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Topological Symmetry Groups of Complete Bipartite Graphs

Kathleen HAKE∗, Blake MELLOR† and Matt PITTLUCK

∗University of California, Santa Barbara and †Loyola Marymount University

(Communicated by K. Ahara)

Abstract. The symmetries of complex molecular structures can be modeled by the topological symmetry group
of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can
be realized by particular abstract graphs. This question has been answered for complete graphs [7]; it is natural
next to consider complete bipartite graphs. In previous work we classified the complete bipartite graphs that can
realize topological symmetry groups isomorphic to A4, S4 or A5 [12]; in this paper we determine which complete

bipartite graphs have an embedding in S3 whose topological symmetry group is isomorphic to Zm, Dm, Zr × Zs or
(Zr × Zs )� Z2.

1. Introduction

Chemists have long used the symmetries of a molecule to predict some of its chem-
ical properties. For small molecules, it is enough to consider the rigid symmetries, such
as rotations and reflections. Increasingly, however, chemists are dealing with long, flexible
molecules (such as DNA), for which the group of rigid symmetries is no longer sufficient.
To help understand the symmetries of these more complex molecules, Jon Simon introduced
the topological symmetry group [14]. Molecules are often modeled as graphs, where vertices
represent atoms and edges represent bonds. Although the motivation for studying topolog-
ical symmetry groups arose from looking at symmetries of molecules, we can consider the
topological symmetry group of any embedded graph.

We consider an abstract graph γ with automorphism group Aut(γ ), and let Γ be an

embedding of γ in S3. The topological symmetry group of Γ , denoted TSG(Γ ), is the sub-
group of Aut(γ ) induced by diffeomorphisms of the pair (S3, Γ ). The orientation preserving
topological symmetry group of Γ , denoted TSG+(Γ ), is the subgroup of Aut(γ ) induced by

orientation preserving diffeomorphisms of the pair (S3, Γ ). In this paper we are only con-
cerned with TSG+(Γ ), so we will refer to it as simply the topological symmetry group.

It has long been known that every finite group can be realized as Aut(γ ) for some graph
γ [10]. However, this is not true for topological symmetry groups. Results of Flapan, Naimi,
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Pommersheim and Tamvakis [8], in combination with the Geometrization Conjecture [13],
show that any topological symmetry group of an embedding of a 3-connected graph is iso-
morphic to a finite subgroup of SO(4). However, their results do not give any information as
to which graphs can be used to realize any particular group. The first results along these lines
have been for the family of complete graphs Kn. Flapan, Naimi and Tamvakis [9] classified
the groups which could be realized as the topological symmetry group for an embedding of a
complete graph; subsequently, Flapan, Naimi, Yoshizawa and the second author determined
exactly which complete graphs had embeddings that realized each group [6, 7].

In this paper we turn to another well-known family of graphs, the complete bipartite
graphs Kn,n. Unlike the complete graphs, where only some of the subgroups of SO(4) are
realizable as topological symmetry groups, any finite subgroup of SO(4) can be realized as
the topological symmetry group of an embedding of someKn,n [8]. So the complete bipartite
graphs are a natural family of graphs to investigate in order to better understand the full range
of possible topological symmetry groups. The finite subgroups of SO(4) have been classified
and they can all be described as quotients of products of cyclic groups Zm, dihedral groups
Dm, and the symmetry groups of the regular polyhedra (A4, S4 and A5) [3]. Previously, the
second author determined which complete bipartite graphs have embeddings whose topolog-
ical symmetry groups are isomorphic to A4, S4 or A5 [12]. In this paper we consider the
groups Zm, Dm, Zr × Zs and (Zr × Zs ) � Z2. The results are summarized in the following
theorems:

THEOREM 1. Let n > 2. There exists an embedding, Γ , of Kn,n in S3 such that
TSG+(Γ ) = H for H = Zm or Dm if and only if one of the following conditions hold:

(1) n ≡ 0, 1, 2 (mod m),
(2) n ≡ 0 (mod m

2 ) when m is even,

(3) n ≡ 2 (mod m
2 ) when m is even and 4|m.

THEOREM 2. Let n > 2. There exists an embedding, Γ , of Kn,n in S3 such that
H ⊆ TSG+(Γ ) for H = Zr × Zs or (Zr × Zs ) � Z2, where r|s, if and only if one of the
following conditions hold:

(1) n ≡ 0 (mod s),
(2) n ≡ 2 (mod 2s) when r = 2,
(3) n ≡ s + 2 (mod 2s) when 4|s, and r = 2,
(4) n ≡ 2 (mod 2s) when r = 4.

Moreover, in each of the above cases, we can construct embeddingsΓ where TSG+(Γ ) = H

except in the following cases, which are still open:
• Kls,ls , when 1 ≤ l < 2r , H = Zr × Zs or (Zr × Zs )� Z2

• K6,6, when H = (Z2 × Z4)� Z2

• K10,10, when H = (Z4 × Z4)� Z2
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REMARK. Since, for any r and s, Zr ×Zs ∼= Zgcd(r,s)×Zlcm(r,s), it is easiest to assume
that r|s, so that gcd(r, s) = r and lcm(r, s) = s. In general, Theorem 2 could be written with
r replaced by gcd(r, s) and s replaced by lcm(r, s) in each of the conditions.

2. Background

2.1. Prior results. In this section we gather together prior results that we will refer
to throughout this paper. We first consider results that allow us to prove that certain groups
cannot be realized as a topological symmetry group for a particular graph. The following
well-known fact for complete bipartite graphs restricts how automorphisms of the graph can
act on the vertices.

FACT. Let φ be a permutation of the vertices of Kn,n. Let V and W denote the two
sets of n independent vertices. Then φ is an automorphism of Kn,n if and only if φ either
interchanges V and W or setwise fixes each of V andW .

The following result about finite order homeomorphisms of S3 is a special case of a
well-known result of P. A. Smith.

SMITH THEORY ([15]). Let h be a non-trivial finite order homeomorphism of S3. If h

is orientation preserving, then fix(h) is either the empty set or is homeomorphic to S1. If h is
orientation reversing, then fix(h) is homeomorphic to either S0 or S2.

The Isometry Theorem allows us to assume that the elements of TSG+(Γ ) are
orientation-preserving isometries—i.e. either rotations (whose fixed point sets are geodesic
circles) or glide rotations (with no fixed points).

ISOMETRY THEOREM ([8]). Let Γ be an embedded 3-connected graph, and let H =
TSG+(Γ ). Then Γ can be re-embedded as Γ ′ such that H ⊆ TSG+(Γ ′) and TSG+(Γ ′) is
induced by an isomorphic subgroup of SO(4).

The Automorphism Theorem [4] tells us which automorphisms of Kn,n can be realized

as an orientation-preserving diffeomorphism of (S3, Γ ), for some embedding Γ of Kn,n.

AUTOMORPHISM THEOREM ([4]). Let n > 2 and let ϕ be an order r automorphism
of a complete bipartite graph Kn,n with vertex sets V and W . There is an embedding Γ of

Kn,n in S3 with an orientation preserving diffeomorphism h of (S3, Γ ) inducing ϕ if and only
if all vertices are in r-cycles except for the fixed vertices and exceptional cycles explicitly
mentioned below (up to interchanging V andW):

(1) There are no fixed vertices or exceptional cycles.
(2) V contains one or more fixed vertices.
(3) V andW each contain at most 2 fixed vertices.
(4) j |r and V contains some j -cycles.
(5) r = lcm(j, k), and V contains some j -cycles and k-cycles.
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(6) r = lcm(j, k), and V contains some j -cycles andW contains some k-cycles.
(7) V andW each contain one 2-cycle.
(8) r

2 is odd, V andW each contain one 2-cycle, and V contains some r
2 -cycles.

(9) ϕ(V ) = W and V ∪W contains one 4-cycle.

ORBITS LEMMA ([1]). Suppose α and β are commuting automorphisms of a finite set
V . Then β takes α-orbits to α-orbits of the same length.

DISJOINT FIXED POINTS LEMMA ([1]). Suppose g, h ∈ Diff+(S3) such that
〈g, h〉 = Zr × Zs is not cyclic or equal to D2. Then fix(g) and fix(h) are disjoint.

The following lemmas will be useful when we construct an embedding ofKn,n in S3 that
realizes a particular automorphism ϕ. The Edge Embedding Lemma will help us extend an
embedding of the vertices of Kn,n to an embedding of the edges with the same symmetries.
The Subgroup Lemma and Subgroup Corollary allow us to re-embed the graph to realize a
smaller group of symmetries.

EDGE EMBEDDING LEMMA ([6]). Let G be a finite subgroup of Diff+(S3), and let γ

be a graph whose vertices are embedded in S3 as a set V which is invariant under G such
that G induces a faithful action on γ . Suppose that adjacent pairs of vertices in V satisfy the
following hypotheses:

(1) If a pair is pointwise fixed by non-trivial elements h, g ∈ G, then fix(h) = fix(g).
(2) For each pair {v,w} in the fixed point set C of some non-trivial element of G, there

is an arc Avw ⊆ C bounded by v,w whose interior is disjoint from V and from any
other such arc Av′w′ .

(3) If a point in the interior of some Avw or a pair {v,w} bounding someAvw is setwise
invariant under some f ∈ G, then f (Avw) = Avw.

(4) If a pair is interchanged by some g ∈ G, then the subgraph of γ whose vertices are
pointwise fixed by g can be embedded in a proper subset of a circle.

(5) If a pair is interchanged by some g ∈ G, then fix(g) is non-empty, and fix(h) �=
fix(g) if h �= g .

