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Tree Canopy Change in Coastal Los Angeles, 2009 - 2014 Tree Canopy Change in Coastal Los Angeles, 2009 - 2014 

Los Angeles, California is prone to extreme climate events—e.g. drought, wildfires, and floods—that are 
only expected to increase with climate change. The establishment of green infrastructure, including a 
stable urban forest, is a strategy to improve resilience not only to these events, but also to contribute to 
other environmental, social, and economic goals. To this end, cities throughout Los Angeles County have 
tree planting programs and policies aimed to grow and maintain their urban forests. Despite the policy 
objectives and management goals of such programs, we know surprisingly little about the spatial 
distribution of the existing urban forest, how and where the canopy has changed over time, or the 
composition of the population living in places of canopy change. To examine these questions, we 
conducted an analysis of the Los Angeles Coast based on land cover data derived from high-resolution 
aerial imagery and LiDAR. In addition to characterizing the overall percentages of existing and possible 
tree canopy in 2014, we also characterized the change in tree canopy from 2009 to 2014 with five 
measures of tree canopy and change: total canopy, persistence, loss, gain, and net change. We used 
market segmentation data to analyze the relationship between tree canopy and the composition of 
communities. Results indicated that tree canopy covered about 15% of coastal Los Angeles, but this 
cover was unevenly distributed throughout the study area. The parcel-level analysis of change indicated 
that while the canopy did not change much from 2009-2014, the changes that did occur were localized 
and would have been missed at a coarser scale of analysis. Using geodemographic segments, we found 
that higher-income lifestyle groups tended to have more tree canopy and less loss over time. Change 
within land uses was consistent with overall change. These high-resolution, high-accuracy data and 
analyses can support valuable tools to guide decision-making about urban forests, especially as it relates 
to social equity. 

Keywords Keywords 
Urban forests, tree canopy, land cover analysis, tree canopy change, green infrastructure, geodemographic 
segmentation, remote sensing 
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1. INTRODUCTION 

 

Increasing urban tree canopy is an adaptation strategy that has been recognized for its myriad 

social, ecological, and economic benefits (see for example two recent reviews of the benefits of 

urban trees Alliance for Community Trees 2012; MillionTreesNYC 2011). Research has shown 

that among other services, trees reduce the urban heat island effect (Rosenfeld et al. 1998; Lo et 

al. 1997; Akbari et al. 2001; Streiling and Matzarakis 2003; Akbari and Konopacki 2005; Elmes 

et al. 2017) and improve water quality and quantity (Raciti et al. 2006; Bartens et al. 2009). 

Indeed, urban tree planting initiatives have been developed and implemented across the US and 

international cities (Table 1). 

 

Table 1. Many urban forestry goals are being actively pursued throughout US and other major 

cities, some examples of which are shown below. See Literature Cited for references. 

City Initiative and/or lead partner Goal 

Baltimore, USA Sustainability Plan (2009), 

TreeBaltimore  

double tree canopy by 2037 

Boston, USA Grow Boston Greener (2016) 35% by 2030 

Denver, USA Mile High Million (2006) 1,000,000 by 2025 

Houston, USA One Million + Houston (nd) 1,000,000 in 3-5 years 

Los Angeles, USA Million Trees LA / City Plants 

(2010) 

1,000,000 (date unspecified) 

New York, USA MillionTrees NYC (2008) 1,000,000 in 10 years 

Philadelphia, USA Greenworks Philadelphia (2009), 

TreePhilly 

30% canopy by 2025  

Sacramento, USA 5 million trees (2008), Sacramento 

Tree Foundation 

5,000,000 by 2025 

Shanghai, China Roots and Shoots, Millions of 

Tree Planting Plans (2007) 

1,000,000 in 5 years 

Seattle, USA Urban Forest Stewardship Plan 

(2013) 

30% canopy by 2037 

Sydney, Australia Urban Forest Strategy (2013) 23% canopy by 2030 

 

If successful, such policies can be instrumental in increasing the tree canopy cover and 

thus contribute to achieving urban sustainability goals. However, measuring success of these 

programs is not necessarily as simple as whether or not a certain number of trees were planted 

(see Nguyen et al. 2017). It is also necessary to examine factors including, for example, the 

number of trees that died or were removed, and whether any increases or decreases in tree 

canopy were equitably distributed. We believe it is important to study the distribution and 

1

Locke et al.: Tree Canopy Change in Coastal Los Angeles, 2009 - 2014

Published by Digital Commons at Loyola Marymount University and Loyola Law School, 2017

http://www.treebaltimore.org/
http://treephilly.org/
http://www.sactree.com/5million
http://www.sactree.com/5million


 

change in canopy cover as a foundation for evaluating how well urban forestry initiatives meet 

their goals. 

 

As we describe below, this study was motivated by the idea that there are potential 

benefits of increasing and maintaining the urban forest, yet meeting tree canopy goals can be 

challenging in both implementation and evaluation of success. Using data on high-resolution tree 

canopy and canopy change, geodemographics, and parcel ownership can allow us to assess 

relationships between tree canopy change and social factors, such as neighborhood demographics 

and land use. One of our central arguments is that data quality is essential to accurate 

evaluations. We focused on the urban forest of coastal Los Angeles (LA), USA, and asked three 

overarching research questions: 

 

1) What is the distribution of tree canopy and canopy change across coastal LA?  

 

2) Who lives in the places with tree canopy, and who lives in places where canopy 

change occurred? 

 

3) How is the urban forest changing across different land uses? 

