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Topological Symmetry Groups of Complete Bipartite Graphs

Kathleen HAKE*, Blake MELLOR' and Matt PITTLUCK

*University of California, Santa Barbara and ";'Loyola Marymount University

(Communicated by K. Ahara)

Abstract. The symmetries of complex molecular structures can be modeled by the fopological symmetry group
of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can
be realized by particular abstract graphs. This question has been answered for complete graphs [7]; it is natural
next to consider complete bipartite graphs. In previous work we classified the complete bipartite graphs that can
realize topological symmetry groups isomorphic to A4, S4 or A5 [12]; in this paper we determine which complete

bipartite graphs have an embedding in $3 whose topological symmetry group is isomorphic to Z,, Dy, Z; X Zs or
(Zy x Zs) X Zy.

1. Introduction

Chemists have long used the symmetries of a molecule to predict some of its chem-
ical properties. For small molecules, it is enough to consider the rigid symmetries, such
as rotations and reflections. Increasingly, however, chemists are dealing with long, flexible
molecules (such as DNA), for which the group of rigid symmetries is no longer sufficient.
To help understand the symmetries of these more complex molecules, Jon Simon introduced
the topological symmetry group [14]. Molecules are often modeled as graphs, where vertices
represent atoms and edges represent bonds. Although the motivation for studying topolog-
ical symmetry groups arose from looking at symmetries of molecules, we can consider the
topological symmetry group of any embedded graph.

We consider an abstract graph y with automorphism group Aut(y), and let I" be an
embedding of y in S3. The topological symmetry group of I", denoted TSG(I"), is the sub-
group of Aut(y) induced by diffeomorphisms of the pair (S°, I'). The orientation preserving
topological symmetry group of I', denoted TSG4 (1), is the subgroup of Aut(y) induced by
orientation preserving diffeomorphisms of the pair (S3, I"). In this paper we are only con-
cerned with TSG4 (1), so we will refer to it as simply the topological symmetry group.

It has long been known that every finite group can be realized as Aut(y ) for some graph
y [10]. However, this is not true for topological symmetry groups. Results of Flapan, Naimi,
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Pommersheim and Tamvakis [8], in combination with the Geometrization Conjecture [13],
show that any topological symmetry group of an embedding of a 3-connected graph is iso-
morphic to a finite subgroup of SO(4). However, their results do not give any information as
to which graphs can be used to realize any particular group. The first results along these lines
have been for the family of complete graphs K,,. Flapan, Naimi and Tamvakis [9] classified
the groups which could be realized as the topological symmetry group for an embedding of a
complete graph; subsequently, Flapan, Naimi, Yoshizawa and the second author determined
exactly which complete graphs had embeddings that realized each group [6, 7].

In this paper we turn to another well-known family of graphs, the complete bipartite
graphs K, ,. Unlike the complete graphs, where only some of the subgroups of SO(4) are
realizable as topological symmetry groups, any finite subgroup of SO(4) can be realized as
the topological symmetry group of an embedding of some K, , [8]. So the complete bipartite
graphs are a natural family of graphs to investigate in order to better understand the full range
of possible topological symmetry groups. The finite subgroups of SO(4) have been classified
and they can all be described as quotients of products of cyclic groups Z,,, dihedral groups
D,,, and the symmetry groups of the regular polyhedra (A4, S4 and As) [3]. Previously, the
second author determined which complete bipartite graphs have embeddings whose topolog-
ical symmetry groups are isomorphic to A4, S4 or As [12]. In this paper we consider the
groups Zy,, Dy, Z, x Zg and (Z, x Zs) X Z,. The results are summarized in the following
theorems:

THEOREM 1. Let n > 2. There exists an embedding, I", of K, n in S3 such that
TSG(I') = H for H = Z,,, or Dy, if and only if one of the following conditions hold:

(1) n=0,1,2 (mod m),
(2) n =0 (mod 75) when m is even,
(3) n =2 (mod %5) when m is even and 4|m.

THEOREM 2. Let n > 2. There exists an embedding, I', of K, , in S3 such that
H C TSG4y(I') for H = Z, X Zs or (Z, x ZLg) X Zy, where r|s, if and only if one of the
following conditions hold:

(1) n =0 (mod s),

(2) n =2 (mod 2s) whenr = 2,

(3) n =542 (mod 2s) when 4|s,andr = 2,
4) n =2 (mod 2s) when r = 4.

Moreover, in each of the above cases, we can construct embeddings I' where TSG(I") = H
except in the following cases, which are still open:

o Kisis,when1 <l <2r,H=17Z, x ZL; or (L, x Ls) X L

e K¢, when H= (Zy x Z4) X 1
o K010, when H = (s X Z4) X 7
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REMARK. Since, forany r and s, Z, X Zg = Zgcd(r,s) X Licm(r,s)» it is easiest to assume
that r|s, so that gcd(r, s) = r and lem(r, s) = s. In general, Theorem 2 could be written with
r replaced by ged(r, s) and s replaced by lem(r, s) in each of the conditions.

2. Background

2.1. Prior results. In this section we gather together prior results that we will refer
to throughout this paper. We first consider results that allow us to prove that certain groups
cannot be realized as a topological symmetry group for a particular graph. The following
well-known fact for complete bipartite graphs restricts how automorphisms of the graph can
act on the vertices.

FACT. Let ¢ be a permutation of the vertices of K, ,. Let V and W denote the two
sets of n independent vertices. Then ¢ is an automorphism of K, , if and only if ¢ either
interchanges V and W or setwise fixes each of V.and W.

The following result about finite order homeomorphisms of S3 is a special case of a
well-known result of P. A. Smith.

SMITH THEORY ([15]). Let h be a non-trivial finite order homeomorphism of S3. If h
is orientation preserving, then fix(h) is either the empty set or is homeomorphic to S*. If h is
orientation reversing, then fix(h) is homeomorphic to either S° or S2.

The Isometry Theorem allows us to assume that the elements of TSG4 (") are
orientation-preserving isometries—i.e. either rotations (whose fixed point sets are geodesic
circles) or glide rotations (with no fixed points).