Then the embedding of the vertices of γ can be extended to the edges of γ in S3 such that the
resulting embedding of γ is setwise invariant under G.

SUBGROUP LEMMA ([5]). Let Γ be an embedding of a 3-connected graph γ in S3,
and letH ⊆ TSG+(Γ ). Let ε1,...,εn be edges of γ embedded in Γ as e1,...,en . Let 〈ei〉H denote
the orbit of edge ei under the action ofH , and let 〈εi〉H denote the orbit of εi under the action
of the subgroup of automorphisms of γ induced by H .

Now suppose that 〈e1〉H,...,〈en〉H are distinct and that any automorphism of γ which fixes
ε1 pointwise, and fixes each 〈εi〉H setwise, also pointwise fixes a subgraph of γ which cannot

be embedded in S1. Then there is an embedding Γ ′ of γ such that TSG+(Γ ′) = H .
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SUBGROUP COROLLARY ([5]). Let Γ be an embedding of a 3-connected graph in S3.
Suppose that Γ contains an edge e which is not pointwise fixed by any non-trivial element
of TSG+(Γ ). Then for every H ⊆ TSG+(Γ ), there is an embedding Γ ′ of Γ with H =
TSG+(Γ ′).

2.2. Motions in SO(4). In this section we will describe the structure of SO(4) and lay
out some facts we will need later in the paper. For more details, see Du Val [3] and Conway
and Smith [2]. We will also describe some particular subgroups of SO(4) which we will use
to realize topological symmetry groups.

Algebraically, SO(4) is the group of 4 × 4 real matrices with determinant 1. Geometri-
cally, an element of SO(4) is an orientation-preserving rigid motion of R4 that fixes the origin;

we are then interested in the induced motion on the unit sphere S3. There are two kinds of
motions in SO(4):

A rotation fixes a plane A through the origin in R4, and rotates the orthogonal plane B
through the origin by some angle α. Depending on the context, the axis of the rotation denotes

either the plane A or the geodesic circle where A intersects S3; we say that we rotate by an
angle α about this axis. Note that, unless α = π , B and A are the only invariant planes (i.e.
the only planes mapped to themselves).

A glide rotation only fixes the origin in R4 (and so has no fixed points in S3). Any glide
rotation has a pair of mutually orthogonal planes A and B which are invariant, meaning that
each plane is rotated onto itself. In general, A is rotated by an angle β and B is rotated by an

angle α. The intersections of A and B with S3 are a pair of linked geodesic circles.The glide
rotation can be viewed as the composition of two (commuting) rotations: one by an angle α
about A, and the other by an angle β about B.

If the angles α and β are not equal in magnitude, the glide rotation g has a unique pair of
invariant planes. However, if α = ±β, then we say the glide rotation g is isoclinic, and there

are infinitely many pairs of invariant planes. For any vector v in R4, the plane spanned by v
and g(v) is an invariant plane. The isoclinic motions fall into two subgroups, the left-isoclinic
motions (where α = β) and right-isoclinic motions (where α = −β); the intersection of these
subgroups is just the identity and the central inversion (multiplication by −1). Every left-
isoclinic motion commutes with every right-isoclinic motion, and vice versa. Every element
of SO(4) can be represented as a product of a left-isoclinic motion and a right-isoclinic motion
[2, 11].

We use these facts to prove some lemmas which will be useful in the proof of Theorem
2.

LEMMA 1. If g and h are commuting motions in SO(4) (so gh = hg), then there is a
pair of orthogonal planes A and B which are invariant under both g and h.

PROOF. Since every element of SO(4) has at least one pair of invariant orthogonal
planes, let A and B be a pair of orthogonal planes that are invariant under g . Then gh(A) =
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hg(A) = h(A), so h(A) (and, similarly, h(B)) is also invariant under g . By a change of basis,
we may assume that A and B are the xy-plane and zw-plane in xyzw-space, respectively, so
g is one of the following matrices:

g =
[
Rα 0
0 Rβ

]
or

[
MRα 0

0 MRβ

]
,

where Rα =
[

cosα − sinα
sinα cosα

]
and M =

[
0 1
1 0

]
.

When g is the matrix on the right, then it is a rotation of order 2; so we first consider the
special case when g is a rotation of order 2 and redefineA to be the axis of rotation. Then, for
any a ∈ A, gh(a) = hg(a) = h(a), so g fixes the plane h(A) pointwise. Hence h(A) = A.
Similarly, if b ∈ B, gh(b) = hg(b) = h(−b) = −h(b), so g rotates h(B) by an angle π .
Hence h(B) = B. So the planes A and B are invariant under both g and h. Similarly, if h is
a rotation of order 2, we are done. So from now on, we assume g and h are not rotations of
order 2.

We now consider the case when g is not an isoclinic glide rotation, so α �= ±β. Then A
and B are the only invariant pair of planes for g , so h must either map each plane to itself, or
interchange them. If h(A) = A and h(B) = B, then we’re done; so suppose that h(A) = B

and h(B) = A. Then h is represented by one of the 4 × 4 matrices below:

h =
[

0 Rγ

Rδ 0

]
or

[
0 MRγ

MRδ 0

]
.

But now, an easy computation shows that gh = hg only when α = β (if h is the matrix
on the left) or α = −β (if h is the matrix on the right). Since g is not isoclinic, this is a
contradiction, so A and B must also be invariant planes for h.

Similarly, if h is not isoclinic, we are done. Moreover, since g and h both commute with
gh, we are done if gh is not isoclinic. So now suppose that g , h and gh are all isoclinic. Then
they must all be left (or all right) isoclinic. Without loss of generality, we suppose they are all
left isoclinic. Then α = β in the matrix for g , and h has the form [11]:

h =

⎡
⎢⎢⎣
a −b −c −d
b a −d c

c d a −b
d −c b a

⎤
⎥⎥⎦ , a2 + b2 + c2 + d2 = 1 .

But then a direct computation shows that gh = hg exactly when c = d = 0, so h is also a
glide rotation about planes A and B. �

COROLLARY 1. Suppose H is a subgroup of SO(4) which is isomorphic to Zr × Zs ,
where lcm(r, s) > 2. So H = 〈g, h|gr = hs = 1, gh = hg〉. Then there are two completely

orthogonal planes A and B such that g is a combination of a rotation by 2π
a

around A and
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a rotation by 2π
b

around B, with lcm(a, b) = r , and h is a combination of a rotation by 2π
c

around A and a rotation by 2π
d

around B, with lcm(c, d) = s.

PROOF. By Lemma 1, there must be a pair of completely orthogonal planes A and B
which are invariant under both g and h. Hence, as in the proof of Lemma 1, after a change of
basis g and h must have one of the forms below:

[
Rα 0
0 Rβ

]
or

[
MRα 0

0 MRβ

]
.

Since lcm(r, s) > 2, at least one of g or h is not a rotation of order 2. So at least one preserves
the orientations of the planes A and B; since they commute, they must both preserve the
orientations. Combined with the fact that gr = hs = 1, g and h must have matrices:

g =
[
R 2π

a
0

0 R 2π
b

]
and h =

[
R 2π

c
0

0 R 2π
d

]

where lcm(a, b) = r and lcm(c, d) = s, as desired. �

3. Cyclic and Dihedral Groups

If Γ is an embedding of Kn,n such that Zm ⊆ TSG+(Γ ), then it must have an automor-
phism of orderm. The Automorphism Theorem tells us when this is possible.

LEMMA 2. Let n ≥ 2. If Kn,n has an embedding Γ such that Zm ⊆ TSG+(Γ ), then
either

(1) n ≡ 0, 1, 2 (mod m),
(2) n ≡ 0 (mod m

2 ), where m is even, or

(3) n ≡ 2 (mod m
2 ), where 4|m.

PROOF. Let ϕ be a generator of Zm ⊆ TSG+(Γ ), so ϕ is an automorphism of Kn,n
of order m realized by a orientation-preserving symmetry of Γ . From the Automorphism
Theorem, we have nine cases. In case (1), ϕ has only m-cycles, so m|2n. Then either m|n or
m is even and m

2 |n. Hence either n ≡ 0 (mod m) or m is even and n ≡ 0 (mod m
2 ). In cases

(2), (4) and (5), ϕ(V ) = V and W contains only m-cycles, so n ≡ 0 (mod m). In cases (3),
(7) and (8),m|(n− 1) or m|(n− 2), so n ≡ 1 or 2 (mod m).

In case (6), m = lcm(j, k), V contains some j -cycles and W contains some k-cycles.
Then n = aj + bm for some a, b ∈ Z and also n = ck + dm for some c, d ∈ Z. Thus
aj + bm = ck + dm, which implies that dm − bm = aj − ck. Thus m(d − b) = aj − ck,
meaning that m|(aj − ck). Since m = lcm(j, k) this means that j | m and thus j | (aj − ck).
So j | ck, i.e. ck is a multiple of j . Also, ck is a multiple of k, and thus ck is a common
multiple of j and k. Since m = lcm(j, k) and ck is a common multiple of j and k, then we
have that m | ck. Hence m|(ck + dm), so n ≡ 0 (mod m).
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Finally, in case (9), ϕ(V ) = W and V ∪W contains a 4-cycle. So m|(2n− 4) and 4|m.
This means m

2 |(n− 2). So n ≡ 2 (mod m
2 ), with 4|m. �

Now we will prove that, under each of the conditions of Lemma 2, we can find embed-
dings ofKn,n whose topological symmetry group is Zm orDm. Recall that Zm = 〈g|gm = 1〉
and Dm = 〈g, ϕ|gm = ϕ2 = 1, ϕg = g−1ϕ〉. First we will show how, for each value of n
given in Lemma 2, we can find a group of motions G isomorphic to Dm and an embedding
of the vertices of Kn,n so that the action of G fixes the vertices setwise. Next we will use
the Edge Embedding Lemma to extend the embedding of the vertices to the edges to get an
embedding Γ of Kn,n such that Dm ⊆ TSG+(Γ ). Finally we will use the Subgroup Lemma
to show that we can find another embedding Γ ′ of Kn,n such that TSG+(Γ ′) = Dm, and the
Subgroup Corollary to show there is yet another embedding Γ ′′ such that TSG+(Γ ′′) = Zm.