 

1.1 Los Angeles Urban Forestry Context 

 

The many benefits of trees have been reported on extensively elsewhere (e.g. Alliance for 

Community Trees 2012; MillionTreesNYC 2011) and will not be comprehensively reviewed 

here. These documented benefits of tree canopy have prompted cities around the US to 

implement programs to plant and maintain their urban forests (Kimball et al. 2014; McGee et al. 

2012; Young and McPherson 2013; Table 1). In the Los Angeles region, there are policies and 

programs to support urban forestry and tree planting. Statewide, the California Department of 

Forestry and Fire Protection's Urban Forestry Program provides financial and technical 

assistance “to advance the development of sustainable urban and community forests in 

California” (CAL-FIRE, nd). Regionally, many municipalities have developed urban forestry 

plans and tree canopy goals, including the City of Los Angeles with its “MillionTreesLA” 

initiative (McPherson 2014). Launched in 2005, the program was expected to result in one 

million new tree plantings between 2006 and 2010.  Implementation of the initiative proved 

challenging (Pincetl 2010), and a follow-up analysis reported that only 91,786 trees were planted 

from 2006-2010, though that number increased to 407,000 by the time of publication 

(McPherson 2014). A study of the Million Trees program found there was no identifiable 

monitoring plan to assess outcomes (Pincetl et al. 2013). In 2013, the program was ended and 

tree planting activities were transferred to the newly created City Plants, which has the mission 

“to expand and maintain LA’s green canopy, with particular focus on low-canopy communities” 

(see www.cityplants.org). The renamed program does not set numeric goals for trees planted, 

and there is still scant information on metrics for evaluating program outcomes.  

 

To properly monitor and evaluate urban forestry programs requires accurate, current data 

to understand the existing forest and it changes over time. In the example of the City of Los 

Angeles, the tree canopy analysis for the Million Trees program (McPherson et al. 2008) was 

based on aerial imagery from 2000-2005. Thus, an updated analysis of the current spatial 
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distribution of existing tree canopy in the Los Angeles region is needed. In addition, while there 

is historical information on urban forestry change in Los Angeles (Gillespie et al. 2011), little is 

known about how this urban forest has changed since more recent tree planting policies and 

plans were enacted. Understanding tree canopy change and distribution can then inform an 

assessment of whether the benefits of the urban forest are being equitably distributed. For 

example, one could examine how variability in canopy may correspond with the socioeconomic 

and demographic composition of residents in different areas. 

 

Some research has been done to better understand the interplay between the urban forest 

and society in the Los Angeles region. For example, Avolio and others (2015a) examined how 

social and environmental variables impact residents’ preferences for tree attributes, and found 

that local environmental factors had as strong an impact as socioeconomic factors in influencing 

residents’ perceptions of the value of trees. A related study on tree diversity in Southern 

California found that socioeconomic drivers were more tightly linked than biophysical ones 

(Avolio et al. 2015b). Moreover, Tayyebi and Jenerette (2016) found vegetation and 

neighborhood income had a positive correlation across all climate zones in metropolitan Los 

Angeles: coastal, inland, and desert zones. These coupled social and environmental analyses are 

important to assess questions of equity, to better understand residents’ attitudes and behavior 

towards urban forests, and can contribute to interpretations of how and why the forest changes 

over time.  

 

1.2 Tree Canopy Distribution & Change 

 

Analyses of high-resolution tree canopy and land cover maps at the parcel and/or approximations 

of neighborhood scale, such as Census tracts or block groups, are now the industry standard and 

increasingly common. Examples can be found for Baltimore, MD (Grove et al. 2006a, b Troy et 

al. 2007, Zhou et al. 2009), Boston, MA (Duncan et al. 2013; Raciti et al. 2014), Cincinnati, OH 

(Berland et al. 2015), Montreal, ON (Pham et al. 2012a; b), New Haven, CT (Locke and Baine 

2014), New York City (Grove, Locke and O’Neil-Dunne; 2014), northern Massachusetts (Giner 

and Rogan 2012; Giner et al. 2013, 2014; Runfola et al. 2013, 2014; Runfola and Hughes 2014), 

Philadelphia, PA (Locke et al. 2016), Raleigh, NC (Bigsby et al. 2014), Seattle, WA (Romolini, 

Grove and Locke 2013), and Tampa, FL (Landry and Chakraborty 2009). Kimball and 

colleagues (2014) identified 17 distinct uses of high-resolution land cover maps for urban forest 

planning and land management. 

 

Despite the growing use of high-resolution (<1m) land cover maps for research and 

practice, there is relatively little research on urban tree canopy change. Tree canopy change 

occurs at fine scales, when individual trees grow, die or are removed. Random point-based 

sampling is a technique frequently used to measure canopy and canopy change. The basic 

method is to randomly distribute points across an area of interest, and then have a human 

interpreter view aerial imagery and classify the points as tree canopy or other cover types (see 

Nowak and Greenfield 2010 for a comparison to coarse 30 meter Landsat data, and Nowak and 

Greenfield 2012 for an example of the technique applied to change detection). Although 

frequently used, random point sampling has at least three major methodological deficiencies, in 

addition to operational challenges, that are overcome by using high-resolution (<1m), high-

accuracy (95%) canopy mapping approaches.  
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First, the number of points needed to reach a target level of accuracy (e.g. 95% 

confidence intervals) depends in part on the amount of canopy cover (Parmehr et al. 2016). 

Areas with less tree canopy cover need fewer points to achieve the same level of accuracy 

(Parmehr et al. 2016). If the area of tree canopy cover were already known a priori then one 

would not need to conduct random point sampling in the first place. This circuitous problem is 

often ignored or simply assumed away. 

 

Second, making comparisons across neighborhoods, districts, land uses, or other 

meaningful categories requires careful considerations of stratified sampling plans (Kaspar et al. 

