN )�̂N (vN )
)−1

�̂′
N (vN )

)
: = �̂(vn,
N ).

Now,

μ = max
DN∈MD

μN (DN )

= max
‖vN‖2=1

max

N ∈�

v′
N�̂(vn,
N )′�̂(vn,
N )vN .

It follows that

μ ≤ max
‖vN‖2=1

max

N∈�

‖�̂(vn,
N )‖,

where ‖ · ‖ is the largest singular value.

Since

�̂(vN,
N )�̂N (vN ) = λ

(
I −

(
�̂N (vN ) + 
N√

Nλ

)

× (
�̂′

N (vN )�̂N (vN )
)−1

�̂′
N (vN )

)
× �̂N (vN )

= λ

(
�̂N −

(
�̂N + 
N√

Nλ

))

= − 
N√
N

,

we have

‖�̂(vN,
N )�̂N (vN )‖ = ‖
N‖√
N

≤ max

N ∈�

‖
N‖√
N

= f (εN ).

(13)
Now, from Equation (13) and

‖�̂(vN,
N )�̂N (vN )‖ ≥ ‖�̂(vN,
N )‖σmin(�̂N (vN ))

≥ ‖�̂(vN,
N )‖bmin,

we obtain

‖�̂(vN,
N )‖ ≤ f (εN )

bmin
.

Therefore,

μ ≤ f (εN )

bmin
. �

3.2. Robust design

Theoretically, robust noise attenuation for systems with un-
modelled dynamics employs the performance index,

ηN (DN, θN ) = 1

N
max

N ∈�

(DN − (�̂N + 
N )θN )′

× (DN − (�̂N + 
N )θN ),

and seeks

ηN (DN ) = min
θN

ηN (DN, θN ),

and the optimal θN is denoted by θ∗
N .

The difference between the nominal design and robust
design is that the former is a ‘max–min’ design in which the
design is done first; and the latter is a ‘min—max’ design.
As a consequence,

ηN (DN ) ≤ μN (DN ),
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indicating a potential performance improvement in the
worst-case sense. It is well known that the ‘min–max’ often
leads to non-linear and non-quadratic optimisation prob-
lems and is usually more complicated. Often only numerical
solutions are feasible. We now introduce some numerical
algorithms.

The gradient of ηN(DN, θN) with respect to θN is

G(DN, θN ) = ∂ηN (DN, θN )

∂θN

= 2

N
max

N∈�

(�̂N + 
N )′(DN − (�̂N + 
N )θN ).

The following gradient-based searching algorithm is used.

Searching Algorithm for θ∗
N :

• Initial value.
The initial value θ0 is given by the nominal design,

θ0 = (
�̂′

N�̂N

)−1
�̂′

NDN.

• Iteration steps.
For k = 0, 1, 2, . . . ,

θk+1 = θk − βkĜ(DN, θk),

where βk is the step size at the kth iteration,
Ĝ(DN, θk) is an approximate gradient. Typically,
these approximate values can be obtained by using
Monte Carlo methods or grid calculation in place of
the uncertainty set �.

3.3. Examples

We now use a simulation example to demonstrate perfor-
mance on noise attenuation.
Example 2: The system to be controlled is a seventh order
system P(z) = p0 + p1z−1 + . . . + p7z−7. However, a
lower order model is used to represent this system: P0(z) =
p0 + p1z−1 + p1z−2 + p3z−3, leaving the higher order
terms as unmodelled dynamics. Hence, the modelled part
has order n = 3 with four parameters, and the true values
are p0 = 1, p1 = 0.2, p2 = 2, and p3 = 0.5. The unmodelled
dynamics represent higher order terms which are excluded
in the model, and in this example they are p4, p5, p6, and p7.
So, p∗ = [p4, p5, p6, p7]′. We do not have information on
the unmodelled dynamics, except for the bound ε = |p4| +
p|p5| + |p6| + |p7|. In this example, we first use ε = 0.6.

The noise sequence {dk} is i.i.d., uniformly distributed
in [− 1, 1]. As explained in the previous sections, without
estimation errors, dk are known in our design process. The
data length is N = 1000.

The uncertainty set from unmodelled dynamics is gen-
erated by the Monte Carlo method. We randomly generate

200 values of p∗, and then normalised them so that they all
satisfy |p4| + p|p5| + |p6| + |p7| = 0.6. The corresponding
set of 
N matrices is used as the uncertainty set �.