In our proofs, we will use the following subgroups of SO(4). Let A be a plane in R4

and B be its orthogonal complement, and let C be a plane spanned by a vector in A and a

vector in B. We will let X, Y and Z denotes the intersections with S3 of planes A, B and C,
respectively.

• LetG1 be generated by a rotation g around A by 2π
m

, and a rotation ϕ around C by π .
Then g has order m and ϕ has order 2, and G1 ∼= Dm.

• Let G2 be generated by a rotation ϕ around C by π , and a glide rotation h, which is

the combination of a rotation by 4π
m

aroundA and a rotation by 2π
m

around B. Then h
has order m and ϕ has order 2, andG2 ∼= Dm.

• Let G3 be generated by a rotation ϕ around C by π , and a glide rotation j , which is

the combination of a rotation by π
2 around A and a rotation by 2π

m
around B. Then j

has order m and ϕ has order 2, andG3 ∼= Dm.

LEMMA 3. If n ≥ 3, n ≡ 0, 1, 2 (mod m) and H = Zm or Dm, then there exists an

embedding, Γ , of Kn,n in S3 such that TSG+(Γ ) = H .

PROOF. We will first suppose that H = Dm, and then use the Subgroup Corollary
to show there are also embeddings for H = Zm. Since n ≡ 0, 1, 2 (mod m), then 2n =
2mk + 2ε for some k ∈ Z, where ε = 0, 1, 2. We will use the group of motions G1. Pick
a small ball, M , such that for each non-trivial h ∈ G1, h(M) ∩ M = ∅ (i.e. G1 acts freely
on M). Pick k points, p1, . . . , pk , in M . Each pi has an orbit of size 2m. Embed 2mk of the
vertices of V ∪W so that vertices of V are embedded as the points g i (pj ) and vertices of W

are embedded as the points ϕg i (pj ). This means that g(V ) = V and ϕ(V ) = W . If ε = 0, we
have embedded all the vertices of V ∪W . If ε = 1, we embed the remaining vertices v1 and
w1 on the circle X (the axis for g), so that ϕ(v1) = w1 (note that ϕ preserves X setwise). If
ε = 2, we embed the remaining four vertices v1, v2, w1, w2 onX so that v’s and w’s alternate
around the circle, and ϕ(vi) = wi .

Now we must check the conditions of the Edge Embedding Lemma. The only vertices
fixed by any element of G1 are the 2ε vertices embedded on X, which are fixed by every
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g i . Since all of these motions fix the circle X, condition (1) is satisfied. In every case, for
each fixed pair {v,w} we can find an arc Avw on X which is disjoint from the vertices and
the other arcs (when ε = 2, this is because the v’s and w’s alternate), so condition (2) is
satisfied. Each g i fixes Avw pointwise, and ϕg i fixes Aviwi setwise for i = 1, 2 (but does

not fix the endpoints of the other arcs, when ε = 2). So condition (3) is satisfied. All ϕg i

interchange pairs, but their fixed point sets do not contain any vertices, and no g i interchange

pairs, and thus condition (4) is satisfied. Also, fix(ϕg i ) ∼= S1, fix(ϕg i ) �= fix(ϕgk) if i �= k,
and fix(ϕg i ) �= fix(gk), so condition (5) is satisfied. Thus we are able to embed the edges

of Kn,n in S3 such that the resulting embedding is setwise invariant under G1 and we get an
embedding Γ such that Dm ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding
so that TSG+ = Dm. We will first assume that m ≥ 3, and then cover the case when
m = 2. Since n ≥ 3, we have embedded at least one orbit of size 2m, containing vertices
v0, . . . , vm−1 and w0, . . . , wm−1. Since g(V ) = V , label the vertices so that g i (v0) = vi

and g i (w0) = wi . We further define our embedding so that ϕ(v0) = w0. Thus ϕg i (v0) =
g−i (w0) = wm−i and ϕg i (w0) = g−i (v0) = vm−i . Consider an edge e1 = v0w0. Then

we have that g i (e1) = g i (v0w0) = viwi and ϕg i (e1) = ϕg i (v0w0) = wm−ivm−i . Thus
〈e1〉G1 = {viwi : 0 ≤ i ≤ m − 1}. Also consider the edges e2 = v0w1 and e3 = v0w2.

We have that g i (e2) = g i (v0w1) = viwi+1 and ϕg i (e2) = ϕg i (v0w1) = wm−ivm−i−1. Thus
〈e2〉G1 = {viwi+1 : 0 ≤ i ≤ m − 1}. Similarly, 〈e3〉G1 = {viwi+2 : 0 ≤ i ≤ m − 1}. Thus
we have that 〈e1〉G1 , 〈e2〉G1 , and 〈e3〉G1 are all distinct. Suppose ψ is an automorphism of
Kn,n which fixes e1 pointwise, and fixes 〈e1〉G1 , 〈e2〉G1 and 〈e3〉G1 setwise. This implies that
v0 and w0 are both fixed. Since 〈e2〉G1 = {viwi+1 : 0 ≤ i ≤ m − 1}, e2 is the only edge
in the orbit of e2 that is adjacent to v0. Since v0 is fixed, this means that e2 is fixed. Thus
w1 is also fixed. Similarly, since 〈e3〉G1 = {viwi+2 : 0 ≤ i ≤ m − 1}, e3 is the only edge
in the orbit of e3 that is adjacent to v0, and so e3 is fixed. This means that w2 is fixed. Thus

we have that a fixed subgraph isomorphic to K3,1. Since K3,1 cannot be embedded in S1, the
Subgroup Lemma implies there exists an embedding Γ ′ of Kn,n such that TSG+(Γ ′) = Dm,
when m ≥ 3. Moreover, e1 is not fixed by any non-trivial element of TSG+(Γ ′), so by the
Subgroup Corollary there is another embedding Γ ′′ ofKn,n such that TSG+(Γ ′′) = Zm.

We still need to deal with the case when m = 2. We will divide this into two subcases,
when n is even and when n is odd. If n = 2r , then 2n = 4r , and all of the vertices of
Kn,n are embedded in r orbits, each containing 4 vertices. Consider one of these r orbits,
containing vertices v0, w0, v1, and w1. As when m ≥ 3, choose the labels so that g(v0) =
v1, g(w0) = w1 and ϕ(v0) = w0. Consider edges e1 = v0w0, and e2 = v0w1. Then
〈e1〉G1 = {v0w0, v1w1} and 〈e2〉G1 = {v0w1, v1w0}. Thus the orbits of e1 and e2 are distinct.
Suppose ψ is an automorphism ofKn,n which fixes e1 pointwise, and fixes 〈e1〉G1 and 〈e2〉G1

setwise. This implies that v0 and w0 are both fixed. Since e2 is the only edge in 〈e2〉G1 that
is adjacent to v0, this means that e2 is fixed, which implies that w1 is also fixed. Thus we
have that v0, w0, and w1 are all fixed. Since v1 is the only other vertex in the orbit it must be
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that v1 is also fixed. Thus we have a subgraph K2,2 fixed pointwise by ψ . Since n ≥ 3 we
must have another orbit of 2m = 4 vertices, which we will call v′

0, w
′
0, v

′
1, and w′

1, labeled

using the same conventions used for the first orbit. Consider the edge f1 = w0v
′
0. Then

〈f1〉G1 = {w0v
′
0, v0w

′
0, v1w

′
1, w1v

′
1}. Assume ψ also fixes 〈f1〉G1 setwise. Since f1 is the

only edge in 〈f1〉G1 that is adjacent to w0, then f1 is fixed, and thus v′
0 is fixed. So we now

have a subgraphK3,2 that is fixed pointwise by ψ . Since K3,2 cannot be embedded in S1, by
the Subgroup Lemma there is an embedding Γ ′ of Kn,n so that TSG+(Γ ′) = D2.

If n = 2r + 1 then all of the vertices of Kn,n, except for one from each of V and W , are
embedded in r orbits, each containing 4 vertices of V ∪ W . Since n ≥ 3, r �= 0, and thus
there must be 4 vertices embedded in one of these orbits. As above, we can fix e1 = v0w0

and this will cause all four of these vertices to be fixed. Now consider the vertices v2 and w2

which are the two vertices embedded on the axis of g . Consider the edge f1 = w0v2. Since
〈v2〉G1 = {v2, w2} and w0 is not fixed by any element ofG1, we have that f1 is the only edge
in 〈f1〉G1 that is adjacent to w0. Since w0 is fixed, this implies that v2 is fixed. Thus we have

that a subgraph K3,2 is fixed pointwise. Since K3,2 cannot be embedded in S1 there is an
embedding Γ ′ of Kn,n so that TSG+(Γ ′) = D2.