ISOMETRY THEOREM ([8]). Let I" be an embedded 3-connected graph, and let H =
TSG4(I"). Then I' can be re-embedded as I'' such that H C TSG4(I'") and TSGL(I"') is
induced by an isomorphic subgroup of SO(4).

The Automorphism Theorem [4] tells us which automorphisms of K, , can be realized
as an orientation-preserving diffeomorphism of ($3, I'), for some embedding I" of K, ,,.

AUTOMORPHISM THEOREM ([4]). Letn > 2 and let ¢ be an order r automorphism
of a complete bipartite graph K, , with vertex sets V .and W. There is an embedding I of
Knnin S3 with an orientation preserving diffeomorphism h of (83, I') inducing ¢ if and only
if all vertices are in r-cycles except for the fixed vertices and exceptional cycles explicitly
mentioned below (up to interchanging V and W):

(1) There are no fixed vertices or exceptional cycles.

(2) V contains one or more fixed vertices.

(3) V and W each contain at most 2 fixed vertices.

(4) jlr and V contains some j-cycles.

(5) r =lem(j, k), and V contains some j-cycles and k-cycles.
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(6) r =lem(j, k), and V contains some j-cycles and W contains some k-cycles.
(7) V and W each contain one 2-cycle.

(8) % is odd, V and W each contain one 2-cycle, and V contains some %-cycles.
) (V) =W and V U W contains one 4-cycle.

ORBITS LEMMA ([1]). Suppose o and B are commuting automorphisms of a finite set
V. Then B takes a-orbits to a-orbits of the same length.

DISIOINT FIXED POINTS LEMMA ([1]). Suppose g,h € Diff,(S%) such that
(g, h) = Z, x Zs is not cyclic or equal to D;. Then fix(g) and fix(h) are disjoint.

The following lemmas will be useful when we construct an embedding of K, , in S> that
realizes a particular automorphism ¢. The Edge Embedding Lemma will help us extend an
embedding of the vertices of K, , to an embedding of the edges with the same symmetries.
The Subgroup Lemma and Subgroup Corollary allow us to re-embed the graph to realize a
smaller group of symmetries.

EDGE EMBEDDING LEMMA ([6]). Let G be a finite subgroup of Diff . (S3), and let y
be a graph whose vertices are embedded in S as a set V which is invariant under G such
that G induces a faithful action on y. Suppose that adjacent pairs of vertices in 'V satisfy the
following hypotheses:

(1) If a pair is pointwise fixed by non-trivial elements h, g € G, then fix(h) = fix(g).

(2) For each pair {v, w} in the fixed point set C of some non-trivial element of G, there
is an arc Ayy < C bounded by v,w whose interior is disjoint from V and from any
other such arc Ay .

(3) If a point in the interior of some Ay or a pair {v, w} bounding some Ay, is setwise
invariant under some f € G, then f(Ayy) = Apw.

(4) If a pair is interchanged by some g € G, then the subgraph of y whose vertices are
pointwise fixed by g can be embedded in a proper subset of a circle.

(5) If a pair is interchanged by some g € G, then fix(g) is non-empty, and fix(h) #

fix(g) if h # g.

Then the embedding of the vertices of y can be extended to the edges of y in S> such that the
resulting embedding of y is setwise invariant under G.

SUBGROUP LEMMA ([5]). Let I" be an embedding of a 3-connected graph y in S>,
andlet H C TSG4(I"). Leteq,..., en- Let {e;) u denote
the orbit of edge e; under the action of H, and let (¢;) g denote the orbit of ¢; under the action
of the subgroup of automorphisms of y induced by H.

Now suppose that (e1)H, ... (en)n are distinct and that any automorphism of y which fixes
&1 pointwise, and fixes each (&;) g setwise, also pointwise fixes a subgraph of y which cannot
be embedded in S'. Then there is an embedding I'' of y such that TSG(I"") = H.

.....
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SUBGROUP COROLLARY ([5]). Let I be an embedding of a 3-connected graph in S>.
Suppose that I' contains an edge e which is not pointwise fixed by any non-trivial element
of TSG(I'"). Then for every H C TSG4(I'), there is an embedding I'' of I’ with H =
TSG(I).

2.2. Motionsin SO(4). In this section we will describe the structure of SO(4) and lay
out some facts we will need later in the paper. For more details, see Du Val [3] and Conway
and Smith [2]. We will also describe some particular subgroups of SO(4) which we will use
to realize topological symmetry groups.

Algebraically, SO(4) is the group of 4 x 4 real matrices with determinant 1. Geometri-
cally, an element of SO(4) is an orientation-preserving rigid motion of R* that fixes the origin;
we are then interested in the induced motion on the unit sphere S3. There are two kinds of
motions in SO(4):

A rotation fixes a plane A through the origin in R*, and rotates the orthogonal plane B
through the origin by some angle «. Depending on the context, the axis of the rotation denotes
either the plane A or the geodesic circle where A intersects S3; we say that we rotate by an
angle o about this axis. Note that, unless « = 7w, B and A are the only invariant planes (i.e.
the only planes mapped to themselves).

A glide rotation only fixes the origin in R* (and so has no fixed points in $3). Any glide
rotation has a pair of mutually orthogonal planes A and B which are invariant, meaning that
each plane is rotated onto itself. In general, A is rotated by an angle 8 and B is rotated by an
angle «. The intersections of A and B with S are a pair of linked geodesic circles.The glide
rotation can be viewed as the composition of two (commuting) rotations: one by an angle «
about A, and the other by an angle 8 about B.

If the angles « and S are not equal in magnitude, the glide rotation g has a unique pair of
invariant planes. However, if « = £, then we say the glide rotation g is isoclinic, and there
are infinitely many pairs of invariant planes. For any vector v in R*, the plane spanned by v
and g(v) is an invariant plane. The isoclinic motions fall into two subgroups, the left-isoclinic
motions (where « = ) and right-isoclinic motions (where o = — f3); the intersection of these
subgroups is just the identity and the central inversion (multiplication by —1). Every left-
isoclinic motion commutes with every right-isoclinic motion, and vice versa. Every element
of SO(4) can be represented as a product of a left-isoclinic motion and a right-isoclinic motion
[2, 11].

