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ABSTRACT 
  
 Santa Monica Bay and its vast beaches are important Los Angeles icons, while also 

providing significant ecosystem services to over millions of recreational visitors annually. 

Contaminated runoff from numerous watersheds surrounding the Bay, especially the 87% 

urbanized Ballona Creek Watershed, have historically resulted in poor water quality along areas 

of the Bay shoreline.  Decades of monitoring for fecal indicator bacteria (FIB) along the Bay’s 

shoreline has been associated with NPDES wastewater discharge and stormwater programs.  

Many projects have been implemented throughout the watersheds (e.g. sewer improvements, 

biofiltration systems, low-flow diversions (LFDs)) to lessen flows of runoff from contaminating 

surf zone recreational waters. Despite decades of monitoring, there has been no long-term 

assessment of trends in shoreline FIB, especially in response to implementation of projects to 

improve water quality. The goal of this study was to assemble 30 years of monitoring data 

(1988-2017) for E. coli and enterococci to assess trends along the entire shoreline of Santa 

Monica Bay. Data were analyzed by calculating rolling 30-day geometric means, and comparing 

means by geographic subdivision, between wet and dry weather, and over time. Resulting 

trends for both E. coli and enterococci were: 1) concentrations peaked around 2005 when many 

stations shifted to sampling points where runoff mixed directly with surf zone water; 2) after 

2005, concentrations fell to present levels, especially at beaches where LFDs were 

implemented; 3) concentrations were extremely variable during the 2016-17 wet season; 4) the 

north and central areas of the Bay, impacted by runoff from the Ballona Creek and Malibu 

Creek Watersheds, had greater concentrations relative to the south area; and 5) dry weather 

concentrations were steadily low, whereas wet weather displayed a higher degree of variability 

and may present a more significant challenge to meet water quality standards going forward. 

Implementation of LFDs and other best management practices to restrict polluted runoff from 

flowing into the surf zones of the Bay’s beaches most likely improved water quality throughout 

the Bay.  
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INTRODUCTION

Recreational Water Quality 

 Recreational beaches provide an essential financial resource upon which many coastal 

communities rely, with national beach visitation generating between $6-30 billion per year to 

the economy (Pendleton 2007).  If water quality is poor at these beaches, swimmers and others 

have a greater risk of exposure to water borne pathogens and subsequent illnesses, leading to 

economic losses.  Recreational water use in the U.S. accounts for an estimated 90 million cases 

of waterborne illnesses per year with an associated annual cost of $2.9 billion attributed to 

medical cost and productivity loss (Deflorio-Barker et al. 2018).  With such a huge economic 

impact, it is of the highest priority that there be safe and swimmable surface waters throughout 

the country.  

  

 Beach waters are susceptible to contamination from polluted runoff and sewage, 

especially prior to the 1972 Clean Water Act (CWA). For example, a 1942 pollution survey was 

conducted along the shoreline of Santa Monica Bay to determine the extent of fecal pollution 

from a screening facility located at the site of the present Hyperion Wastewater Treatment 

Plant. Using E. coli in samples of water taken along the shoreline, results determined that 

shoreline water was contaminated with sewage to a dangerous degree. As a result, five miles of 

shoreline was quarantined lying on either side of the Hyperion site (Bureau of Sanitary 

Engineering 1943). Since that time, federal and state legislation has been enacted to improve 

beach water quality. 

 

 Under the CWA, the U.S. EPA developed water quality criteria for the states (U.S. EPA, 

n.d.). Water bodies where standards are not met are added to the 303(d) list of impaired 

waters. They are then required to develop a Total Maximum Daily Load (TMDL), a plan 

identifying the maximum amount of each pollutant a body of water can receive while still 

meeting the standards (U.S. EPA, n.d.).  TMDLs serve as a planning tool and regulatory strategy 

to bring water bodies back into compliance.  
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 Recreational water quality standards are based on measured values of fecal indicator 

bacteria (FIB) (Ashbolt et al. 2001). Pathogens can be difficult to quantify directly, so FIB are 

measured in its place, with higher concentrations representing a greater chance of the 

presence of pathogens. Three groups of FIB historically have been tested to assess water 

quality, and include total coliforms, fecal coliforms (or direct measurements of E. coli), and 

enterococci.  Enterococci are the preferred indicators based on epidemiological studies and are 

considered the most reliable for marine waters (U.S. EPA 2012). 

 

 Sources of FIB impacting recreational waters include sewage, feces of warm-blooded 

animals, trash, rotting vegetation, and polluted urban runoff (Ashbolt et al. 2001, Dorsey 2010). 

Runoff is introduced into beach waters via freshwater outlets, like storm drains and creek 

mouths, and leads to elevated levels of FIB and their associated pathogens (Ackerman et al. 

2005; Noble et al. 2000), especially during wet weather (Noble et al. 2003).  

  

Santa Monica Bay  

 Santa Monica Bay (SMB) is an embayment west of Los Angeles, whose beaches are an 

economically vital resource to the region (Figure 1) (Dojiri et al. 2003). Numerous watersheds 

surround SMB, the largest being the Malibu Creek and Ballona Creek watersheds (Figure 2). 

Malibu Creek drains a primarily rural watershed, whereas Ballona Creek drains a more 

urbanized setting (Figure 3). The Ballona Creek Watershed is 87% urbanized (Abramson 2014) 

and the largest watershed draining into the Bay. Runoff from this watershed is increased due to 

extensive impervious surfaces (California Regional Water Quality Control Board 2011).  