In either case, when m = 2, the edge e1 = v0w0 is not fixed by any non-trivial element
of TSG+(Γ ′). So by the Subgroup Corollary there is another embedding Γ ′′ of Kn,n such
that TSG+(Γ ′′) = Z2. �

LEMMA 4. If n ≥ 3,m is even, n ≡ 0 (mod m
2 ) andH = Zm orDm, then there exists

an embedding, Γ , of Kn,n in S3 such that TSG+(Γ ) = H .

PROOF. We have already dealt with the case when n ≡ 0 (mod m) in Lemma 3, so we
may assume n = mr+ m

2 for some r ∈ Z. We will use the group of motionsG2. Observe that

for all i, where i �= 0 and i �= m
2 , hi has no fixed points. Also notice that hm/2 is a rotation

of order 2 with axis Y . Since n = mr + m
2 , then 2n = 2mr + m. Pick a small ball, M , such

that for each non-trivial h ∈ G2, h(M) ∩ M = ∅ (i.e. G2 acts freely on M). Pick r points
{p1, . . . , pr } in M; then each of these points has an orbit containing 2m points. Embed 2mr

of the vertices of V ∪W in S3 so that vertices of V are embedded as the points h2i (pj ) and

ϕh2i (pj ), and vertices of W are embedded as the points h2i+1(pj ) and ϕh2i+1(pj ). Then
we have that h(V ) = W and ϕ(V ) = V . Now we must embed the remaining m vertices of
V ∪W . Take a point q on Z − (X ∪ Y ). Then the orbit of q under the action of G2 contains
m points. Embed a vertex of V as q , and embed the rest of the m vertices of V ∪ W as the

points hi(q), alternating v’s and w’s. Observe that hi(q) and hi+m
2 (q) are both on the axis of

ϕh−2i . Now we must check that we can embed the edges of the graph.

If 4|m, then m
2 is even, so i and (i + m

2 ) have the same parity. Thus hi(q) and hi+m
2 (q)

are both in V or both in W . So no adjacent pairs lie on the same axis, and hence no such
pairs are fixed by any elements of G2. So conditions (1), (2), and (3) of the Edge Embedding

Lemma are satisfied. Also, since m
2 is even, hm/2(V ) = V , so hm/2 does not interchange pairs
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bounding an edge. The only other rotations are ϕhi , which also send V to V , so no pairs are
interchanged. Thus conditions (4) and (5) are also satisfied.

Now we will consider the case when 4 � m, so hm/2(V ) = W . None of the 2mr vertices

embedded in S3 − (X ∪ Y ∪ Z) are fixed by any elements, and each of the pairs in the m
vertices is fixed by only one element, and thus condition (1) of the Edge Embedding Lemma

is satisfied. Since h is a glide rotation, each of the pairs {hi(q), hi+m
2 (q)} bounds an arc

on the axis of ϕh−2i that is disjoint from the other vertices and the other such arcs. Thus

condition (2) is satisfied. Each ϕh−2i fixes an adjacent pair of vertices, but for each of those
pairs the arc between the vertices lies on the axis of involution. Thus the arc is fixed by the

same involution that the pair of vertices is fixed by. Also, hm/2 interchanges the end points of

each arc in them vertices, but it fixes each arc setwise. So condition (3) holds. Only hm/2 and

ϕh
m
2 −2i interchange pairs of adjacent vertices. But hm/2 fixes no vertices and, since m

2 − 2i

is odd, neither does ϕh
m
2 −2i , and so condition (4) is met. Both hm/2 and ϕh

m
2 −2i have fixed

point sets that are homeomorphic to S1 and also different than all fixed point sets of other
elements in G2. Thus condition (5) is satisfied. Therefore we are able to embed the edges
of Kn,n in S3 such that the resulting embedding is setwise invariant under G2 and we get an
embedding Γ such that Dm ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding so
that TSG+ = Dm. Recall thatmmust be even and n = mr + m

2 , so 2n = 2mr+m. Ifm = 2,
then n ≡ 1 (mod m), which we have already dealt with in Lemma 3. So m ≥ 4. We first
suppose m ≥ 6. Then there an m-cycle (p0p1 . . . pm−1), where p2i is in V and p2i+1 is in

W . So hj (pi) = pi+j and ϕ(pi) = pm−i , and thus ϕhj (pi) = ϕ(pi+j ) = pm−i−j . Consider

the edge e1 = p0p1. We have that hj (e1) = pjpj+1 and ϕhj (e1) = pm−j pm−j−1. Thus
〈e1〉G2 = {pjpj+1 : 0 ≤ j ≤ m − 1}. Suppose ψ is an automorphism of Kn,n which fixes
e1 pointwise, and fixes 〈e1〉G2 setwise. This means that p0 and p1 are both fixed. The only
edges in 〈e1〉G2 adjacent to p1 are e1 = p0p1 and e2 = g(e1) = p1p2. Since e1 and p1 are
fixed, so is e2. Thus p2 is also fixed. Similarly, the only edges in 〈e1〉G2 adjacent to p2 are
e2 = p1p2 and e3 = g(e2) = p2p3. Since e2 and p2 are fixed, so is e3. Thus p3 is also fixed.
Continuing inductively, we can fix the wholem-cycle. Since m ≥ 6 we have fixed a subgraph

isomorphic to K3,3 that cannot be embedded in S1. Thus if m ≥ 6 there exists an embedding
Γ ′ so that TSG+(Γ ′) = Dm. Moreover, since e1 is only fixed pointwise by the identity, the
Subgroup Corollary implies there is another embedding Γ ′′ such that TSG+(Γ ′′) = Zm.

We still need to consider when m = 4. Since m = 4 and n ≥ 3, there must be at
least one orbit of size 2m = 8. If this is the orbit of point p, we embed the vertices so that
{p, h2(p), ϕ(p), ϕh2(p)} are vertices in V and {h(p), h3(p), ϕh(p), ϕh3(p)} are vertices in
W . So (p h(p) h2(p) h3(p)) is a 4-cycle which alternates between vertices in V andW ; using

the same argument as above, any automorphismψ ofKn,n which fixes e1 = p h(p) pointwise
and 〈e1〉G2 setwise will fix the entire 4-cycle pointwise, and hence fix a subgraph isomorphic

to K2,2. Now consider e2 = p ϕh(p), and suppose that ψ also fixes 〈e2〉G2 setwise. Notice
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that 〈e2〉G2 = {p ϕh(p), h(p) ϕ(p), h2(p) ϕh3(p), h3(p) ϕh2(p)}. Thus e2 is the only edge
in 〈e2〉G2 that is adjacent to p. Since p is fixed this implies that e2 is fixed, and thus ϕh(p) is

also fixed. Thus we have fixed a subgraph K3,2, induced by the vertices {p, h2(p)} in V and

{h(p), h3(p), ϕh(p)} in W . Since K3,2 cannot be embedded in S1 there exists an embedding
Γ ′ so that TSG+(Γ ′) = D4. As above, since e1 is only fixed pointwise by the identity, the
Subgroup Corollary implies there is another embedding Γ ′′ such that TSG+(Γ ′′) = Z4. �

LEMMA 5. If n ≥ 3, 4|m, n ≡ 2 (mod m
2 ) and H = Zm or Dm, then there exists an

embedding, Γ , of Kn,n in S3 such that TSG+(Γ ) = H .

PROOF. If n ≡ 2 (mod m), then we are done by Lemma 3, so we may assume that
n = mr + m

2 + 2 for some integer r , and hence 2n = 2mr + m + 4. We will use the group
of motions G3. Pick a small ball, M , such that for each non-trivial h ∈ G3, h(M) ∩M = ∅
(i.e. G3 acts freely on M). Pick r points {p1, . . . , pr } in M; then each of these points has an
orbit containing 2m points. Embed 2mr of the vertices of V ∪ W so that vertices of V are

embedded as the points j2i (pk) and ϕj2i(pk), and vertices of W are embedded as the points

j2i+1(pk) and ϕj2i+1(pk). Then j (V ) = W and ϕ(V ) = V . Now we must embed the next
m vertices of V ∪W . Take a point q on Z − (X ∪ Y ). Then the orbit of q under the action
of G3 contains m points. Embed a vertex of V as q , and embed the rest of the m vertices as

the points j i(q), alternating v’s and w’s. Observe that j i(q) and j i+m
2 (q) are both on the axis

for ϕj−2i . Since m
2 is even the two vertices embedded on the axis of ϕj−2i are either both

in V or both in W . Lastly, we must embed the last four vertices of V ∪W . Let y be a point
of intersection of the circle Y and the circle Z (the axis of ϕ). Embed the last four vertices
as y, j (y), j2(y), j3(y), placing vertices of V at y and j2(y) and vertices of W at j (y) and

j3(y). Since the action of j on Y has order 4, j2(y) is the other point of intersection of Y and

Z, and ϕj (y) = j3(y).
Now we must check that we can embed the edges of the graph. The only elements which

fix a pair of adjacent vertices are j4i (which fix the last four vertices embedded), which all
have the same fixed point set Y , and thus condition (1) of the Edge Embedding Lemma is

satisfied. The pairs of adjacent vertices fixed by j4i all bound arcs on Y that are disjoint from
other vertices and arcs (since vertices of V andW alternate around Y ), and thus condition (2)
is satisfied. The elements j4i fix the circle Y pointwise, and thus condition (3) is satisfied.