We use these facts to prove some lemmas which will be useful in the proof of Theorem

LEMMA 1. If g and h are commuting motions in SO(4) (so gh = hg), then there is a
pair of orthogonal planes A and B which are invariant under both g and h.

PROOF. Since every element of SO(4) has at least one pair of invariant orthogonal
planes, let A and B be a pair of orthogonal planes that are invariant under g. Then gh(A) =
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hg(A) = h(A), so h(A) (and, similarly, 4 (B)) is also invariant under g. By a change of basis,
we may assume that A and B are the xy-plane and zw-plane in xyzw-space, respectively, so
g is one of the following matrices:

_[Re 07, [MR. O
9=l 0 Ry 0 MRg]"

where R, = Césa —sma and M = 0 1 .
sine¢  cosa 1 0

When g is the matrix on the right, then it is a rotation of order 2; so we first consider the
special case when g is a rotation of order 2 and redefine A to be the axis of rotation. Then, for
any a € A, gh(a) = hg(a) = h(a), so g fixes the plane #(A) pointwise. Hence h(A) = A.
Similarly, if b € B, gh(b) = hg(b) = h(—b) = —h(b), so g rotates h(B) by an angle .
Hence h(B) = B. So the planes A and B are invariant under both g and 4. Similarly, if % is
a rotation of order 2, we are done. So from now on, we assume ¢ and & are not rotations of
order 2.

We now consider the case when g is not an isoclinic glide rotation, so o # +f8. Then A
and B are the only invariant pair of planes for g, so 4 must either map each plane to itself, or
interchange them. If 2(A) = A and h(B) = B, then we’re done; so suppose that h(A) = B
and h(B) = A. Then h is represented by one of the 4 x 4 matrices below:

10 Ry 0 MR,
h_I:Rg 0} or [MRB 0 }

But now, an easy computation shows that gh = hg only when o = 8 (if 4 is the matrix
on the left) or « = —f (if & is the matrix on the right). Since g is not isoclinic, this is a
contradiction, so A and B must also be invariant planes for /.

Similarly, if £ is not isoclinic, we are done. Moreover, since g and /& both commute with
gh, we are done if gk is not isoclinic. So now suppose that g, & and gh are all isoclinic. Then
they must all be left (or all right) isoclinic. Without loss of generality, we suppose they are all
left isoclinic. Then « = B in the matrix for g, and % has the form [11]:

a —-b —c —-d

h=|2 @ 4 | il
c d a —b
d —c b a

But then a direct computation shows that gh = hg exactly when ¢ = d = 0, so & is also a
glide rotation about planes A and B. O

COROLLARY 1. Suppose H is a subgroup of SO(4) which is isomorphic to 1, x Zs,
where lem(r, s) > 2. So H = (g, h|g" = h® = 1, gh = hg). Then there are two completely
orthogonal planes A and B such that g is a combination of a rotation by 27” around A and
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a rotation by 27" around B, with lcm(a, b) = r, and h is a combination of a rotation by 27”

around A and a rotation by 27” around B, with Ilcm(c, d) = s.

PROOF. By Lemma 1, there must be a pair of completely orthogonal planes A and B
which are invariant under both g and 4. Hence, as in the proof of Lemma 1, after a change of
basis g and & must have one of the forms below:

R, O MR, 0
0 Rg 0 MRg ’
Since lem(r, s) > 2, at least one of g or & is not a rotation of order 2. So at least one preserves

the orientations of the planes A and B; since they commute, they must both preserve the
orientations. Combined with the fact that ¢" = h* = 1, g and & must have matrices:

Rox 0 4 n Rzi{r 0
9= 0 R%n an “l o R2_71'r

where Icm(a, b) = r and Iem(c, d) = s, as desired. O

3. Cyclic and Dihedral Groups

If I' is an embedding of K, , such that Z,, € TSG_ (I"), then it must have an automor-
phism of order m. The Automorphism Theorem tells us when this is possible.

LEMMA 2. Letn > 2. If K, ,, has an embedding I" such that Z,,  TSG4(I"), then
either

(1) n=0,1,2 (mod m),
(2) n =0 (mod %), where m is even, or
(3) n =2 (mod %), where 4|m.

PROOF. Let ¢ be a generator of Z,, C TSG4(I"), so ¢ is an automorphism of K, ,
of order m realized by a orientation-preserving symmetry of I". From the Automorphism
Theorem, we have nine cases. In case (1), ¢ has only m-cycles, so m|2n. Then either m|n or
m is even and 7 |n. Hence either n = 0 (mod m) or m is even and n = 0 (mod 7). In cases
(2), (4) and (5), (V) = V and W contains only m-cycles, son = 0 (mod m). In cases (3),
(7) and (8), m|(n — 1) orm|(n — 2),son =1 or2 (mod m).

In case (6), m = lem(j, k), V contains some j-cycles and W contains some k-cycles.
Then n = aj + bm for some a,b € Z and also n = ck + dm for some c,d € Z. Thus
aj + bm = ck + dm, which implies that dm — bm = aj — ck. Thus m(d — b) = aj — ck,
meaning that m|(aj — ck). Since m = lecm(j, k) this means that j | m and thus j | (aj — ck).
So j | ck,i.e. ck is a multiple of j. Also, ck is a multiple of k, and thus ck is a common
multiple of j and k. Since m = lcm(}j, k) and ck is a common multiple of j and k, then we
have that m | ck. Hence m|(ck + dm), son =0 (mod m).
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Finally, in case (9), (V) = W and V U W contains a 4-cycle. So m|(2n — 4) and 4|m.
This means 5 |(n — 2). Son =2 (mod 7), with 4|m. O

Now we will prove that, under each of the conditions of Lemma 2, we can find embed-
dings of K, , whose topological symmetry group is Z, or D,,. Recall that Z,,, = (g|¢" = 1)
and D,, = (g, ¢|¢g"™ = ¢* = 1,99 = ¢~ ). First we will show how, for each value of n
given in Lemma 2, we can find a group of motions G isomorphic to D,, and an embedding
of the vertices of K, , so that the action of G fixes the vertices setwise. Next we will use
the Edge Embedding Lemma to extend the embedding of the vertices to the edges to get an
embedding I" of K, , such that D,, € TSG,(I"). Finally we will use the Subgroup Lemma
to show that we can find another embedding I"” of K, , such that TSG(I"') = D,,, and the
Subgroup Corollary to show there is yet another embedding I'”” such that TSG(I'"") = Z,,,.