2017). This is because the number of points per strata need to be relatively balanced or the 

standard errors of the estimates will vary simply based on sampling intensity per category 

(Kaspar et al. 2017). One will not be able to tell if the differences in canopy cover between two 

different land uses, for example, are because of the different degree of sampling intensity (e.g. 

the number of observations), from actual differences in tree canopy cover, or some combination. 

The initial stratification plan limits from the outset and by design the types of comparisons that 

can be made from random point sampling and human image interpretation. To overcome this 

requires increasing the sample size dramatically. 

 

The third deficiency from a data quality perspective is unique to change detection. To 

detect a 5% change one needs more than 95% confidence (Parmehr et al. 2016). The error from 

time one, when compared to time two propagates the errors associated with the first two 

deficiencies of random point sampling described above. A study of Detroit, MI and Atlanta, GA 

illustrated this problem when measuring change by manually tracing canopy with polygons and 

with random points. The polygon method showed change for Detroit but not Atlanta, while 

point-to-point comparisons showed no significant differences at all (Merry et al. 2014). This 

empirically demonstrates the unreliability of the random point sampling method. 

 

High-resolution (<1m), high-accuracy (95%) tree canopy and canopy change maps are 

needed because 1) this approach’s validity does not vary with the amount of canopy in the study 

area, 2) the method allows for reliable and rigorous post hoc comparisons across categories of 

interest to researchers and practitioners, and 3) can detect small but meaningful changes. For 

example, a parcel may gain or lose 100% of its canopy, which has important management 

implications. But because that parcel likely only represents a tiny fraction of a given study area 

that change would go undetected, and by design, with random point sampling. 

 

In addition to these methodological limitations there are operational limitations. 

Proponents of the random sampling describe the method as fast and accurate. But often, 

researchers and practitioners need parcel-scale canopy and canopy change measures because 

management occurs at the parcel scale. Our study area contained 222,559 parcels. To calculate a 

confidence interval per parcel, one needs at least three points, although >30 is preferred. 

(Parmehr et al. 2016 empirically showed that for 3.5% and 30.5% tree canopy cover estimates 

using random point sampling did not become stable until after 200 points.) That means 667,677 

to 6,676,770 human interpretations would have been needed, for 3 or 30 points per parcel, 

respectively. At the impossibly-fast speed of one interpretation per second, 7.7 to 77.3 days of 

non-stop interpretation would be needed for 3 to 30 points per parcel. Consider, for example, 
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New York City, which has approximately 1 million parcels. It becomes clear that random point 

sampling is not fast. See O’Neil-Dunne and colleagues (2012, 2014) for an in-depth discussion 

of using humans’ and machines’ strengths in concert. High-resolution (<1m), high-accuracy 

(95%) tree canopy maps are needed for canopy change analyses with realism. 

 

 One high-resolution (<1 m), high-accuracy (95%) tree canopy change study of 

Worcester County, MA found a 2% (395 ha) loss from 2008 to 2010. It was estimated that 47% 

of the total loss was due to high- and low-density urban development. United States Department 

of Agriculture tree removal for Asian longhorned beetle eradication accounted for 25%, timber 

harvest (15%) and ice storm damage the remaining 6% (Hostetler et al. 2013). A unique study of 

high-resolution tree canopy examined change from years 2008, 2010, and 2015. Elmes and 

colleagues (2017) found an approximately 5.5C decrease associated with a 100% increase in 

canopy, and that summer conditions could grow 3.66 to 14.1 days longer in areas that lost 

canopy. Another high-resolution (<1m), high-accuracy (95%) tree canopy change study of 

Washington, DC found that low-income areas lost more canopy from 2006 to 2011 (as a % and 

absolute amount) even though higher income areas had more tree canopy in 2006 (Sanders et al. 

2015). Most Census block groups experienced a net loss of canopy, and 8% of Census block 

groups lost between 20 and 30 percent of their entire canopy, which can be qualitatively 

considered a significant portion of the urban forest (Sanders et al. 2015). A subsequent study of 

Washington, D.C. analyzed canopy change within Census tracts categorized by income change 

from year 2000 to 2013 (stable impoverished, decreasing wealth, remained above impoverished, 

increasing wealth, stable wealthy). Census tracts whose median household income grew 

(increasing wealth) from year 2000 to 2013 gained tree canopy from year 2006 to 2011, but not 

as fast as tracts with decreasing incomes (decreasing wealth), and most importantly net changes 

were negative in tracts of all five income trajectories (Chuang et al. 2017). A unique study of 

high-resolution (<1m), high-accuracy tree canopy change before and after an earthquake in 

Christchurch, NZ integrated parcel data. Morgenroth and colleagues (2017) used classification 

trees and were able to confidently infer removal in more than 80% of cases examined. This paper 

demonstrates one of the many applications of reliable canopy change data. Landry et al’s (2013) 

assessment of Tampa, FL’s urban forest is the most comprehensive known comparison of dot-

based random sampling, high-resolution tree canopy change mapping, large pixel image analysis 

(30 x 30 meter pixels), and field-based methods. The report’s high-resolution maps revealed a 

canopy increase of approximate 3% from 2006 to 2011, compared to only 2% found using point-

based and large pixel methods (though not statistically significant), and no change with field 

methods. Again, point-based sampling is shown to be unreliable relative to other methods. What 

these papers show is that change often represents a small, albeit extremely important, part of the 

urban forest and with long-term monitoring and effective policies canopy gain is possible. 

Further, the spatial distribution of canopy loss may pose environmental justice concerns, if the 

majority of those changes occur in socially vulnerable areas. 

 

1.3 Geodemographic Segmentation 

 

Geodemographic segmentation encompasses a range of spatial and statistical techniques for 

classifying areas based on who lives there, and is based on the premise that people who live near 

each other share demographic, socio-economic, and lifestyle characteristics (Troy 1995). 