The only elements of G3 which interchange adjacent pairs are ϕj2i+1, which interchange the
two pairs embedded on Y . 2mr vertices of V ∪W are embedding in the orbit of M , which is
disjoint from the axes of all the elements of G3, another m vertices are embedded as j i(q),

which is on the axis for ϕj−2i , and the last 4 vertices (on Y ) are embedded on the axes for ϕ
or ϕj2. So no vertices are embedded on the axes for ϕj2i+1. Thus these elements of G3 fix
no vertices and condition (4) is satisfied. Again, only a ϕj i can possibly interchange a pair
of vertices, and each ϕj i has a fixed point set that is homeomorphic to S1 and is unique, so

condition (5) is satisfied. Thus we are able to embed the edges of Kn,n in S3 such that the
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resulting embedding is setwise invariant underG3.
Now we will apply the Subgroup Lemma to show that we can modify the embedding so

that TSG+ = Dm. If m = 4, then n = 4r + 2 + 2 = 4(r + 1), so n ≡ 0 (mod m). This case
has already been dealt with in Lemma 3, so we may assume m ≥ 8. We will have an m-cycle
under the action of G3, and exactly as in Lemma 4 we can show that if an automorphism of
Kn,n fixes an edge of this m-cycle pointwise, and the orbit of that edge setwise, then it must
fix the entire cycle, which contains a subgraph isomorphic to K4,4. Since K4,4 cannot be

embedded in S1, there exists an embedding Γ ′ so that TSG+(Γ ′) = Dm. Moreover, also as
in Lemma 4, there is an edge which is not fixed by any nontrivial element of the topological
symmetry group, so the Subgroup Corollary implies there is another embedding Γ ′′ such that
TSG+(Γ ′′) = Zm. �

Combining Lemmas 2, 3, 4 and 5 gives us Theorem 1.

THEOREM 1. Let n > 2 and let Kn,n be the complete bipartite graph on n, n vertices.

Then there exists an embedding, Γ , of Kn,n in S3 such that TSG+(Γ ) = H for H = Zm or
Dm if and only if one of the following conditions hold:

(1) n ≡ 0, 1, 2 (mod m),
(2) n ≡ 0 (mod m

2 ) if m is even,

(3) n ≡ 2 (mod m
2 ) if m is even and 4|m.

4. Necessity of conditions for TSG+(Γ ) = Zr × Zs or (Zr × Zs )� Z2

In this section we will prove the necessity of the conditions in Theorem 2. Recall that

• Zr × Zs = 〈g, h|gr = hs = 1, gh = hg〉
• (Zr × Zs )� Z2 = 〈g, h, ϕ|gr = hs = ϕ2 = 1, gh = hg, ϕg = g−1ϕ, ϕh = h−1ϕ〉.
Since Zr and Zs are both subgroups of Zr × Zs then the conditions of Lemma 2 must

hold for both r and s. We are assuming that r|s, so the conditions for s are strictly stronger.
So if Kn,n has an embedding with topological symmetry group Zr × Zs or (Zr × Zs) � Z2,
then one of the following holds:

(1) n ≡ 0, 1, 2 (mod s)
(2) n ≡ 0 (mod s

2 ) for s even

(3) n ≡ 2 (mod s
2 ) for s even and 4|s

However, these conditions are not all sufficient. In Lemmas 6 through 12, we will prove
that in some of these cases it is not possible to embedKn,n such that its topological symmetry
group contains Zr × Zs . Since Z1 × Zs = Zs and Z2 × Z2 = D2 and we have already
considered cyclic and dihedral groups, we shall assume r ≥ 2 and s ≥ 3.

LEMMA 6. If n ≡ 1 (mod s) there does not exist an embedding Γ of Kn,n such that
Zr × Zs ⊆ TSG+(Γ ).
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PROOF. Assume there is such an embedding Γ . Let α and β be automorphisms in
TSG+(Γ ) such that 〈α, β〉 ∼= Zr × Zs . Suppose β interchanges the vertex sets V and W .
By the Automorphism Theorem, this means V ∪W is either partitioned into s-cycles of β, or
s-cycles and a single 4-cycle. But since n ≡ 1 (mod s), 2n ≡ 2 (mod s) (with s ≥ 3), so
this is not possible. Hence β fixes V andW setwise.

Consider the case when α also fixes V setwise. By the Automorphism Theorem, α must
fix one vertex, v, of V and V −fix(α) is partitioned into r-cycles. Then by the Orbits Lemma,
β(v) = {v} since {v} is the only α-orbit of length one in V . So v is a fixed vertex of β. This
contradicts the Disjoint Fixed Points Lemma. So α must interchange V andW .

By the Automorphism Theorem we know that β must fix one vertex of each of V and
W . Call these vertices v,w. By the Orbits Lemma, α(v) = w and α(w) = v, so α fixes
the embedded edge vw in Γ setwise, and hence fixes some point in its interior. Since β
fixes the edge pointwise, fix(α) ∩ fix(β) �= ∅. This contradicts the Disjoint Fixed Points
Lemma. Thus if n ≡ 1 (mod s), there does not exist an embedding, Γ , of Kn,n such that
TSG+(Γ ) = Zr × Zs . �

LEMMA 7. If n ≡ 2 (mod s) and s is odd, there does not exist an embedding Γ of
Kn,n such that Zr × Zs ⊆ TSG+(Γ ).

PROOF. Assume there is such an embedding Γ . Let α and β be automorphisms in
TSG+(Γ ) such that 〈α, β〉 ∼= Zr × Zs . Since r|s, r is also odd. Since their orders are odd, α
and β both fix V setwise. So by the Automorphism Theorem we know that α either fixes two
vertices of V or has a 2-cycle in V . But α cannot have any 2-cycles, since it has odd order.
Therefore α fixes two vertices, v1 and v2, and V − fix(α) is partitioned into r-cycles. By the
Orbits Lemma, β({v1, v2}) = {v1, v2}. But, by the Disjoint Fixed Points Lemma, β cannot
fix either v1 or v2. So β has a cycle of length 2. This is impossible since s is odd. Thus there
does not exist an embedding Γ of Kn,n such that Zr × Zs ⊆ TSG+(Γ ). �

LEMMA 8. If n ≡ 2 (mod s) and there exists an embedding Γ of Kn,n such that
Zr × Zs ⊆ TSG+(Γ ), then r = 2 or r = 4.

PROOF. Assume there is such an embedding Γ , and r �= 2, 4. By Lemma 7, s must be
even. Let α and β be automorphisms in TSG+(Γ ) such that 〈α, β〉 = Zr × Zs . We consider
four cases, depending on whether α and β fix or interchange the vertex sets V andW . Observe
there is an integer k such that n = ks + 2, and 2n = 2ks + 4. Also observe that, if a < r and
b < s, then 〈αa, βb〉 is a product of cyclic groups which is not itself cyclic.

We first suppose that α(V ) = V and β(V ) = V . By the Automorphism Theorem, β

either fixes two vertices in each of V and W , or has a 2-cycle in each of V and W . So β2

fixes vertices v1, v2 in V and w1, w2 in W . By the Orbits Lemma, α({v1, v2}) = {v1, v2}, so

α2 must also fix v1 and v2. But, since r �= 2, 〈α2, β2〉 is a product of cyclic groups, so this
contradicts the Disjoint Fixed Points Lemma.

Next we suppose that α(V ) = V and β(V ) = W . Since s is even, r �= 2, 4 and r|s,
s > 4. So by the Automorphism Theorem β partitions V ∪ W into s-cycles, along with a
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single 4-cycle. Hence β4 fixes vertices v1, v2 in V and w1, w2 in W . As in the last case, α2

must also fix v1 and v2, which contradicts the Disjoint Fixed Points Lemma.
Now suppose that α(V ) = W and β(V ) = V . Since r �= 2 or 4, α partitions V ∪ W

into r-cycles, along with a single 4-cycle. Now we simply repeat the argument in the previous
paragraph, reversing the roles of α and β.

Finally, suppose that α(V ) = W and β(V ) = W . As before, β4 fixes vertices v1, v2 in
V and w1, w2 in W . Now α2 fixes V setwise, so, as in the previous cases, α4 must fix the
points v1 and v2. Since r �= 2 or 4, and r must be even, this contradicts the Disjoint Fixed
Points Lemma.

Therefore, if there is such an embedding Γ , then r = 2 or 4. �

LEMMA 9. If n ≡ s + 2 (mod 2s), r = 2 and s
2 is odd, then there does not exist an

embedding Γ of Kn,n such that Zr × Zs ⊆ TSG+(Γ ).

PROOF. Assume there is such an embedding Γ . Let α and β be diffeomorphisms

of (S3, Γ ) such that H = 〈α, β〉 = Z2 × Zs . By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y . Any
point in S3 − (X ∪ Y ) has an orbit of size 2s under the action of H .

Observe that α, βs/2 and αβs/2 are three distinct elements of order 2 in H , all fixing X
and Y setwise. One of them must be rotation around X, another rotation around Y , and the
third the central inversion, since these are the only combinations of rotations around X and

Y with order 2. Since 〈α, β〉 = 〈α, αβ〉 = 〈αβs/2, β〉 = H , we may assume without loss of

generality that α is rotation aroundX and βs/2 is rotation about Y .
Since n = 2ks + s + 2, for some integer k, we know 2n = 4ks + 2s + 4. If β(V ) = W ,

then the Automorphism Theorem tells us that β must have a 4-cycle in V ∪W . But this means
that 4|s, contradicting the assumption that s2 is odd. Hence β(V ) = V . By the Automorphism
Theorem, β either fixes two vertices in each of V andW , or has a two-cycle in each of V and

W . In either case, β2 fixes two vertices in each of V and W .
Suppose we also have α(V ) = V . Then the orbit of a vertex in S3 − (X ∪ Y ) consists

entirely of vertices in the same vertex set, and so we must have at least s + 2 vertices from
each vertex set embedded on X ∪ Y . Any motion which fixes more than 4 vertices of V ∪W ,
including vertices from both V andW , fixes a subgraph ofKn,n which cannot be embedded in
a circle. Since there are at least s + 2 ≥ 6 vertices in each of V andW , Smith Theory implies
that we cannot embed vertices of both V and W on circles X and Y . Hence we must embed
all s + 2 vertices of V on X and all s + 2 vertices of W on Y . Since β2 fixes two vertices in
each of V andW , it fixes vertices on bothX and Y , and therefore fixesX∪Y . But this would
imply, by Smith Theory, that β2 is the identity, which is not the case.