In our proofs, we will use the following subgroups of SO(4). Let A be a plane in R*
and B be its orthogonal complement, and let C be a plane spanned by a vector in A and a
vector in B. We will let X, Y and Z denotes the intersections with S° of planes A, B and C,
respectively.

e Let G| be generated by a rotation g around A by 27”, and a rotation ¢ around C by .
Then ¢ has order m and ¢ has order 2, and G| = D,,.

e Let G be generated by a rotation ¢ around C by 7, and a glide rotation 4, which is
the combination of a rotation by %T around A and a rotation by %” around B. Then h
has order m and ¢ has order 2, and G, = D,,.

e Let G3 be generated by a rotation ¢ around C by 7, and a glide rotation j, which is
the combination of a rotation by 7 around A and a rotation by %” around B. Then j
has order m and ¢ has order 2, and G3 = D,,.

LEMMA 3. Ifn>3,n=0,1,2 (mod m) and H = Z,,, or D,,, then there exists an
embedding, I', of K, ,, in S3 such that TSG4(I') = H.

PrROOF. We will first suppose that H = D,,, and then use the Subgroup Corollary
to show there are also embeddings for H = Z,,. Since n = 0, 1,2 (mod m), then 2n =
2mk + 2¢ for some k € Z, where ¢ = 0, 1,2. We will use the group of motions G;. Pick
a small ball, M, such that for each non-trivial A € G, h(M) N M = @ (i.e. G| acts freely
on M). Pick k points, p1, ..., pk,in M. Each p; has an orbit of size 2m. Embed 2mk of the
vertices of V U W so that vertices of V are embedded as the points ¢’ (p ;) and vertices of W
are embedded as the points (pgi(pj). This means that g(V) = Vand (V) = W. Ife =0, we
have embedded all the vertices of V U W. If ¢ = 1, we embed the remaining vertices v, and
w1 on the circle X (the axis for g), so that ¢(v1) = w; (note that ¢ preserves X setwise). If
& = 2, we embed the remaining four vertices vy, vz, wi, wz on X so that v’s and w’s alternate
around the circle, and ¢ (v;) = wj;.

Now we must check the conditions of the Edge Embedding Lemma. The only vertices
fixed by any element of G are the 2¢ vertices embedded on X, which are fixed by every
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gi . Since all of these motions fix the circle X, condition (1) is satisfied. In every case, for
each fixed pair {v, w} we can find an arc A,,, on X which is disjoint from the vertices and
the other arcs (when ¢ = 2, this is because the v’s and w’s alternate), so condition (2) is
satisfied. Each g’ fixes Ay, pointwise, and @g' fixes A, setwise for i = 1,2 (but does
not fix the endpoints of the other arcs, when ¢ = 2). So condition (3) is satisfied. All ¢g’
interchange pairs, but their fixed point sets do not contain any vertices, and no ¢’ interchange
pairs, and thus condition (4) is satisfied. Also, fix(pg’) = S!, fix(pg') # fix(pg*) if i # k,
and fix(¢g') # fix(¢¥), so condition (5) is satisfied. Thus we are able to embed the edges
of Ky, in S such that the resulting embedding is setwise invariant under G and we get an
embedding I" such that D,,, € TSG(I").

Now we will apply the Subgroup Lemma to show that we can modify the embedding
so that TSG4 = D,,. We will first assume that m > 3, and then cover the case when
m = 2. Since n > 3, we have embedded at least one orbit of size 2m, containing vertices
Vo, ..., Um—1 and wo, ..., wy—1. Since g(V) = V, label the vertices so that gi (vo) = v;
and ¢’ (wo) = w;. We further define our embedding so that ¢(vy) = wo. Thus @g’ (vo) =
g_i (wg) = wy—; and gogi(wo) = g_i (vo) = vp—i. Consider an edge e; = vowp. Then

we have that ¢’ (e;) = ¢/ (Vowo) = vyw; and @g'(e1) = @g' (Vowo) = Wn—iVm—;. Thus
(e1)g; = {viw; : 0 < i < m — 1}. Also consider the edges e; = Yow; and e3 = vows.

We have that ¢’ (e2) = ¢/ (Vowr) = Vw41 and g’ (e2) = ¢ g’ (VoW1) = Wim—; Um—i—1. Thus
(e2)G; = {viwiy1 : 0 <i < m — 1}. Similarly, (e3)G, = {viw;12 : 0 <i < m — 1}. Thus
we have that (e1)g,, (€2)G,, and {e3)g, are all distinct. Suppose ¥ is an automorphism of
K, which fixes e pointwise, and fixes (e1)g,, (€2)G, and (e3)G, setwise. This implies that

vo and wo are both fixed. Since (e2)g, = {viwiy1 : 0 < i < m — 1}, ez is the only edge
in the orbit of e; that is adjacent to vg. Since vg is fixed, this means that e, is fixed. Thus
wy is also fixed. Similarly, since (e3)g, = {viwi12 : 0 < i < m — 1}, e3 is the only edge

in the orbit of e3 that is adjacent to vy, and so e3 is fixed. This means that w; is fixed. Thus
we have that a fixed subgraph isomorphic to K31. Since K3, cannot be embedded in § 1 the
Subgroup Lemma implies there exists an embedding I’ of K, , such that TSG(I"') = D,,,
when m > 3. Moreover, e is not fixed by any non-trivial element of TSG(I""), so by the
Subgroup Corollary there is another embedding I'” of K, , such that TSG+(I"") = Z,,,.