The controller has order m = 20, hence θ has 21 pa-
rameters. We consider the nominal design in this example.
After generating the matrices DN, �N, we obtain

θN = (
�̂′

N�̂N

)−1
�̂′

NDN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0289
−0.1221
0.4797
0.0720

−0.2364
−0.0412
0.1163
0.0236

−0.0576
−0.0130
0.0284
0.0075

−0.0143
−0.0039
0.0072
0.0020

−0.0035
−0.0013
0.0016
0.0009

−0.0010

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To evaluate performance on noise attenuation, we use
the noise attenuation factor, defined as follows. The size of
the noise is ‖DN‖2/N and the size of the output is ‖YN‖2/N.
Then the factor is

γ = ‖YN‖2/N

‖DN‖2/N
.

Consequently, γ < 1 indicates noise attenuation. The
smaller the factor, the better the noise attenuation perfor-
mance.

When there is no unmodelled dynamics (ε = 0), the
nominal design delivers a performance factor γ = 0.0148,
which is an excellent 98.5% noise attenuation. However,
when the unmodelled dynamics are introduced with ε =
0.6, this factor is increased to γ = 0.2943 (70.1% noise
reduction attenuation), a substantial loss of performance.

Figure 8 demonstrates noise attenuation performances.
The top plot is the original unattenuated noise, whose mag-
nitude bound is 1. The second plot shows the noise atten-
uation performance of the controller when the plan does
not contain unmodelled dynamics. It can be seen that the
output values are around 0 and have much smaller mag-
nitudes than the original noise, indicating substantial noise
reduction. However, when the plan involves unmodelled dy-
namics, its impact is shown in the third plot. By considering
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Figure 8. Noise attenuation under the nominal design.

the worst case in the uncertainty set �, the noise reduction
capability is significantly diminished when the nominally
designed controller is used. To make this point clearer, the
fourth plot compares directly the performances between no
unmodelled dynamics and with unmodelled dynamics. The
first 500 points are the output when no unmodelled dynam-
ics are involved; and the next 500 data points show impact
of unmodelled dynamics. We should point out that this is
a worst-case study. There are some incidence in � under
which the noise attenuation performance may be much bet-
ter. This is the key issue of ‘robustness’ of the controller
which is assessed under the worst-case scenario.

Example 3: Impact of unmodelled dynamics on noise re-
duction performance is quite significant. To sustain ac-
ceptable noise reduction factors, one needs to use a well-
representative model so that the unmodelled dynamics are
not too big. To illustrate such impact, we choose different
sizes ε for unmodelled dynamics for the same example as
in Example 2 under the same simulation conditions. The re-
sulting noise reduction factors and the corresponding noise
reduction percentages are included in Table 1 .

4. Impact of signal estimation errors

In this section, we will analyse impact of measurement er-
rors and unmodelled dynamics. The following assumptions
are imposed.

Assumption 3: The following conditions hold:

Table 1. Impact of unmodelled dynamics.

Size ε of
unmodelled
dynamics

0.1 0.3 0.5 0.7 0.9

Reduction factor 0.0570 0.1464 0.2512 0.3459 0.4493
Reduction

percentage
94.3% 85.4% 74.9% 65.4% 55.1%

(1) {dk} is a sequence of i.i.d. random variables sat-
isfying Edk = 0 and Ed2

k = σ 2
d < ∞. The fourth

moment of dk is finite: Ed4
k < ∞.

(2) {dk} is estimated by d̂k = dk + ek such that {ek} is
a sequence of i.i.d. random variables with Eek = 0
and Ee2

k = σ 2
e < ∞. {ek} is independent of {dk}.

(3) The modelled part p is known. The unmodelled dy-
namics p∗ has a uniform norm bound ρn.

4.1. Limit with measurement errors

Let

θe
N = (�̂′

N�̂N )−1�̂′
ND̂N

= ((�N − 
N )′(�N − 
N ))−1

× (�′
N − 
′

N )(DN + EN ) (14)

be the estimates from the design with both measurement
errors and unmodelled dynamics. We begin by showing
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that for this nominal design the unmodelled dynamics are
cancelled out. This is done by separating the modelled and
unmodelled components of �N and 
N as follows:

Recall that

�N =

⎡
⎢⎢⎢⎣

φ′
1

φ′
2
...

φ′
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1 w0 · · · w1−n

w2 w1 · · · w2−n

...
...