Now suppose that α(V ) = W . Since α is rotation aboutX, we cannot embed any vertices
onX. So we must embed 4ks+2s vertices in S3 − (X∪Y ) and the remaining four vertices on

Y (two vertices from each of V andW ). These vertices are fixed by βs/2, so the edges between

them must also be in the fixed point set of βs/2, which is Y . So the vertices from V and W
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must alternate around Y . Denote these vertices v1, v2, w1, w2, labeled so that α(vi ) = wi . But
then v1w1 and v2w2 must be embedded as semicircles of Y . Since the endpoints are different,
these semicircles must intersect, which contradicts our assumption that Γ is an embedding.

So the embedding Γ cannot exist. �
LEMMA 10. If n ≡ s+2 (mod 2s) and r = 4, then there does not exist an embedding

Γ of Kn,n such that Zr × Zs ⊆ TSG+(Γ ).
PROOF. Assume there is such an embedding Γ . Let α and β be diffeomorphisms

of (S3, Γ ) such that H = 〈α, β〉 = Z4 × Zs . By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y . Any

point in S3 − (X ∪ Y ) has an orbit of size 4s under the action of H .
Since n = 2ks+s+2, for some integer k, we know 2n = 4ks+2s+4. So at least 2s+4

vertices of Kn,n must be embedded on X ∪ Y . Observe that α2, βs/2 and α2βs/2 are three
distinct elements of order 2 in H , all fixing X and Y setwise. One of them must be rotation
around X, another rotation around Y , and the third the central inversion, since these are the
only combinations of rotations around X and Y with order 2. Any motion which fixes more
than 4 vertices of V ∪ W , including vertices from both V and W , fixes a subgraph of Kn,n
which cannot be embedded in a circle. Since there are at least s + 2 ≥ 6 vertices in each of V
and W , Smith Theory implies that we cannot embed vertices of both V and W on circles X
and Y . Hence we must embed all s + 2 vertices of V on X and all s + 2 vertices ofW on Y .

Since α and β fix X and Y setwise, they must also fix V and W setwise. Since s + 2 is
not divisible by s, β must divide each set of s+ 2 vertices into an s-cycle and either two fixed

points or a 2-cycle. Then β2 fixes points in both V andW , and therefore must fix both X and
Y pointwise. But this would mean that β2 is the identity, which is impossible since s > 2. So
the embedding Γ cannot exist. �

LEMMA 11. If n ≡ ls
2 (mod rs), s is even, s > 4, and l is odd, then there does not

exist an embedding Γ of Kn,n such that Zr × Zs ⊆ TSG+(Γ ).

PROOF. Assume there is such an embedding Γ . Let α and β be diffeomorphisms

of (S3, Γ ) such that H = 〈α, β〉 = Zr × Zs . By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y . Any

point in S3 − (X ∪ Y ) has an orbit of size rs under the action of H . Since 2n = 2krs +
ls for some integer k, at least ls vertices will need to be embedded on X ∪ Y . From the
Automorphism Theorem, the only way β can act on V ∪W is if β(V ) = W , and the action
of β partitions V ∪W into s-cycles. Hence each of X and Y must contain either vertices of
both V and W or no vertices at all.

Suppose that α is the combination of a rotation of order a about X and order b around
Y (with lcm(a, b) = r), and β is the combination of a rotation of order c aroundX and order
d around Y (with lcm(c, d) = s). If c < s, then βc fixes Y pointwise. On the other hand, if
c = s, then a|c (since a|r and r|s), and c = ap for some p. So βp and α have the same action
on Y , and αβ−p fixes Y . So there is some non-trivial element of H which fixes Y . Similarly,
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there is a non-trivial element fixing X pointwise. By Smith Theory, this means X and Y can
each contain at most 4 vertices, so ls ≤ 8. Hence ls = s = 6 or 8. If s = 6, then we must
embed 4 vertices on X and 2 vertices on Y (or vice versa). But then c and d are both 2 or 4,
and lcm(c, d) �= s. Similarly, if s = 8, we must embed 4 vertices on each circle, and c and d
are again either 2 or 4, so lcm(c, d) �= s. So the embedding Γ cannot exist. �

LEMMA 12. If n ≡ s
2 + 2 (mod s), 4|s and s > 4 there does not exist an embedding

Γ of Kn,n such that Zr × Zs ⊆ TSG+(Γ ).

PROOF. Assume there is such an embedding Γ . Let α and β be diffeomorphisms

of (S3, Γ ) such that H = 〈α, β〉 = Zr × Zs . By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y . From
the Automorphism Theorem, the only way β can act on V ∪W is if β(V ) = W , and the action

of β partitions V ∪W into s-cycles along with one 4-cycle. Since any point in S3 − (X ∪ Y )
has an orbit of size rs > 8 under the action of H , we must have four vertices embedded on
one of X and Y . Suppose the four vertices (two from each of V and W ) are embedded on X;
then β consists of a combination of a rotation aroundX with a rotation of order 4 around Y .

First suppose that r is even. Since 2n = 2ks + s + 4 for some integer k, we must embed
at least s + 4 ≥ 12 vertices on X ∪ Y ; since β(V ) = W , these vertices are evenly divided
between V andW . By the same argument used in Lemma 10, this means we must embed the
vertices of V on one circle and the vertices of W on the other. But this is impossible, since β
interchanges the vertex sets.

If r is odd, then α(V ) = V . By the Automorphism Theorem, α must fix two vertices of
each of V and W , or have a 2-cycle in each vertex set. Since r is odd, α does not have any
2-cycles, so it must fix two vertices in each set. Hence α is a rotation of order r about X, and
fixes the four vertices we have embedded on X. Since 4|s and r is odd, s = 4qr for some
integer q . Then β4q is a rotation of order r around X, so β4q = α±1. But then H is cyclic,
which is a contradiction.

So the embedding Γ does not exist. �

5. Proof of Theorem 2

Now we will prove that for each condition on n listed in Theorem 2 there does exist
embeddings Γ1 and Γ2 of Kn,n such that TSG+(Γ1) = Zr × Zs and TSG+(Γ2) = (Zr ×
Zs )� Z2, thus proving Theorem 2.

We will first show that for each condition on n listed in Theorem 2 there exists an embed-
ding of Kn,n with topological symmetry group containing (Zr × Zs)� Z2. Then we will use
the Subgroup Lemma and Subgroup Corollary to modify these embeddings (when possible)
so that the topological symmetry group is isomorphic to Zr × Zs or (Zr × Zs ) � Z2. When
we construct our embeddings we will use the following subgroups of SO(4). As in Section 3,

let A be a plane in R4 and B be its orthogonal complement, and let C be a plane spanned by
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a vector in A and a vector in B. We will let X, Y and Z denotes the intersections with S3 of
planes A, B and C, respectively.

• Let g be a rotation of order r aboutA and h be a rotation of order s about B. Let ϕ be
a rotation of order 2 about C. Then J1 = 〈g, h, ϕ〉 ∼= (Zr × Zs )� Z2.

• Suppose that 4|s. Let g be a rotation of order 2 around A. Let h be a glide rotation
which is the product of a rotation of order 4 aroundA and a rotation of order s around
B. Therefore h has order lcm(4, s) = s. Let ϕ be a rotation of order 2 about C. Then
J2 = 〈g, h, ϕ〉 ∼= (Z2 × Zs )� Z2.

LEMMA 13. If n ≡ 0 (mod s) and H = Zr × Zs or (Zr × Zs )�Z2, then there exists

an embedding, Γ , of Kn,n in S3 such that H ⊆ TSG+(Γ ). Moreover, if n ≥ 2rs, we can
choose the embedding so that H = TSG+(Γ ).

PROOF. Since n ≡ 0 (mod s), n = 2krs+ ls for some integers k and l, where 0 ≤ l <

2r . We will use the group of motions J1. Pick a small ball, M , such that for each non-trivial
h ∈ J1, h(M) ∩ M = ∅ (i.e. J1 acts freely on M). We will pick k points, p1, . . . , pk , and
k points, q1, ..., qk, inside M . Then the orbit of each point has 2rs elements. We will embed
2krs vertices of V as the points in the orbits of the p′

is and 2krs vertices ofW as the points in

the orbits of the q ′
is. We still have ls vertices from V and ls vertices fromW to embed. Let F

denote the union of all the axes of the rotations gahbϕ. If l is even, place l
2 points on X − F

such that each point has a distinct orbit under the action of J1. Then the orbit of each point
has 2s points. Embed the ls vertices of V as the points in these orbits. Since r|s then s = rm

for some m ∈ Z. Place lm
2 points on Y − F such that each point has a distinct orbit under J1.