We still need to deal with the case when m = 2. We will divide this into two subcases,
when 7 is even and when n is odd. If n = 2r, then 2n = 4r, and all of the vertices of
K, n are embedded in r orbits, each containing 4 vertices. Consider one of these r orbits,
containing vertices vy, wo, v1, and wi. As when m > 3, choose the labels so that g(vp) =
vy, g(wo) = wp and ¢(vg) = wp. Consider edges e; = vowop, and e; = vow;. Then
(e1)G, = {vowo, viwi} and (e2)G, = {vowt, viwo}. Thus the orbits of e; and e; are distinct.
Suppose ¥ is an automorphism of K, , which fixes e pointwise, and fixes (e;)¢, and (e2)g,
setwise. This implies that vg and wg are both fixed. Since e; is the only edge in (e2)¢, that
is adjacent to v, this means that e, is fixed, which implies that w; is also fixed. Thus we
have that vy, wg, and wj are all fixed. Since v is the only other vertex in the orbit it must be
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that v; is also fixed. Thus we have a subgraph K> ;> fixed pointwise by . Since n > 3 we
must have another orbit of 2m = 4 vertices, which we will call v, wy, v}, and w], labeled

using the same conventions used for the first orbit. Consider the edge fi = wouv,. Then

(fi), = {wovy, vow, viw], wivj}. Assume ¥ also fixes (f1)g, setwise. Since fi is the
only edge in ( f1)g, that is adjacent to wo, then fj is fixed, and thus v(’) is fixed. So we now
have a subgraph K3 that is fixed pointwise by ¥. Since K3 > cannot be embedded in S', by
the Subgroup Lemma there is an embedding I’ of K}, ,, so that TSG4(I"’) = D;.

If n = 2r + 1 then all of the vertices of K}, ,, except for one from each of V and W, are
embedded in r orbits, each containing 4 vertices of V U W. Since n > 3, r # 0, and thus
there must be 4 vertices embedded in one of these orbits. As above, we can fix e; = vowg
and this will cause all four of these vertices to be fixed. Now consider the vertices vy and wo
which are the two vertices embedded on the axis of g. Consider the edge f; = wovz. Since
(v2)G, = {v2, w2} and wy is not fixed by any element of G, we have that fj is the only edge
in { f1)g, thatis adjacent to wy. Since wy is fixed, this implies that v, is fixed. Thus we have
that a subgraph K3 > is fixed pointwise. Since K3 cannot be embedded in S! there is an
embedding I’ of K,, , so that TSG(I"") = D».

In either case, when m = 2, the edge e; = vowy is not fixed by any non-trivial element
of TSG4(I""). So by the Subgroup Corollary there is another embedding I"'” of K, such
that TSG, (I'") = Z,. O

LEMMA 4. Ifn >3, miseven,n =0 (mod %) and H = 7., or D,,,, then there exists
an embedding, I', of K, , in S3 such that TSG(I") = H.

PROOF. We have already dealt with the case whenn = 0 (mod m) in Lemma 3, so we
may assume n = mr + % for some r € Z. We will use the group of motions G». Observe that
for all i, where i # 0 and i # %, h' has no fixed points. Also notice that h"™/2 is a rotation
of order 2 with axis Y. Since n = mr + %, then 2n = 2mr + m. Pick a small ball, M, such
that for each non-trivial 2 € G,, h(M) N M = ) (i.e. G, acts freely on M). Pick r points
{p1, ..., pr} in M; then each of these points has an orbit containing 2m points. Embed 2mr
of the vertices of V U W in §3 so that vertices of V are embedded as the points 2% (p ;) and
@h*(p;), and vertices of W are embedded as the points 2%*+!(p;) and ph**!(p;). Then
we have that 7(V) = W and ¢(V) = V. Now we must embed the remaining m vertices of
V U W. Take a point ¢ on Z — (X U Y). Then the orbit of ¢ under the action of G» contains
m points. Embed a vertex of V as g, and embed the rest of the m vertices of V U W as the
points hi (g), alternating v’s and w’s. Observe that hi (g) and hit? (g) are both on the axis of
@h~?. Now we must check that we can embed the edges of the graph.

If 4|m, then 7 is even, so i and (i + %) have the same parity. Thus hi(q) and hit? (@)
are both in V or both in W. So no adjacent pairs lie on the same axis, and hence no such
pairs are fixed by any elements of G;. So conditions (1), (2), and (3) of the Edge Embedding
Lemma are satisfied. Also, since % is even, h™/ 2(V) =V, so k™2 does not interchange pairs
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bounding an edge. The only other rotations are ¢h’, which also send V to V, so no pairs are
interchanged. Thus conditions (4) and (5) are also satisfied.

Now we will consider the case when 4 1 m, so hm/z(V) = W. None of the 2mr vertices
embedded in S° — (X U Y U Z) are fixed by any elements, and each of the pairs in the m
vertices is fixed by only one element, and thus condition (1) of the Edge Embedding Lemma
is satisfied. Since 4 is a glide rotation, each of the pairs {hi(q), hi+%(q)} bounds an arc
on the axis of @h~% that is disjoint from the other vertices and the other such arcs. Thus
condition (2) is satisfied. Each ¢h~2 fixes an adjacent pair of vertices, but for each of those
pairs the arc between the vertices lies on the axis of involution. Thus the arc is fixed by the
same involution that the pair of vertices is fixed by. Also, h"™/? interchanges the end points of
each arc in the m vertices, but it fixes each arc setwise. So condition (3) holds. Only h™/? and
(ph%_% interchange pairs of adjacent vertices. But #”/? fixes no vertices and, since 7 —2i

is odd, neither does goh%_%, and so condition (4) is met. Both 4"/? and gph%_% have fixed
point sets that are homeomorphic to S and also different than all fixed point sets of other
elements in G,. Thus condition (5) is satisfied. Therefore we are able to embed the edges
of K., in S such that the resulting embedding is setwise invariant under G, and we get an
embedding I" such that D,,, € TSG(I").