Geodemographic segments are socio-spatial categories that represent different lifestyle groups. A 
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primary use of geodemographic segments is to help characterize consumer behaviors in support 

of crafting marketing strategies or locating retail centers (Weiss 2000; Holbrook 2001). 

Geodemography has gained popularity in academic research for assessments of health care 

service use among different subpopulations (Tao et al. 2013); and in the related area of service 

planning, social marketing, and benchmarking for public health initiatives (Abbas et al. 2009); as 

well as evaluation of school performance (Gibbs et al. 2010). Fire incidents were analyzed by 

geodemographic market segments in South Wales, UK to reveal the types of areas more prone to 

particular types of fire incidents, false alarms, and hoax calls (Corcoran et al. 2013). The main 

idea is that categorizing areas based on who lives there, and then examining behaviors in those 

categories, can help inform sales, service provisioning, and/or program performance across areas 

comprised of different social groups.  

 

Recent research has shown substantial differences in the amount of tree canopy and the 

opportunities for additional planting by geodemographic segment in Baltimore, MD (Grove et al. 

2006a,b; Troy et al. 2007), Raleigh NC (Bigsby et al. 2014), and NYC (Grove et al. 2014). In 

Baltimore, for example Troy et al. (2007) found that neighborhoods comprised of more families 

with children had on average 36% (95% CI [6.7, 64.6]) more tree canopy cover on private 

residential lands than neighborhoods with similar population densities, occupations and levels of 

educational attainment but predominated by younger singles or couples without children. Thus, 

lifestage as an important component of lifestyle relates to urban tree canopy cover on private 

residential lands. Subsequent research in Washington, D.C. and Baltimore, MD found 

participation rates in higher-income market segments in different reduced-cost or free tree 

programs that were ~2 to 6.5 times higher than for other market segments, depending on the 

program type, and if trees were planted on public (e.g. street trees) or private lands. This was true 

even though the need was lower in these areas because tree canopy was already well established 

and more abundant (Locke and Grove 2015; 2016). Alternatively, similar analyses for 

Philadelphia, PA and New York City found fairly equitable distribution of participation in 

similar reduced-cost or free tree programs by market segment (Locke et al. 2014; 2015). These 

differences are likely attributable to how the programs are organized and executed, among other 

factors (Nguyen et al. 2017). Nevertheless, further investigations in alternative locations are 

needed to better understand why tree canopy, plantable space, and participation in planting 

programs are tightly coupled by market segments in some places and not in others.  

 

With this grounding, we conducted multiple analyses to examine our research questions. 

First, we characterized the changes in tree canopy between 2009 and 2014 using high-resolution 

(<1m) aerial imagery and LiDAR (O’Neil-Dunne et al. 2015). Then, we used geodemographic 

market segmentation data to analyze tree canopy and canopy change within market segments. 

We analyzed tree canopy change at the neighborhood level to understand the relationship 

between tree canopy change and the social composition of the communities living where the 

change occurred. Next, parcel-scale analyses describe canopy cover and change within the 

boundaries of distinct landowners and across land use types. 

 

2. METHODS 

 

Tree canopy and tree canopy change on different land uses may require different types of 

interventions to meet urban forestry goals. In this study, we use a more recent (2009-2014), 
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spatially explicit assessment of tree canopy change of the Los Angeles coastal region to assess 

variations in change at three scales: first at the individual tree canopy or “patch” scale, then 

within Census block groups categorized into market segments, and then within property parcel. 

 

2.1. Study Area 

 

 
Figure 1. Map of coastal Los Angeles study area and Census Block Groups classified by ESRI 

Tapestry Segment, located in Coastal Los Angeles County, USA. 

 

This research was conducted in the coastal areas of Los Angeles County, California, 

which is located in the southwestern United States (Figure 1). The study area boundary was 

original created by the United States Geological Survey (USGS) to define the extent of 

California Coastal Conservancy Coastal Lidar Project (see Data section below) whose focus was 
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on topographic mapping to support coastal modeling efforts. It comprises 536 square kilometers. 

The northern and southern boundaries of the study area are the borders of Los Angeles County, 

which includes portions of many municipalities, the largest of which are Los Angeles and Long 

Beach. The western boundary is the Pacific Ocean. 

 

With over 10 million residents in 2015, Los Angeles County is the most populous in the 

United States (US Census Bureau 2015). As of the 2010 Census, it was also one of the nation’s 

most diverse counties (US Census Bureau 2009). With a semi-arid Mediterranean climate 

encompassing mountains, deserts, and coastline, the region is vulnerable to extreme heat, 

droughts, floods, wildfires (Wisner 1999), and other severe weather only expected to become 

more unpredictable with climate change (Berg and Hall 2015; Bartos and Chester 2014).  