Then each orbit has 2r points. Embed the ls = lmr vertices ofW as the points in these orbits.
If l = 2j + 1 is odd, embed 2js vertices of V and W as described above. We are left

with s vertices from each set. Let x be one of the two points in X ∩ Z; then the orbit of x
under J1 has s points. Embed the remaining vertices of V on X as the points in the orbit of
x (if s is even, there will be vertices embedded at both points of X ∩ Z). Since r|s, s = rm

for some integer m. If m is even, place m
2 points on Y − F . Then the orbit of each point has

2r elements. Embed the s = rm vertices of W as the points in the orbits. If m is odd, then
m = 2t + 1 for some integer t . Embed the 2tr vertices as in the case when m is even. There
are r vertices remaining. Let y be one of the two points in Y ∩Z; then the orbit of y under J1

has r points. Embed the remaining r vertices of W as the points in the orbit of y (if r is even,
there will be vertices embedded at both points of Y ∩ Z).

Now we will show that we can embed the edges of Kn,n. If we have not embedded
vertices in X ∩ Z and Y ∩ Z, then no element of J1 fixes an adjacent pair of vertices, and
conditions (1), (2) and (3) of the Edge Embedding Lemma are satisfied. However, if there
is a point v ∈ V on X ∩ Z and a point w ∈ W on Y ∩ Z, then each pair {hi(v), gj (w)} is

fixed by h2ig2j ϕ. Since h2ig2j ϕ is the only element of J1 fixing this pair, condition (1) of the
Edge Embedding Lemma is met. Since at most two vertices of V and two vertices of W are
embedded on each circle higj (Z), the vertices from V andW alternate around the circle, and
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the circles intersect only on X and Y , there exist arcs bounded by each pair whose interiors
are disjoint from V ∪ W and from each other. Thus condition (2) is met. The only motion
of J1 setwise fixing the pair of vertices {hi(v), gj (w)}, or any point on the interior of the arc

between them, is the rotation h2ig2j ϕ. Hence condition (3) is met. Since no adjacent vertices
are interchanged by any motion of J1, conditions (4) and (5) are met. Therefore we are able
to embed the edges of Kn,n to get an embedding Γ so that (Zr × Zs )� Z2 ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding so
that TSG+ = (Zr × Zs )� Z2 if k > 0 (i.e. n ≥ 2rs). Since k > 0, we have a 2rs-orbit from
V and and 2rs-orbit fromW , say {v1, v2, . . . , v2rs} and {w1, w2, . . . , w2rs} respectively. We
label the vertices so that for any j ∈ J1, if vi = j (v1), then wi = j (w1). Let ei = v1wi .
Note that the orbits 〈ei〉J1 are all distinct. Suppose ψ is an automorphism of Kn,n which
fixes e1 pointwise, and fixes each 〈ei〉J1 setwise. This means that v1 and w1 are both fixed
pointwise. Since ei is the only edge in 〈ei〉J1 that is adjacent to v1, then ei is also fixed.
This implies that wi is fixed for every i. Thus a subgraphK1,2rs is fixed pointwise and since

s ≥ 3, K1,2rs cannot be embedded in S1. So by the Subgroup Lemma there is an embedding
Γ ′ such that TSG+(Γ ′) = (Zr × Zs ) � Z2. Moreover, since e1 was not fixed by any non-
trivial element of J1, the Subgroup Corollary implies there is another embeddingΓ ′′ such that
TSG+(Γ ′′) = Zr × Zs . �

LEMMA 14. If n ≡ 2 (mod 2s), 2|s and H = Z2 × Zs or (Z2 × Zs )� Z2, then there

exists an embedding, Γ , of Kn,n in S3 such that TSG+(Γ ) = H .

PROOF. In this case n = 2ks + 2 for some integer k, so 2n = 4ks + 4. Pick a small
ball, M , such that for each non-trivial h ∈ J1, h(M) ∩ M = ∅ (i.e. J1 acts freely on M).
Pick k points p1, . . . , pk inside M; the orbit of each pi under Ji contains 4s points. Embed

vertices of V at each gahb(pi) and vertices of W at each gahbϕ(pi). Then there are four
remaining vertices v1, v2 ∈ V and w1, w2 ∈ W . Embed v1, w1, v2, w2 in order around Y ,
equally spaced, at the points π/4 radians away from Y ∩ Z. Then g(v1) = v2, g(w1) = w2,
ϕ(v1) = w2 and ϕ(w1) = v2.

Since pairs of adjacent vertices are only fixed by rotations around Y , and all rotations
around Y have the same fixed point set, condition (1) of the Edge Embedding Lemma is
met. Since the four vertices on Y alternate v’s and w’s, there exists an arc bounded by each
adjacent pair whose interior is disjoint from V ∪W and any other such arc. So condition (2)
is met. Also a pair of vertices bounding some arc is setwise invariant only under a rotation
around Y . Since rotations around Y fix the arc setwise, then condition (3) is met. Lastly no
adjacent pair of vertices is interchanged by non-trivial elements of J1, so conditions (4) and
(5) are met. Therefore we are able to embed the edges of Kn,n to get an embedding Γ so that
(Z2 × Zs )� Z2 ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding
so that TSG+ = (Z2 × Zs ) � Z2. Since n ≥ 3, there is at least one orbit of 4s vertices
embedded in S3 so that none of the vertices is fixed by any element of J1. Let v ∈ V
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be one of these vertices, so gahb(v) is in V and gahbϕ(v) is in W . Let ei = v hiϕ(v).
Observe that all the ei’s have distinct orbits under J1. Suppose ψ is an automorphism ofKn,n
which fixes e0 pointwise, and fixes 〈ei〉J1 setwise. This means that v and ϕ(v) are both fixed
pointwise. Since ei is the only edge in 〈ei〉J1 that is adjacent to v, then ei is also fixed. This

implies that hiϕ(v) is fixed for every i. Thus a subgraph K1,s is fixed pointwise and since

s ≥ 3, K1,s cannot be embedded in S1. So by the Subgroup Lemma there is an embedding
Γ ′ such that TSG+(Γ ′) = (Z2 × Zs ) � Z2. Moreover, since e1 is not fixed by any non-
trivial element of J1, the Subgroup Corollary implies there is also an embedding Γ ′′ such that
TSG+(Γ ′′) = Z2 × Zs . �

LEMMA 15. If n ≡ s + 2 (mod 2s), 4|s and H = Z2 × Zs or (Z2 × Zs ) � Z2, then
there exists an embedding, Γ , of Kn,n in S3 such that H ⊆ TSG+(Γ ). Moreover, except in
the case when n = 6, s = 4 and H = (Z2 × Z4)� Z2, we can choose the embedding so that
H = TSG+(Γ ).

PROOF. In this case n = 2ks + s + 2 for some integer k, so 2n = 4ks + 2s + 4. We
will use the group of motions J2. Pick a small ball, M , such that for each non-trivial h ∈ J2,
h(M) ∩ M = ∅ (i.e. J2 acts freely on M). Pick k points p1, . . . , pk inside M; the orbit of
each pi under J2 contains 4s points. Embed vertices of V at each gahbϕc(pi) where b is
even and vertices of W at each gahbϕc(pi) where b is odd. So g(V ) = V , h(V ) = W and
ϕ(V ) = V . We are left with 2s + 4 vertices to embed. First consider four points v1, v2 ∈ V
and w1, w2 ∈ W . Embed v1 and v2 = h2(v1) at the two points in Y ∩ Z. Embed w1 on Y as

h(v1). Embed w2 as g(w1) = h3(v1). There are 2s remaining vertices of V ∪W to embed.
Choose a point q on Z− (X∪Y ). Since g has order 2 and h has order s, the image of Z under
g and h will be s

2 distinct circles, with four images of q on each circle. Since v1 and v2 are on

Z embed a vertex of V at q . Then the three images of q on Z are g(q), h
s
2 (q) and gh

s
2 (q).

Since g fixes V and, since s
2 is even, h

s
2 (V ) = V , all vertices on Z are in V . Following

in this manner, embed the 2s vertices of V ∪ W as the orbit of q such that gah2k(q) ∈ V

and gah2k+1(q) ∈ W for k ∈ Z. Thus images of Z either contain only vertices of V or only
vertices of W . Since only rotations around Y fix pairs of adjacent vertices, and all rotations
around Y have the same fixed point set, condition (1) of the Edge Embedding Lemma is met.
Since v1, v2, w1 and w2 are the only vertices embedded on Y , alternating v’s and w’s, there
is an arc bounded by each pair whose interior is disjoint from V ∪W and any other such arc.
Thus condition (2) is met. Also a pair of vertices bounding such an arc is setwise invariant
only under a rotation around Y . Since rotations around Y fix the arc, then condition (3) is met.
Lastly no adjacent pair of vertices is interchanged by non-trivial elements of J2, so conditions
(4) and (5) are met. Therefore we are able to embed the edges ofKn,n to get an embedding Γ
so that (Z2 × Zs )� Z2 ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding so
that TSG+ = (Z2×Zs )�Z2. If k > 0, at least 4s vertices are embedded in the complement of
all the fixed point sets of elements of J2; then we can find an embeddingΓ ′ with TSG+(Γ ′) =
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(Z2 × Zs )� Z2 as we did in Lemma 14. Also as in Lemma 14, there is an edge not fixed by
any nontrivial element of the topological symmetry group, so the Subgroup Corollary implies
there is an embedding Γ ′′ with TSG+(Γ ′′) = Z2 × Zs .