Now we will apply the Subgroup Lemma to show that we can modify the embedding so
that TSG = D,,. Recall that m must be even and n = mr + %, so2n =2mr+m. Ilfm =2,
then n = 1 (mod m), which we have already dealt with in Lemma 3. So m > 4. We first
suppose m > 6. Then there an m-cycle (pop1 ... pm—1), where pa; isin V and po;41 is in
W. So hi(pi) = pitj and ¢(pi) = pm—i, and thus 9h/ (p;) = ¢(pi+j) = pm—i- . Consider
the edge ey = Popi. We have that h/(e1) = pjp;+1 and h/(e1) = Pm—j pm—j—1. Thus
(e1)6, = {pjpj+1 : 0 < j < m — 1}. Suppose ¥ is an automorphism of K, , which fixes
el pointwise, and fixes (e1)¢, setwise. This means that py and p; are both fixed. The only
edges in (e1)G, adjacent to p; are e; = pop1 and e; = g(e1) = p1p2. Since e and p; are
fixed, so is e2. Thus p; is also fixed. Similarly, the only edges in (e;)g, adjacent to p; are
ep = p1p2 and e3 = g(e2) = pap3. Since ey and p; are fixed, so is e3. Thus ps3 is also fixed.
Continuing inductively, we can fix the whole m-cycle. Since m > 6 we have fixed a subgraph
isomorphic to K3 3 that cannot be embedded in § 1 Thus if m > 6 there exists an embedding
I’ so that TSG4(I"’) = D,,. Moreover, since e is only fixed pointwise by the identity, the
Subgroup Corollary implies there is another embedding I"” such that TSG (I"") = Z,,.

We still need to consider when m = 4. Since m = 4 and n > 3, there must be at
least one orbit of size 2m = 8. If this is the orbit of point p, we embed the vertices so that
{p, h*(p), p(p), ph*(p)} are vertices in V and {h(p), h3(p), oh(p), ph>(p)} are vertices in
W. So (p h(p) hz(p) h3(p)) is a 4-cycle which alternates between vertices in V and W; using
the same argument as above, any automorphism ¥ of K, , which fixes e; = p h(p) pointwise
and (e1)g, setwise will fix the entire 4-cycle pointwise, and hence fix a subgraph isomorphic

to K2 2. Now consider e; = p ¢h(p), and suppose that v also fixes (ez)g, setwise. Notice
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that (e2)G, = {p h(p), h(p) ¢(p), h?(p) ph*(p). h*(p) ¢h?(p)}. Thus e is the only edge
in {(e2) g, thatis adjacent to p. Since p is fixed this implies that e; is fixed, and thus gh(p) is
also fixed. Thus we have fixed a subgraph K3 », induced by the vertices {p, h*(p)} in V and
{h(p), K3 (p), ph(p)} in W. Since K3 > cannot be embedded in S1 there exists an embedding
I’ so that TSG4+(I'') = D4. As above, since e; is only fixed pointwise by the identity, the
Subgroup Corollary implies there is another embedding I"” such that TSG(I"") = Z4. O

LEMMA 5. Ifn > 3,4/m,n =2 (mod %) and H = Z,,, or D,,, then there exists an
embedding, I', of K, ,, in S3 such that TSG4(I') = H.

PROOF. Ifn = 2 (mod m), then we are done by Lemma 3, so we may assume that
n = mr + % + 2 for some integer r, and hence 2n = 2mr + m + 4. We will use the group
of motions G3. Pick a small ball, M, such that for each non-trivial 2 € G3, h(M) N M = (
(i.e. G3 acts freely on M). Pick r points {p1, ..., p,} in M; then each of these points has an
orbit containing 2m points. Embed 2mr of the vertices of V U W so that vertices of V are
embedded as the points j2 (pr) and ¢j% (pr), and vertices of W are embedded as the points
72N (pr) and @ F 1 (py). Then j(V) = W and (V) = V. Now we must embed the next
m vertices of V U W. Take a point g on Z — (X U Y). Then the orbit of g under the action
of G3 contains m points. Embed a vertex of V as ¢, and embed the rest of the m vertices as

the points j'(g), alternating v’s and w’s. Observe that j'(¢) and j’ +2 (g) are both on the axis
for ¢j 2. Since 7 is even the two vertices embedded on the axis of ¢j —2i are either both
in V or both in W. Lastly, we must embed the last four vertices of V U W. Let y be a point
of intersection of the circle Y and the circle Z (the axis of ¢). Embed the last four vertices
as y, j (), j2(»), j3(¥), placing vertices of V at y and j>(y) and vertices of W at j(y) and
73(»). Since the action of j on Y has order 4, j%(y) is the other point of intersection of ¥ and
Z, and gj (y) = j* ().

Now we must check that we can embed the edges of the graph. The only elements which
fix a pair of adjacent vertices are j* (which fix the last four vertices embedded), which all
have the same fixed point set Y, and thus condition (1) of the Edge Embedding Lemma is
satisfied. The pairs of adjacent vertices fixed by j* all bound arcs on Y that are disjoint from
other vertices and arcs (since vertices of V and W alternate around Y'), and thus condition (2)
is satisfied. The elements j4i fix the circle Y pointwise, and thus condition (3) is satisfied.
The only elements of G3 which interchange adjacent pairs are ¢j%+!, which interchange the
two pairs embedded on Y. 2mr vertices of V U W are embedding in the orbit of M, which is
disjoint from the axes of all the elements of G3, another m vertices are embedded as j'(q),

—2i

which is on the axis for ¢j =<, and the last 4 vertices (on Y) are embedded on the axes for ¢

or ¢j2. So no vertices are embedded on the axes for ¢j2*+!

. Thus these elements of G3 fix
no vertices and condition (4) is satisfied. Again, only a ¢’ can possibly interchange a pair
of vertices, and each ¢j’ has a fixed point set that is homeomorphic to S! and is unique, so

condition (5) is satisfied. Thus we are able to embed the edges of K, , in $3 such that the
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resulting embedding is setwise invariant under G3.