...
...

wN wN−1 · · · wN−n

⎤
⎥⎥⎥⎦ .

We separate the modelled and unmodelled parts of wk by
writing

wk = ψ ′
kp + ψ̃ ′

kp
∗

=
n∑

j=0

dk−jpj +
∞∑

j=n+1

dk−jpj

=: w0
k + w̃k,

where w0
k := ∑n

j=0 dk−jpj is a stationary, mean zero,
strong mixing process (Billingsley, 1968) as dk is i.i.d. mean
zero. Thus we may represent �N by

�N = W 0
N + W̃N,

where W 0
N and W̃N are the N × (n + 1) matrix collections

of w0
k and w̃k , respectively. Also, we have


N =

⎡
⎢⎢⎢⎣

ζ ′
1

ζ ′
2
...

ζ ′
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ε̃1 ε̃0 · · · ε̃1−n

ε̃2 ε̃1 · · · ε̃2−n

...
...

...
...

ε̃N ε̃N−1 · · · ε̃N−n

⎤
⎥⎥⎥⎦ ,

where

ε̃k = ψ̃ ′
kp

∗ − ξ ′
kp

=
∞∑

j=n+1

dk−jpj −
n∑

j=0

ek−jpj

=: w̃k − ε0
k .

Thus we have the decomposition,


N = W̃N − ϒN,

where ϒN is the N × (n + 1) matrix of ε0
k = ∑n

j=0 ek−jpj ,
a stationary, mean zero, ergodic process. With this new
notation, we have

�̂N = �N − 
N = W 0
N + ϒN, (15)

and so

θe
N = [

�̂′
N�̂N

]−1
�̂′

ND̂N

=
[
N

N
(W 0

N + ϒN )′(W 0
N + ϒN )

]−1

× (W 0
N + ϒN )′(DN + EN )

= AN

1

N

(
W 0

N

′
DN + W 0

N

′
EN + ϒN

′DN + ϒ ′
NEN

)
,

(16)

where

AN :=
[

1

N

(
W 0

N

′
W 0

N + ϒN
′W 0

N + W 0
N

′
ϒN + ϒN

′ϒN

)]−1

.

(17)

Write

P 0
n =

⎡
⎣n−|l2−l1|∑

j=0

pjpj+|l2−l1|

⎤
⎦

l1,l2=0,1,...,n

. (18)

Then we can formulate the limit of the estimate θe
N in terms

of P 0
n as follows.

Proposition 1: Under Assumption 3, assuming P 0
n is full

rank, we have

θe
N = [

�̂′
N�̂N

]−1
�̂′

ND̂N
a.s.−→ [

P 0
n

]−1

⎡
⎢⎢⎢⎣

p0

0
...
0

⎤
⎥⎥⎥⎦ ,

as N → ∞. (19)

The proofs of Propositions 1 and 2 are postponed to
Appendix.

4.2. Limit without measurement errors

Without measurement errors, the estimates are simplified
to

θ0
N = (�′

N�N )−1�′
NDN = BN

(
1

N
�′

NDN

)
, (20)

where BN = [
1
N

�N
′�N

]−1
. Denote

Pn =
⎡
⎣ ∞∑

j=0

pjpj+|l2−l1|

⎤
⎦

l1,l2=0,1,...,n

. (21)

As before, we can formulate the limit of θe
N in terms of Pn

as follows.
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Proposition 2: Under Assumption 3 and assuming Pn is
full rank, we have

θ0
N = [

�′
N�N

]−1
�NDN

a.s.−→ [Pn]−1

⎡
⎢⎢⎢⎣

p0

0
...
0

⎤
⎥⎥⎥⎦ ,

as N → ∞. (22)

4.3. Difference of estimates

Combining Propositions 1 and 2 and assuming that P 0
n − Pn

is invertible, we arrive at

θe
N − θ0

N

a.s.→ [
P 0

n − Pn

]−1

⎡
⎢⎢⎢⎣

p0

0
...
0

⎤
⎥⎥⎥⎦ , (23)

where

− [
P 0

n − Pn

]
l1,l2

=
∞∑

j=n−|l2−l1|+1

pjpj+|l2−l1|.