 

2.2 Data 

 

2.2.1 Tree Canopy Change 

 

Tree canopy change within the coastal areas of interest was mapped using a combination of high-

resolution imagery and LiDAR data acquired at two different time periods. The LiDAR data was 

acquired in 2009 by the USGS and distributed by the National Oceanic and Atmospheric 

Administration (NOAA) as part of the California Coastal Conservancy Coastal LiDAR Project 

with an average spacing of ~1.5 points per square meter. The imagery was acquired in 2014 as 

part of the National Agricultural Imagery Program (NAIP) and consisted of 4-band (visible plus 

NIR) at a resolution of 1 meter. The tree canopy change mapping was accomplished using a 

semi-automated approach that incorporated elements of automated feature extraction and manual 

editing. The principal underlying technology used for the automated mapping was Geographic 

Object-Based Image Analysis (GEOBIA; Hay and Castilla, 2008). GEOBIA works by 

employing segmentation algorithms to group pixels into objects. These objects can then be 

classified based on their individual (e.g. spectral reflectance or height) or contextual (e.g. 

proximity to neighboring objects of a certain class) properties. The object-based system 

developed for this project was modeled after previous tree canopy mapping projects conducted in 

urban areas (MacFaden et al. 2012) and included object fate analysis techniques developed by 

Schöpfer and Lang (2006). The object fate approach ensures that actual tree canopy change was 

mapped as opposed to change resulting from the spatial inconsistencies that exist between the 

two datasets. A rule-based expert system using GEOBIA principals was implemented within the 

eCognition software suite (Trimble Navigation Ltd.). The expert system incorporated 

segmentation, classification, morphology, and fusion algorithms to map tree canopy change. In 

general, the process involved creating image objects from the 2009 LiDAR data and 2014 

imagery, determining the objects that were tree canopy, and then assigning the object to one of 

three classes: 1) No Change; 2) Loss; and 3) Gain. The No Change class included tree canopy 

that persisted between 2009 to 2014. The Loss class comprised tree canopy that was removed. 

New tree canopy that was established during the period was assigned to the Gain class. 

Identification of tree canopy within the 2009 LiDAR data relied primarily on the properties of 

the LiDAR point cloud and surface models, principally that trees were tall and contained a high 

relative number of LiDAR returns compared to buildings. In the 2014 NAIP the principal 

characteristics of trees were their high Normalized Difference Vegetation Index (NDVI) values 

along with their varied texture. The minimum mapping unit for detecting trees was six square 
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meters, and there was no minimum mapping unit imposed on the tree canopy change classes. A 

team of trained technicians then reviewed the output of the automated approach within ArcGIS 

(ESRI 2012) at a scale of 1:2,000 making 8,212 corrections. The resultant product was a high-

resolution vector GIS layer comprised of polygons classified into three categories: 1) No 

Change; 2) Loss; and 3) Gain. See O’Neil-Dunne and colleagues (2015) for additional 

information. 

 

2.2.2 Geodemographic Segments 

 

Year 2010 Census block group data containing ESRI’s 2013 Tapestry LifeMode classifications, 

were acquired from ESRI. This classification system describes populations by clustering 

demographic, socio-economic, lifestyle characteristics, credit card expenditures, and other data 

(ESRI 2013; Table 2). Tapestry is therefore an example of geodemographic segmentation data. 

Not all LifeMode groups are present in our study area, but all are listed for completeness. The 

tree canopy change dataset did not perfectly align with Census block group boundaries; Census 

block groups with at least half of their area within the study area were clipped down to the extent 

of the canopy change layer and included in the analyses. The five measures of canopy and 

canopy change were analyzed across the ten LifeMode group types found within the study area. 

As a robustness check the analyses were repeated using only Census block groups completely 

within the study area boundaries to determine whether the results were substantially different. 

Since there are only a few Census block groups represented within some LifeMode group types, 

we restricted the inferential statistics to the five most common LifeMode types which have >=50 

Census block groups each. However, for completeness the figures below will show the 

distribution of canopy and canopy change across all ten LifeMode groups. 

 

2.2.3 Parcels 

 

Parcels were obtained from Los Angeles County (Assessor Parcels – 2015 Tax Roll 2016). 

Where duplicate polygons occurred, only a single parcel was retained. This was accomplished 

using the “Delete Identical” tool in ArcGIS with the “Shape” Field specified. Parcels within the 

study area were selected and clipped down. The extent of the LiDAR did not correspond 

perfectly to parcel boundaries, so this clipping altered the geometry of some parcels on the edges 

of the study area. However there are so many parcels (more than 200k) that the effect of this 

small number of modified parcels is negligible. The parcel dataset left roads and sidewalks 

(PROW) as undefined negative space. A PROW layer was generated because we are interested 

in tree canopy and tree canopy change pertaining to street trees. First, the parcel geometries were 

erased from the study area polygon in ArcGIS. The resulting polygon is the PROW, where street 

trees are located. Next, that PROW feature was merged back into the original parcel dataset 

making a complete and spatially exhaustive coverage of the study area. The result is a continuous 

coverage of the study area depicting land use including the PROW. 
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Table 2. ESRI’s Tapestry Geodemographic segmentation (2013) system’s LifeMode 

classification and brief descriptions. Groups are arrayed from highest income (top) to 

lowest (bottom). 

LifeMode Name Brief Description 

High Society Affluent, well-educated, married-couple homeowners 

Upscale Avenues Prosperous, married-couple homeowners in different housing 

Metropolis City dwellers in older homes reflecting the diversity of urban culture 

Solo Acts Urban young singles on the move 

Senior Styles Senior lifestyles by income, age, and housing type 

Scholars and Patriots College, military environments 

High Hopes Young households striving for the “American Dream” 

Global Roots Ethnic and culturally diverse families 

Family Portrait Youth, family life, and children 

Traditional Living Middle-aged, middle income—Middle America 

Factories and Farms Hardworking families in small communities, settled near jobs 

American Quilt Households in small towns and rural areas 

 

2.3 Analyses 

 

2.3.1 Change Measures 

 

The tree canopy and tree canopy change layer containing No Change, Loss, and Gain classes 

were summarized within Census block groups and parcel boundaries. Using the Intersect and 