Now we will apply the Subgroup Lemma to show that we can modify the embedding so
that TSG4 = Dy,. It m =4, thenn =4r +2+2 =4(r + 1), son =0 (mod m). This case
has already been dealt with in Lemma 3, so we may assume m > 8. We will have an m-cycle
under the action of G3, and exactly as in Lemma 4 we can show that if an automorphism of
K, , fixes an edge of this m-cycle pointwise, and the orbit of that edge setwise, then it must
fix the entire cycle, which contains a subgraph isomorphic to K4 4. Since K44 cannot be
embedded in S!, there exists an embedding I’ so that TSG4(I"') = D,,. Moreover, also as
in Lemma 4, there is an edge which is not fixed by any nontrivial element of the topological
symmetry group, so the Subgroup Corollary implies there is another embedding I"” such that
TSG+(I'") = Zyy,. 0

Combining Lemmas 2, 3, 4 and 5 gives us Theorem 1.

THEOREM 1. Letn > 2 and let K, ,, be the complete bipartite graph on n, n vertices.
Then there exists an embedding, I', of K, , in S3 such that TSG+(I') = H for H = Z,,, or
Dy, if and only if one of the following conditions hold:

(1) n=0,1,2 (mod m),

(2) n =0 (mod %) if m is even,

(3) n =2 (mod %) if m is even and 4|m.

4. Necessity of conditions for TSG(I") =Z, x Zs or (Z, X Z5) X 7

In this section we will prove the necessity of the conditions in Theorem 2. Recall that

e Z, xZs=1{g,hlg =h* =1, gh =hg)

o (Zr xZL) xZo= (g, h,¢lg" =h =¢>=1,9h =hg, 09 =g~ ¢, ph =h""¢).

Since Z, and Z; are both subgroups of Z, x Zjs then the conditions of Lemma 2 must
hold for both r and s. We are assuming that r|s, so the conditions for s are strictly stronger.

So if K, , has an embedding with topological symmetry group Z, x Z; or (Z, x Zs) X Z»,
then one of the following holds:

(1) n=0,1,2 (mod s)
(2) n =0 (mod 3) for s even
(3) n =2 (mod 3) for s even and 4|s

However, these conditions are not all sufficient. In Lemmas 6 through 12, we will prove
that in some of these cases it is not possible to embed K, ,, such that its topological symmetry
group contains Z, X Zs. Since Z1 x Zs = Z; and Zy x Zo, = D, and we have already
considered cyclic and dihedral groups, we shall assume r > 2 and s > 3.

LEMMA 6. Ifn =1 (mod s) there does not exist an embedding I' of K,, , such that
7, xZ; C TSGy(I).
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PROOF. Assume there is such an embedding I". Let o and 8 be automorphisms in
TSG4 (") such that (o, B) = Z, x Zs. Suppose S interchanges the vertex sets V and W.
By the Automorphism Theorem, this means V U W is either partitioned into s-cycles of B, or
s-cycles and a single 4-cycle. But since n = 1 (mod s), 2n = 2 (mod s) (with s > 3), so
this is not possible. Hence g fixes V and W setwise.

Consider the case when « also fixes V setwise. By the Automorphism Theorem, o must
fix one vertex, v, of V and V — fix(«) is partitioned into r-cycles. Then by the Orbits Lemma,
B(v) = {v} since {v} is the only «-orbit of length one in V. So v is a fixed vertex of 8. This
contradicts the Disjoint Fixed Points Lemma. So o must interchange V and W.

By the Automorphism Theorem we know that 8 must fix one vertex of each of V and
W. Call these vertices v, w. By the Orbits Lemma, o(v) = w and a¢(w) = v, so « fixes
the embedded edge vw in I" setwise, and hence fixes some point in its interior. Since S
fixes the edge pointwise, fix(«) N fix(B) # @. This contradicts the Disjoint Fixed Points
Lemma. Thus if n = 1 (mod s), there does not exist an embedding, I", of K, , such that
TSGL(I') =Z, X Zs. 0

LEMMA 7. Ifn = 2 (mod s) and s is odd, there does not exist an embedding I" of
Knn suchthat Z, x Zs € TSG4(I').

PROOF. Assume there is such an embedding I". Let o and 8 be automorphisms in
TSG4 (I") such that (o, 8) = Z, x Zs. Since r|s, r is also odd. Since their orders are odd, «
and g both fix V setwise. So by the Automorphism Theorem we know that « either fixes two
vertices of V or has a 2-cycle in V. But o cannot have any 2-cycles, since it has odd order.
Therefore o fixes two vertices, v and va, and V — fix(«) is partitioned into r-cycles. By the
Orbits Lemma, 8({v1, v2}) = {v1, v2}. But, by the Disjoint Fixed Points Lemma, 8 cannot
fix either vy or v2. So B has a cycle of length 2. This is impossible since s is odd. Thus there
does not exist an embedding I" of K, ,, such that Z, x Z; € TSG(I"). O

LEMMA 8. Ifn = 2 (mod s) and there exists an embedding I' of K, , such that
Z, xZ; CTSG(I"), thenr =2 o0rr =4.

PROOF. Assume there is such an embedding I, and r # 2, 4. By Lemma 7, s must be
even. Let o and f be automorphisms in TSG4 (I") such that («, 8) = Z, x Zs;. We consider
four cases, depending on whether « and § fix or interchange the vertex sets V and W. Observe
there is an integer k such that n = ks + 2, and 2n = 2ks + 4. Also observe that, if a < r and
b < s, then (a®, B?) is a product of cyclic groups which is not itself cyclic.

We first suppose that (V) = V and B(V) = V. By the Automorphism Theorem, §
either fixes two vertices in each of V and W, or has a 2-cycle in each of V and W. So ,32
fixes vertices vy, vy in V and wi, wy in W. By the Orbits Lemma, «({vy, v2}) = {v1, v2}, so
a2 must also fix v and vp. But, since r # 2, (az, ,32) is a product of cyclic groups, so this
contradicts the Disjoint Fixed Points Lemma.

Next we suppose that «(V) = V and B(V) = W. Since s is even, r # 2,4 and r|s,
s > 4. So by the Automorphism Theorem g partitions V U W into s-cycles, along with a
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single 4-cycle. Hence ,34 fixes vertices vy, v2 in V and w;, wy in W. As in the last case, a?

must also fix v and v, which contradicts the Disjoint Fixed Points Lemma.

Now suppose that ¢(V) = W and (V) = V. Since r # 2 or 4, « partitions VU W
into r-cycles, along with a single 4-cycle. Now we simply repeat the argument in the previous
paragraph, reversing the roles of & and .