Defining

ρ(l)
n

�=
∞∑

j=n+1

pj−lpj ≤
∞∑

j=n+1

|pj | ≤ ρn (24)

for sufficiently large n, we see that

[
P 0

n − Pn

]−1 = −

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ
(0)
n ρ

(1)
n ρ

(2)
n · · · ρ

(n)
n

ρ
(1)
n ρ

(0)
n ρ

(1)
n · · · ρ

(n−1)
n

ρ
(2)
n ρ

(1)
n ρ

(0)
n · · · ρ

(n−2)
n

. . .
. . .

. . .
. . .

. . .

ρ
(n)
n ρ

(n−1)
n · · · ρ

(1)
n ρ

(0)
n

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

(25)

for l = |l2 − l1| ∈ {0, 1, . . . , n}.

Example 4: We conduct a simulation study to display the
limit of the estimate differences. We take {dk} ∼ N (0, 1)
and {ek} ∼ N (0, .1), both i.i.d. The plant is a stable system
with infinite impulse response (IIR) coefficients pk = (0.5)k

for k = 0, 1, . . .. The model order is selected as n = 10. We
then observe the estimates θe

N , θ0
N for N = 10, 20, . . ., 1010

(100 updates). Thus ρn = 2 − ∑10
k=0 pk = (.5)10 ≈ 9.8 ×

10−4. Figure 9 shows that ||θe
N − θ0

N || quickly converges to
O(ρn).

Figure 9. ||θe
N − θ0

N ||, N = Kn = 10, . . . , 1010.
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5. Concluding remarks

This paper develops strategies to resolve several practi-
cal issues that arise in noise rejection problems and to
overcome certain shortcomings in classical Wiener filters
and more recent H∞ sensitivity minimisation problems. By
using combined signal estimation and noise rejection de-
sign, the methodology of this paper can potentially rely on
highly efficient control design of least-squares types but
still achieve non-conservative robust noise rejection with-
out prior knowledge on noise characterisations.

There remain many open problems. This paper consid-
ers only linear systems. Non-linearity will introduce model
mismatch and its impact needs to be carefully assessed.
Also, practical systems contain time delays. It is not clear
if our methodology can be extended to deal with such infi-
nite dimensional systems without losing its computational
efficiency. Furthermore, if noise characterisation or sys-
tem dynamics changes with time, adaptive versions of our
methodology need to be developed.
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Appendix: Proofs

Proof of Proposition 1: Working with the terms of AN, we see
that

1

N
W 0

N

′
W 0

N = 1

N

N∑
k=1

⎡
⎢⎢⎢⎣

w0
kw

0
k w0

kw
0
k−1 · · · w0

kw
0
k−n

w0
k−1w

0
k w0

k−1w
0
k−1 · · · w0

k−1w
0
k−n

...
...

...
...

w0
k−nw

0
k w0

k−nw
0
k−1 · · · w0

k−nw
0
k−n

⎤
⎥⎥⎥⎦ ,

(26)

with

Ew0
k−l1

w0
k−l2

= E

n∑
j1=0

n∑
j2=0

dk−l1−j1dk−l2−j2pj1pj2 1{l1+j1=l2+j2}

= σ 2
d

n−|l2−l1|∑
j=0

pjpj+|l2−l1|.

(27)

We claim that the stationary process {w0
k−l1

w0
k−l2

}k has mean

m = Ew0
k−l1

w0
k−l2

= σ 2
d

n−|l2−l1|∑
j=0

pjpj+|l2−l1|

and

R(h) = E
{
w0

k+h−l1
w0

k+h−l2
w0

k−l1
w0

k−l2

} − m2.

In fact,

E
{
w0

k+h−l1
w0

k+h−l2
w0

k−l1
w0

k−l2

}
= E

n∑
j1,...,j4=0

dk+h−l1−j1dk+h−l1−j2dk−l1−j3dk−l2−j4pj1pj2pj3pj4 .