Dissolve tools in ArcMap 10.1 (ESRI 2012), we calculated five measures of tree canopy and 

canopy change: 1) total canopy, 2) persistence, 3) loss, 4) gain, and 5) net change. These are the 

study’s dependent variables. We defined total canopy as the percentage of an area covered by 

tree canopy at any time during the study period. Total canopy is therefore the sum of No Change, 

and Gain minus Loss area as a percentage of Census block group or parcel area. Persistence 

equals the No Change class divided by total canopy, expressed as a percent, and measures areas 

that had the same canopy cover at the start and end of the study period. Loss and gain were 

calculated as proportions of the total canopy cover in the same way as persistence, from the Loss 

and Gain classes in the canopy change layer. Loss and gain measure how much of the canopy 

cover was lost due to removal and/or death or gained from planting, grow-out, and/or trees that 

grew spontaneously, between 2009 and 2014, respectively. Net change was calculated as the 

difference in canopy between 2009 and 2014 divided by the canopy present only in 2009, so that 

negative values correspond to loss while positive values reflect gain. Total canopy, persistence, 

loss, and gain can hypothetically vary from zero to one hundred percent, and net change may 

span from negative one hundred to one hundred percent. 

 

 Following our research questions, our analyses were carried out in three phrases. First we 

describe the tree canopy and canopy change layer across the study area to provide context on 
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overall persistence and change. This step addresses how tree canopy and canopy change were 

distributed across coastal LA between 2009 and 2014, as classified at the sub-tree canopy scale. 

Next, we examined the five dependent variables measures within Census block group and then 

within parcel boundaries; this facilitates analyses by geodemographic segment and by land use, 

respectively. At the Census block group-level, we analyzed canopy and canopy change by 

geodemographic segment to better understand the population who lives where the tree canopy 

and canopy changes occurred, and the types of neighborhoods experiencing change. The five 

dependent variables did not approximate a normal distribution at the Census block group scale so 

the Kruskal-Wallis rank sum test was used to investigate differences in canopy and canopy 

change by LifeMode group instead of analyses of variance. We used the kruskal.test() in the stats 

package in the R programming language version 3.2.2 “Fire Safety” (R Core Team 2015). 

Pairwise differences were examined with the Wilcoxon rank sum test using the 

pairwise.wilcox.test() with the Holm adjustment method for multiple comparisons. Finally, in the 

third phase, we examined how tree canopy changed across different land uses at the parcel-level. 

See Locke (2017) for the data and R code for replication.  

 

3 RESULTS 

 

3.1 Canopy Polygon-Level Analyses 

 

Total tree canopy covered 14.49% of the coastal LA study area, meaning that nearly 15% of the 

region had canopy, lost canopy, or had new canopy between 2009 and 2014. There were nearly 

three quarters of a million (n = 727,904) canopy polygons in the canopy GIS dataset, the vast 

majority of which represent persistence (98.25% of patches, 98.06% of area; Table 3). 

Collectively they cover 14.21% of the study area. There was an order of magnitude more loss 

than gain at the patch-level; loss polygons also tended to be larger and there were more of them 

(Table 3). Gains were small and diffuse compared to losses. But loss polygons comprised <2% 

of the total tree canopy, both as individual patches and by area (Table 3). 

 

Table 3. Descriptive Statistics for tree canopy and canopy change patches. 

 
 

Canopy type 

No change Loss Gain 

Number of objects 714,991.00 11,435 1,478 

A

r

e

a

 

f

t
2 

Total 528,345,269.00 9,867,521.00 575,841.10 

Min. 0.000153 0.0003 0.000388 

Mean  738.95 862.92 389.61 

Max. 9,169,433.00 119,907.10 25,377.66 

Standard Deviation 17,425.06 2,151.45 1,245.47 

 

3.2 CBG-Level Analyses 
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Generally, higher income Census block groups had more total tree canopy between 2009 and 

2014 than their lower income counterparts (Figure 2 I). Specifically, High Society and Upscale 

Avenues Census block groups had statistically significantly more total canopy cover than Solo 

Acts, who in turn had statistically significantly more total canopy cover than Global Roots 

Census block groups, who had statistically significantly more total canopy cover than Family 

Portrait Census block groups (p < 0.05 when adjusting for family wise error rate from multiple 

comparisons, Figure 2 I). However, major advantage of the market segments is to analyze social 

groups as defined by many demographic, socioeconomic, and lifestyle characteristics, not just 

household income summarized to the Census block group. For example, Global Roots Census 

block groups – comprised of Ethnic and culturally diverse families – tend to have ~12% tree 

canopy, while High Society – comprised of affluent, well-educated, married-couple homeowners 

– areas had ~17% tree canopy during the study period (Table 2). Thus, the neighborhoods 

comprised of higher income households had nearly 42% more canopy than their lower-income 

counterparts, overall. Higher income market segments also had more stable tree canopy (Figure 2 

II), although there were fewer statistically significantly different pairs, than for total canopy. It 

appears that certain Census block groups in particular – in contrast with groups of Census block 

groups in a shared market segment – experienced substantial changes, as evidenced by the more 

abundant outliers in the middle panel (II) than in the top panel (I) of Figure 2. Outliers are 

defined here as > 1.5 times the interquartile range. Reflecting the canopy-patch specific data, at 

the Census block group-level the urban forest is mostly persistent too (Figure 2 II); the average 

No Change per Census block group is 97.77% of the total canopy (median = 98.57, SD = 3.08). 

Average loss per Census block group was 2.18% of total canopy (median = 1.38, SD = 3.04). 

Consistent with patch-level data, gain is much less common than loss. The mean gain per Census 

block group was half a tenth of a percent of total canopy (median = 0.00, SD = 0.33). Twelve 

Census block groups had gain >1% of total canopy. But when loss is also considered, only seven 

Census block groups (0.94% of all block groups analyzed) experienced a net increase in tree 

canopy (Figure 2 III), while nine Census block groups experienced a net loss ≥15% of total 

canopy. 