If k = 0, then let v be a vertex embedded on Z − (X ∪ Y ). Let e1 = vh(v), so

〈e1〉J2 = {hi(v)hi+1(v), ghi(v)ghi+1(v)}. Suppose ψ is an automorphism of Kn,n which
fixes e1 pointwise, and fixes 〈e1〉J2 setwise. So v and h(v) are both fixed. Notice that the only

other edge in the orbit of e1 which is adjacent to h(v) is h(v)h2(v). Since h(v) and e1 are both

fixed, this means h(v)h2(v) is fixed, and hence h2(v) is fixed. Proceeding inductively, we can
show that hi(v) is fixed for every i. This a subgraph Ks/2,s/2 is fixed pointwise. If s > 4,

this subgraph cannot be embedded in S1, so there is an embedding Γ ′ with TSG+(Γ ′) =
(Z2 × Zs ) � Z2. Also, e1 is not fixed by any nontrivial element of J2, so the Subgroup
Corollary implies there is an embedding Γ ′′ with TSG+(Γ ′′) = Z2 × Zs .

We are left with the case when s = 4 and n = 6. In this case we can only show there is
an embedding with TSG+ = Z2 × Zs . We first embed the vertices as described before, but
now view them as acted on only by the subgroupG = Z2 ×Zs of J2 generated by g and h. So
there are 4 vertices embedded on Y and 8 embedded in S3 − (X ∪ Y ). Let v be a vertex of V

embedded in S3 − (X∪Y ), and let e1 = vh(v). Also let e2 = vw1, wherew1 is a vertex ofW
embedded on Y . Suppose ψ is an automorphism of Kn,n which fixes e1 pointwise, and fixes
〈e1〉G and 〈e2〉G setwise. The orbit of e1 under G is the same as its orbit under J2, so by the
same argument as in the last paragraph ψ must fix each vertex hi(v), and so fixes a subgraph
K2,2. However, under the action of G, e2 is the only edge in its orbit which is adjacent to v
(as opposed to the action of J2, where vw2 is also in the orbit). So e2, and therefore w1, is

also fixed by ψ . Hence ψ fixes a subgraphK3,2 which cannot be embedded in S1. So there is
an embedding Γ ′ of K6,6 with TSG+(Γ ′) = Z2 × Z4. �

LEMMA 16. If n ≡ 2 (mod 2s), 4|s and H = Z4 × Zs or (Z4 × Zs )� Z2, then there

exists an embedding, Γ , of Kn,n in S3 such that H ⊆ TSG+(Γ ). Moreover, except in the
case when n = 10, s = 4 and H = (Z4 × Z4) � Z2, we can choose the embedding so that
H = TSG+(Γ ).

PROOF. We need to consider when n ≡ 2 (mod 4s) and when n ≡ 2s + 2 (mod 4s).
In this case n = 4ks+ 2 or 4ks+ 2s+ 2 for some integer k, so 2n = 8ks+ 4 or 8ks+ 4s+ 4.
We will use the group of motions J1, with r = 4. Pick a small ball, M , such that for each
non-trivial h ∈ J1, h(M) ∩M = ∅ (i.e. J1 acts freely on M). Pick k points p1, . . . , pk inside
M; the orbit of each pi under J1 contains 8s points. Embed vertices of V at each gahbϕc(pi)

where a is even and vertices of W at each gahbϕc(pi) where a is odd. So g(V ) = W ,
h(V ) = V and ϕ(V ) = V . We are left with either 4 or 4s+ 4 vertices to embed. Consider the
four vertices v1, v2, w1, w2. Embed v1 at one point of Y ∩Z and let g(v1) = w1, g2(v1) = v2

and g3(v1) = w2. If there are an additional 4s vertices, we embed them as follows. Let z be
a point of Z − (X ∪ Y ); then the orbit of z under J1 has 4s elements. Embed vertices of V at
gahb(z) where a is even, and vertices of W at gahb(z) where a is odd. Then each image of
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Z contains six vertices, all from V or all fromW ; circles gahb(Z) where a is even contain v1

and v2, and circles gahb(Z) where a is odd contain w1 and w2.
The only pairs of adjacent vertices fixed by an element of J1 are the points embedded on

Y , which are only fixed by rotations about Y , so condition (1) of the Edge Embedding Lemma
is met. Since v1, v2, w1 and w2 are the only vertices embedded on Y , alternating v’s and w’s,
there is an arc bounded by each pair whose interior is disjoint from V ∪ W and any other
such arc. Thus condition (2) is met. Also a pair of vertices bounding such an arc is setwise
invariant only under a rotation around Y . Since all rotations around Y fix the arc pointwise,
then condition (3) is met. Lastly no adjacent pair of vertices is interchanged by non-trivial
elements of J1, so conditions (4) and (5) are met. Therefore we are able to embed the edges
of Kn,n to get an embedding Γ so that (Z4 × Zs )� Z2 ⊆ TSG+(Γ ).

Now we will apply the Subgroup Lemma to show that we can modify the embedding
so that TSG+ = (Z4 × Zs ) � Z2. If k > 0, at least 8s vertices are embedded in the com-
plement of all the fixed point sets of elements of J1; then we can find embeddings Γ ′ and
Γ ′′ with TSG+(Γ ′) = (Z4 × Zs ) � Z2 and TSG+(Γ ′′) = Z4 × Zs as we did in Lemma

14. If k = 0, then let v be a vertex of V embedded on Z − (X ∪ Y ). Let e1 = vgh(v),

so 〈e1〉J1 = {g ihj (v)g i+1hj+1(v)} (notice that ϕ(vgh(v)) = vg−1h−1(v), which is still in
the set). Suppose ψ is an automorphism of Kn,n which fixes e1 pointwise, and fixes 〈e1〉J1

setwise. So v and gh(v) are both fixed. However, the only edges in the orbit of e1 adjacent to

gh(v) are vgh(v) and gh(v)g2h2(v). Since v and gh(v) are both fixed, this means g2h2(v)

is also fixed. Continuing inductively, every g ihi(v) is fixed. The points {g ihi (v)}, where
0 ≤ i < s, alternate between vertices of V and W ; so these points induce a subgraph of Γ
isomorphic to Ks/2,s/2 that is fixed pointwise. If s > 4, this subgraph cannot be embedded

in S1, so there is an embedding Γ ′ with TSG+(Γ ′) = (Z4 × Zs ) � Z2. Also, e1 is not
fixed pointwise by any nontrivial element of J2, so the Subgroup Corollary implies there is an
embedding Γ ′′ with TSG+(Γ ′′) = Z4 × Zs .

We are left with the case when s = 4 and n = 10. In this case we can only show there
is an embedding with TSG+ = Z4 × Zs . We first embed the vertices as described before,
but now view them as acted on only by the subgroupG = Z4 × Zs of J1 generated by g and

h. So there are 4 vertices embedded on Y and 16 embedded in S3 − (X ∪ Y ). Let v be a
vertex ov V embedded in S3 − (X ∪ Y ), and let e1 = vgh(v). Also let e2 = vw1, where
w1 is a vertex of W embedded on Y . Suppose ψ is an automorphism of Kn,n which fixes e1

pointwise, and fixes 〈e1〉G and 〈e2〉G setwise. The orbit of e1 under G is the same as its orbit
under J1, so by the same argument as in the last paragraph ψ must fix each vertex g ihi(v),
and so fixes a subgraphK2,2. However, under the action of G, e2 is the only edge in its orbit
which is adjacent to v (as opposed to the action of J1, where vw2 is also in the orbit). So
e2, and therefore w1, is also fixed by ψ . Hence ψ fixes a subgraph K3,2 which cannot be

embedded in S1. So there is an embedding Γ ′ of K10,10 with TSG+(Γ ′) = Z4 × Z4. �
Combining the results of Sections 4 and 5 gives us the proof of Theorem 2.
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THEOREM 2. Let n > 2. There exists an embedding, Γ , of Kn,n in S3 such that H ⊆
TSG+(Γ ) for H = Zr × Zs or (Zr × Zs )� Z2, where r|s, if and only if one of the following
conditions hold:

(1) n ≡ 0 (mod s),
(2) n ≡ 2 (mod 2s) when r = 2,
(3) n ≡ s + 2 (mod 2s) when 4|s, and r = 2,
(4) n ≡ 2 (mod 2s) when r = 4.

Moreover, in each of the above cases, we can construct embeddingsΓ where TSG+(Γ ) = H

except in the following cases, which are still open:
• Kls,ls , when 1 ≤ l < 2r , H = Zr × Zs or (Zr × Zs )� Z2

• K6,6, when H = (Z2 × Z4)� Z2

• K10,10, when H = (Z4 × Z4)� Z2

PROOF. First we will show that the conditions are necessary. From Lemma 2, we
know that we have the following constrictions on n: n ≡ 0, 1, 2 (mod s), n ≡ 0 (mod s

2 )

and s even or n ≡ 2 (mod s
2 ) and 4|s. By Lemma 6 we can eliminate the case when n ≡ 1

(mod s). By Lemma 8, we can only have n ≡ 2 (mod s) if r = 2 or 4. If r = 2 and n ≡ s+2
(mod 2s), then by Lemma 9 we must have 4|s. If r = 4, then by Lemma 10 we cannot have
n ≡ s + 2 (mod 2s). Finally the cases when n ≡ 0 (mod s

2 ) or n ≡ 2 (mod s
2 ) (that are

not covered by other cases) are ruled out by Lemmas 11 and 12, respectively. Thus we have
shown the necessity of the conditions.

Lemmas 13, 14, 15 and 16 show that we can find embeddings to realize each of the
remaining conditions, and that we can achieve equality in all cases except the three exceptions
noted. �
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