For h > 2n, k + h − l1 − j1 > k + h − l2 − j2 for l, j ∈ {0,
. . . , n}, so dk+h−l1−j1 is independent of dk+h−l2−j2 , and thus we
can reduce the terms in the sum to

E
{
w0

k+h−l1
w0

k+h−l2
w0

k−l1
w0

k−l2

}
= E

n∑
j1,...,j4=0

dk+h−l1−j1dk+h−l1−j2dk−l1−j3dk−l2−j4

× pj1pj2pj3pj4 1{l1+j1=l2+j2}

=
n−|l2−l1|∑

j1=0

n−|l2−l1|∑
j3=0

E[d2
k+h−j1

]E[d2
k+h−j3

]pj1pj1+|l2−l1|

× pj3pj3+|l2−l1|

= σ 4
d

⎡
⎣n−|l2−l1|∑

j=0

pjpj+|l2−l1|

⎤
⎦

2

= m2. (28)

Thus the covariance function R(h) = 0 for h > 2n. Moreover,∑N−1
h=0 R(h)/N → 0. As a result, with Xk = w0

k−l1
w0

k−l2
, XN =

1
N

∑N
k=1 Xk

L2→ m as N →∞ by Karlin and Taylor (1975, Theorem
9.5.1). Moreover, since R(h) = 0 for h > 2n, {Xk} is a strong mixing
process (Karlin & Taylor, 1975, p. 488). By virtue of Karlin and
Taylor (1975, Theorems 9.5.6), {Xk} is strongly ergodic, and by
Karlin and Taylor (1975, Theorems 9.5.5), XN → m almost surely
(a.s.).

Using the ergodicity obtained above and in Equation (18),

1

N
W 0

N

′
W 0

N

a.s.−→ σ 2
d P 0

n as N → ∞. (29)

Similar arguments yield

1

N
ϒ ′

NϒN
a.s.−→ σ 2

e P 0
n and

1

N
W 0

N

′
ϒN

a.s.−→ 0 as N → ∞.

Thus

AN
a.s.−→ (

σ 2
d + σ 2

e

)−1 [
P 0

n

]−1
as N → ∞.
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Examining the terms that AN is applied to in Equation (16),

1
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′
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N

′
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= 1

N
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where

Ew0
k−ldk = E

n∑
j=0

dk−l−j dk = σ 2
d p01{l=0}

Ew0
k−lek = E

n∑
j=0
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k−ldk = E
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j=0
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Eε0
k−lek = E

n∑
j=0

ek−l−j ek = σ 2
e p01{l=0}.

Inspecting the covariance function for Xk = w0
k−ldk , we see that

dk + h is independent of dk + h − j for any j > 0, so that

Ew0
k+h−ldk+hw

0
k−ldk

= E

n∑
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j2=0
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0 = σ 4
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Ew0
k−ldk

]2
if h > 0.

(31)

Thus 1
N

∑N
k=1 w0

k−ldk
a.s.→ Ew0

k−ldk , and similarly for the other
terms of Equation (30). Hence, we have

1

N

(
W 0

N

′
DN + W 0

N

′
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NEN

)

a.s.−→ (
σ 2
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e
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⎢⎢⎣

p0

0
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0

⎤
⎥⎥⎦ . (32)

Using Equations (16), (17), (32), and the limits obtained thus far,
we have

[
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)
⎡
⎢⎢⎣

p0

0
...
0

⎤
⎥⎥⎦ .

(33)

Thus we have proven Proposition 1. �
Proof of Proposition 2: We have that

1

N
�′

N�N = 1

N
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We observe
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Using the definition (21), we have

E
[
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]
l1,l2=0,...,n

= σ 2
d Pn. (36)

Establishing that the product sequences {wk−l1wk−l2}k are ergodic
is more complicated due to the infinite sum involved in wk. We
show it for Xk = wkwk, with the shifted products done in a similar
manner. Here, [Ewkwk]2 = [
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j ] = σ 4
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and
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For the expectation of a term to be non-zero, every index of d
must be paired with another. Writing A = {(j1, j2, j3, j4) : j1 =
j2, j3 = j4}, B = {j1 = j3 + h, j2 = j4 + h}, and C = {j1 =
j4 + h, j2 = j3 + h}, we have that the non-zero terms are pre-
cisely A ∪ B ∪ C. Furthermore, A ∩ B = A ∩ C = B ∩ C = A ∩
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Thus the covariance R(h) = E {wk+hwk+hwkwk} − [E {wkwk}]2

satisfies
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Thus the process {wk+hwk+hwkwk} is strong mixing as well.
Similar argument as in the derivation of Equation (29) yields
that 1

N
�′

N�N
a.s.→ σ 2

d Pn. Recall that Pn is full rank,

BN
a.s.→ σ−2

d [Pn]−1 as N → ∞. (39)

Similarly,
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where
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and the covariance function decays asymptotically in a manner
similar to Equation (38), so that
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Finally, we have
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as N → ∞, and thus we have proven Proposition 2. �
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