 

3.2.1 Robustness Checks  

 

As a robustness check we repeated the analyses above on a smaller dataset using only Census 

block groups completely within the study area boundaries to see if the results were substantially 

different. The statistical groupings were largely unchanged, and where there were differences 

they are likely attributable to the uncertainty associated with smaller sample sizes and multiple 

comparison tests. The interpretations remain the same; we omit those outputs for brevity. 
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Figure 2. Total tree canopy (I), persistence (II), and net change (III) by geodemographic 

segment at the Census block group-scale. Segments with the same letters are not statistically 

significantly different (p <0.05) from each other, per pane, after adjusting for multiple 

comparisons. All segments are shown for completeness, but only segments with ≥ 50 Census 

block groups are analyzed statistically to assuage concerns over sample size. Segments are 

arrayed from highest income (High Society) to lowest income (American Quilt). Note the 

different x-axes lengths.  

 

 A strength of the high-resolution (<1m), high-accuracy (>95%) tree canopy change data 

is the ability to summarize canopy and change within any boundaries, including individual 

property parcels. Parcels correspond to distinct land uses and importantly to separable 

landowners. Parcels link tree canopy – and canopy change – to particular decision makers. 

Summary statistics for canopy and change are shown in Table 4. Because we derived a PROW 

polygon, we analyzed canopy change that is specific to street tree management. Total canopy 

covered 6.997% of the PROW area, of which 97.96% was from the no change category. Loss 

13

Locke et al.: Tree Canopy Change in Coastal Los Angeles, 2009 - 2014

Published by Digital Commons at Loyola Marymount University and Loyola Law School, 2017



 

comprised 2.01% of the total canopy in the public right of way, gain made up 0.03%. Therefore 

the net change was -1.98% in the PROW. An ~2% loss is consistent with the study area-wide 

loss (Table 3) and the average loss per Census block group, although net change varied more 

widely by market segment (Figure 2 III). 

 

 
Figure 3. 2009 LiDAR surface model (left), tree canopy change (center), and 2014 imagery 

(right). The LiDAR surface model represents the height above ground, presenting a clear 

representation of tall features such as building and tree canopy. Most of the tree canopy is taller 

(red) then the buildings (cyan and yellow). Tree canopy in the imagery can be discerned by its 

color, texture, and presence of shadows. There is a large area of tree canopy that was removed in 

the center-right of the image. In addition to the removal of individual trees scattered throughout 

the area. Gains in tree canopy are too fine-scaled to be viewed in this graphic but are present 

throughout the area.  

 

The canopy and canopy change measures encompass the whole range of possible values, 

or nearly span in the case of gain and net change, when summarized within parcel boundaries 

(Table 4). The values are also heavily concentrated around extreme values. For example the 

median no change was a 100% while the median loss, gain and net change are all 0%. This 

distribution of parcel-scale canopy change is consistent with previous research (Landry 2013). 

While non-parametric inferential statistics are possible, their utility are limited, as 

generalizability of canopy and canopy change by land use is not reliable. We instead focus on 

description over inference. 
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Table 4. Canopy or canopy change measure as a % of parcel area for all parcels (n = 222,559). 

Values span generally span the entire hypothetical range and are highly skewed toward extreme 

values. 

 Canopy or Canopy Change Measure as a % of Parcel Area 

Total 

Canopy 
No change Loss Gain 

Net 

Change 

Min. 0.00 0.00 0.00 0.00 -100.00 

Mean 13.18 91.89 1.21 0.04 -1.09 

Median 9.72 100.00 0.00 0.00 0.00 

Max. 100.00 100.00 100.00 98.34 98.34 

Standard 

Deviation 
12.96 26.40 8.03 1.29 8.13 

 

 
Figure 4. Most of the canopy was on residential lands, by absolute area and 

as a percent area. Miscellaneous includes Dry Farm, (unavailable), “NA”, 

and Irrigated Farm.  
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4. DISCUSSION 

 

How is tree canopy and tree canopy distributed across coastal Los Angeles, which 

geodemographic markets segments experienced those changes, and how did canopy change 

across different land uses between 2009 and 2014? We sought to find evidence for three research 

questions about tree canopy change as it relates to populations and land uses in coastal Los 

Angeles, California, using both historical and novel data. First, we examined the existing tree 

canopy cover of coastal Los Angeles, as well as how canopy cover changed between 2009 and 

2014. We found existing tree canopy covering approximately 15% of our coastal study region, 

which is lower than the 20% tree canopy cover found in the City of Los Angeles in the Million 

Trees LA report (McPherson et al. 2008). We point this out only as a point of comparison, as our 

study areas were overlapping but not identical, and our methods were different from the 2008 

report. Compared to cities across the U.S. recently assessed using our approach, 15% canopy 

cover is still on the low side. For example, New York City, Des Moines, and Honolulu had tree 

canopies of 21%, 27%, 20%, respectively (see https://www.nrs.fs.fed.us/urban/utc/pubs for tree 

canopy reports). In addition, the focus on coastal communities influenced the density of canopy 

cover as trees become less frequent along liminal regions of the coast. 

 

Tree canopy change is expressed differently across scales. We found very little overall 

change in tree canopy cover in coastal Los Angeles between 2009 and 2014. For example, the 

727,904 tree canopy patches in the study area, 98.25% were classified as no change which 

represents 98.06% of the total tree canopy area. Persistence was an order of magnitude greater 

than loss, which in turn was an order of magnitude greater than gain (Table 3). However, canopy 

change nearly spanned the entire possible range when summarized within parcels (Table 3). The 

modest decline in tree cover found here is consistent with other similar tree canopy change 

studies (Hostetler et al. 2013; Landry et al. 2013; Sanders et al. 2015; Chuang et al. 2017; Elmes 

et al. 2017). In sum, we found that overall canopy in aggregate at the study area-level changed 

very little, but fine-scale changes indicate that the geographic distribution has shifted over time. 