Finally, suppose that a(V) = W and (V) = W. As before, f* fixes vertices vy, v in
V and wq, wy in W. Now a? fixes V setwise, so, as in the previous cases, a* must fix the
points v; and vy. Since r # 2 or 4, and r must be even, this contradicts the Disjoint Fixed
Points Lemma.

Therefore, if there is such an embedding I", then r = 2 or 4. OJ

LEMMA 9. Ifn =542 (mod 2s),r = 2 and % is odd, then there does not exist an
embedding I' of K, p such thatZ, x Z; < TSG4(I').

PROOF. Assume there is such an embedding I". Let o and B be diffeomorphisms
of (83, ") such that H = (a, B) = Z» x Zj. By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y. Any
point in $3 — (X U Y) has an orbit of size 2s under the action of H.

Observe that o, 8*/% and aB*/? are three distinct elements of order 2 in H, all fixing X
and Y setwise. One of them must be rotation around X, another rotation around Y, and the
third the central inversion, since these are the only combinations of rotations around X and
Y with order 2. Since (o, B) = (o, aB) = (aB*/?, B) = H, we may assume without loss of
generality that « is rotation around X and 8%/ is rotation about Y.

Since n = 2ks + s + 2, for some integer k, we know 2n = 4ks +2s +4. If B(V) = W,
then the Automorphism Theorem tells us that 8 must have a 4-cycle in V U W. But this means
that 4[s, contradicting the assumption that 3 is odd. Hence (V) = V. By the Automorphism
Theorem, g either fixes two vertices in each of V and W, or has a two-cycle in each of V and
W. In either case, 2 fixes two vertices in each of V and W.

Suppose we also have a(V) = V. Then the orbit of a vertex in §* — (X U Y) consists
entirely of vertices in the same vertex set, and so we must have at least s 4 2 vertices from
each vertex set embedded on X U Y. Any motion which fixes more than 4 vertices of V.U W,
including vertices from both V and W, fixes a subgraph of K, , which cannot be embedded in
a circle. Since there are at least s + 2 > 6 vertices in each of V and W, Smith Theory implies
that we cannot embed vertices of both V and W on circles X and Y. Hence we must embed
all s 4 2 vertices of V on X and all s + 2 vertices of W on Y. Since B fixes two vertices in
each of V and W, it fixes vertices on both X and Y, and therefore fixes X U Y. But this would
imply, by Smith Theory, that A is the identity, which is not the case.

Now suppose that (V) = W. Since « is rotation about X, we cannot embed any vertices
on X. So we must embed 4ks + 2s vertices in S — (X UY) and the remaining four vertices on
Y (two vertices from each of V and W). These vertices are fixed by £°/2, so the edges between
them must also be in the fixed point set of ,BS/ 2 which is Y. So the vertices from V and W



148 KATHLEEN HAKE, BLAKE MELLOR AND MATT PITTLUCK

must alternate around Y. Denote these vertices vy, v2, wi, wy, labeled so that o (v;) = w;. But

then viwy and v, w; must be embedded as semicircles of Y. Since the endpoints are different,

these semicircles must intersect, which contradicts our assumption that I" is an embedding.
So the embedding I" cannot exist. O

LEMMA 10. Ifn =s+42 (mod 2s) andr = 4, then there does not exist an embedding
I' of Ky such that Z, x Ly C TSG(I').

PROOF. Assume there is such an embedding I". Let o and B be diffeomorphisms
of (83, ") such that H = (a, B) = Z4 x Zj. By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y. Any
point in $3 — (X U Y) has an orbit of size 4s under the action of H.

Since n = 2ks + s + 2, for some integer k, we know 2n = 4ks+2s+4. So at least 2s +4
vertices of K, , must be embedded on X U Y. Observe that o?, B5/? and «?B°/? are three
distinct elements of order 2 in H, all fixing X and Y setwise. One of them must be rotation
around X, another rotation around Y, and the third the central inversion, since these are the
only combinations of rotations around X and Y with order 2. Any motion which fixes more
than 4 vertices of V U W, including vertices from both V and W, fixes a subgraph of X, ,
which cannot be embedded in a circle. Since there are at least s + 2 > 6 vertices in each of V
and W, Smith Theory implies that we cannot embed vertices of both V and W on circles X
and Y. Hence we must embed all s 4 2 vertices of V on X and all s 4 2 verticesof W on Y.

Since « and B fix X and Y setwise, they must also fix V and W setwise. Since s + 2 is
not divisible by s, 8 must divide each set of s 4 2 vertices into an s-cycle and either two fixed
points or a 2-cycle. Then B2 fixes points in both V and W, and therefore must fix both X and
Y pointwise. But this would mean that 82 is the identity, which is impossible since s > 2. So
the embedding I" cannot exist. g

LEMMA 11. Ifn = 175 (mod rs), s is even, s > 4, and | is odd, then there does not
exist an embedding I" of K, , such that L, x Z; < TSG,(I").

PROOF. Assume there is such an embedding I". Let o and B be diffeomorphisms
of (83, ") such that H = (a, B) = Z, x Z. By Corollary 1, the motions in H are all
combinations of rotations around a pair of complementary geodesic circles X and Y. Any
point in $3 — (X UY) has an orbit of size rs under the action of H. Since 2n = 2krs +
s for some integer k, at least [s vertices will need to be embedded on X U Y. From the
Automorphism Theorem, the only way g can acton V U W is if (V) = W, and the action
of B partitions V U W into s-cycles. Hence each of X and Y must contain either vertices of
both V and W or no vertices at all.

Suppose that « is the combination of a rotation of order a about X and order » around
Y (with Iem(a, b) = r), and B is the combination of a rotation of order ¢ around X and order
d around Y (with Ilem(c, d) = s). If ¢ < s, then 8¢ fixes Y pointwise. On the other hand, if
¢ = s, then a|c (since a|r and r|s), and ¢ = ap for some p. So 87 and « have the same action
on Y, and a7 fixes Y. So there is some non-trivial element of H which fixes Y. Similarly,
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there is a