This movement of tree canopy within a city has been termed “churn” by previous researchers 

(Kaspar et al. 2017).  

 

Our second question sought to determine how tree canopy and canopy changes was 

associated with human population demographics. We found that tree canopy change was most 

pronounced at the Census block group scale, which can be associated with distinct social groups. 

Overall higher income Census block groups tended to have more tree canopy, more persistence 

in that canopy, and lose less tree canopy than lower income areas (Figure 2). These findings are 

consistent with Tayebbi and Jenerette’s (2016) findings that vegetation and neighborhood 

income were positively correlated throughout all climate zones in Los Angeles. Our analysis of 

geodemographic segments revealed that some of the lowest tree canopy was found where the 

Family Portrait (youth, family life, and children) and Global Roots (ethnically and culturally 

diverse families) segments lived. This suggests that lower income, non-white families with 

children are living in areas of lowest tree canopy in the first place, and are also experiencing 

greater loss of canopy than other areas. This should prompt concerns for equity and 

environmental justice, and promote the need for data-driven prioritization of future tree 

plantings. 
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However, there was considerable range of canopy among Census block groups within the 

same geodemographic segment, as seen with the wide whiskers in Figure 2, panel I. Average loss 

per Census block group was 2.18% of total canopy. A similar study of tree canopy change in 

Washington, D.C. also found that higher income Census block groups both had more canopy and 

loss less than lower income Census block groups (Sanders et al. 2015). Changes in median 

household income from year 2000 to 2013 at the Census tract level, were associated less tree 

canopy in Washington, D.C. (Chuang et al. 2017). Stable homeownership patterns in Sacramento 

co-occur with residential tree planting survival (Roman, Battles, and McBride 2014). It is 

therefore possible that residential turnover (Roy Chowdhury et al. 2011) and other 

socioeconomic changes cause disturbances associated with canopy loss.  

 

 Finally, our third research question asked how the urban forest was changing among 

different land uses. Our results showed that residential, recreational, and institutional land uses 

had the most tree canopy as a percent of land area, while residential and the public right of way 

had by far the most tree canopy by total area (Figure 4). Previous studies carried out by the US 

Forest Service (https://www.nrs.fs.fed.us/urban/utc/pubs/), primarily in the Northeastern United 

States, show that most tree canopy is on residential land uses, where municipalities lack 

management jurisdiction. Programs seeking to expand tree canopy increasingly use tree 

giveaways to reach these private residential lands because they represent an important part of the 

urban forest, and present great opportunity for increased canopy (Nguyen et al. 2017). Similar to 

the patch scale, parcel-level canopy was predominantly persistent. Tree canopy change in the 

public right of way, where municipalities do have management jurisdiction, tended to match 

patch-level changes. For example, in the PROW 97.96% of the total tree canopy area was from 

the no change category, and net change was approximately a 2% decline. Instead of reflecting 

urban forest averages, public land managers can lead by example to increase cover and maintain 

existing cover.  

 

5. CONCLUSIONS & NEXT STEPS 

 

This study adds to the small but growing body of tree canopy change using high-resolution 

(<1m), high-accuracy (95%) tree canopy change data. Our results underscore the value of these 

methods to assess tree canopy change. Together our three scales of analysis showed that stability 

was the overall, dominant study area-wide trend, with: uneven overall distribution with limited 

canopy at the land/water interface; a tendency for higher-income lifestyle groups to have more 

tree canopy and less loss; the majority of canopy on residential land; and, the most pronounced 

changes at the parcel-scale. Parcel-scale canopy change spanned the entire range of possible 

values, signaling a) the importance of high- resolution (<1m), high-accuracy (95%) canopy 

mapping, b) the importance of localized and very meaningful landscape changes that would 

otherwise be missed at coarser scales. These high- resolution (<1m), high-accuracy (95%) data 

and analyses can support valuable tools to guide decision-making about urban forests, especially 

as it relates to social equity. 

 

 This analysis was instructive in allowing us to apply these methods to a coastal region, 

which has novel vulnerabilities affiliated with its proximity to a marine ecosystem. According to 

the NASA Global Rural Urban Map Project, the urban global footprint is just 3% (CIESIN et al. 

2011). However, the vast majority of urban settlements are adjacent to large bodies of water. As 
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such, understanding the canopy dynamics of these ecosystems is critical to enhancing the 

resilience of these communities.   

 

This project is envisioned as longitudinal, both in geographic range and temporal scope. 

We intend to expand the study, in geography, analysis, and application. The next phase is to 

extend the study to complete a countywide analysis to examine whether we find similar trends in 

the inland and desert areas of the Los Angeles region. We intend to continue to study tree 

canopy, canopy change, and the relationships with other variables of interest. One possibility is 

to further explore our notion that residential turnover and other socioeconomic changes may 

have caused disturbances associated with canopy loss. We are also working with local 

community groups and municipalities to find ways to incorporate the tree canopy data into 

decision-making about where to plant trees. Such data-driven planning can facilitate 

identification of priority residential and public parcels for urban forestry improvements.  

 

Understanding the interplay among these variables across an ecosystem as diverse as Los 

Angeles County will provide a template for investigations of other Mediterranean cities and their 

associated ecosystems. Incorporating tree canopy analysis into urban planning is a fundamental 

element of building resilient cities. Our hope is that this project becomes a replicable model for 

our urban research partners throughout the world and that these data sets provide an open source 

toolkit for further research efforts.  
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