 

 Polluted urban runoff is introduced into beach waters through the mouths of creeks and 

storm drains. A study conducted in SMB showed elevated FIB levels and a greater chance of 

swimmer illness within a closer proximity to storm drains and other freshwater outlets along 

the shoreline (Haile et al 1999), and this risk increases further during wet weather (Schiff et al. 

2016). 
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Figure 1. Map of Santa Monica Bay. 

 

 Storm events have repeatedly been shown to lead to increased levels of FIB in coastal 

waters (Griffith et al. 2009; Noble et al. 2003). Wet weather is frequently defined as a day with 

³ 0.1 inches of rain plus the three following days. This threshold is consistent with a study 

conducted in SMB examining the relationship between rainfall and beach bacterial 

concentrations where there was no observable rainfall effect for storms having less than 2.5 

mm (approximately 0.098 inches) of rainfall (Ackerman & Weisberg 2003). FIB levels normally 

returned below water quality standards within three days.  
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Figure 2. Santa Monica Bay Watersheds map. Image source: California Regional Water Quality Control Board- 

Los Angeles Region. 2011. State of the Watershed- Report on Water Quality. 
 

 
Figure 3. Santa Monica Bay Watersheds land use map. Image source: California Regional Water Quality Control 

Board- Los Angeles Region. 2011. State of the Watershed- Report on Water Quality. 
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Shoreline Monitoring of FIB in Santa Monica Bay 

 Several agencies conduct shoreline monitoring of FIB as part of the U.S. EPA and State of 

California NPDES programs to monitor storm water and wastewater discharges. These agencies 

include the City of Los Angeles’ Environmental Monitoring Division (EMD), the Los Angeles 

County Department of Health Services (DHS), the Los Angeles County Sanitation District 

(LACSD), and the beach cities (BC) (City of Redondo Beach, City of Manhattan Beach, and City of 

Hermosa Beach). Monitoring locations are situated near high recreational use areas and 

sources of urban runoff, i.e. mouths of storms drains and creeks. Shoreline water samples 

typically are collected daily to weekly and tested for concentrations of total coliforms, E. coli or 

fecal coliforms, and enterococci. In the late 1980’s to early 2000’s, membrane filtration 

methods of quantification were used that reported values as colony forming units/100 ml 

(CFU/100 ml) (U.S. EPA 2002a, 2002b). However, in the early 2000’s the various agencies 

switched to the use of chromogenic substrate methods of quantification, where values are 

reported as the most probable number/100 ml (MPN/100 ml) (American Public Health 

Association 2012). Water quality is then determined through comparison with numeric 

standards established by the State of California (CLA 2015). 

 

 In 1998, SMB beaches were found to have excessive levels of FIB and were added to the 

303(d) list of impaired waters. As a result, TMDLs were developed for bacteria for wet weather 

and dry weather conditions. These TMDLs established numeric targets based of the three 

groups of FIB: total coliform, E. coli (or fecal coliforms), and enterococci (Table 1). The numeric 

targets include single sample and rolling 30-day geometric mean limits (CLA & CLA 2004; CLA 

2015). The TMDLs triggered action to organize monitoring efforts and reduce FIB to bring SMB 

into compliance.  

 

Table 1. TMDL single sample and rolling 30-day geometric mean numeric limits for FIB. 
Single Sample Limits Rolling 30-Day Geometric Mean Limits 

10, 000 total coliform/100 ml 
400 E. coli (or fecal coliform)/100 ml 
104 enterococci/100 ml 

1, 000 total coliform/100 ml 
200 E. coli (or fecal coliform)/100 ml 
35 enterococci/100 ml 



 6 
 

 On November 1, 2004, the various sampling agencies began participating in the 

Coordinated Shoreline Monitoring Plan (CSMP). The CSMP established consistency in 

monitoring by organizing sampling among the different entities. The plan was developed to 

comply with monitoring requirements for the wet and dry weather FIB TMDLs. Historically, sites 

were sampled a certain distance from sources of urban runoff, approximately 25-50 yards 

away. However, as part of the CSMP, all stations were to set to be sampled at point-zero, which 

is defined as the point where freshwater from a storm drain or creek mouth initially mixes with 

receiving ocean waters (CLA & CLA 2004).  

 

 To reduce FIB in SMB, a variety of best management practices (BMPs) have been 

implemented along the shoreline and throughout the watershed. Most of these BMPs included 

sewer improvements, biofiltration systems, and low-flow diversions. The latter was found to be 

among the most effective means at reducing FIB (Dorsey 2010) and as a result, increasing beach 

attendance in SMB (Atiyah et al. 2013).  

 

 Low-flow diversions (LFDs) prevent runoff from flowing into the ocean by intercepting 

flow in the storm drains and diverting it to the sanitary sewer system for eventual treatment at  

wastewater facilities (Figure 4). In the past, these structures were only operational during the 

dry season from April 1 through October 31. By approximately 2009, they became operational 

year-round during dry weather conditions. In the case of a rain event, they are shut down and 

flow is allowed to discharge to the ocean. Three days after the storm passes, they are turned 

back on to once again divert flow. The majority of diversions deal with an average drain flow of 

0.43 MGD, with a range from 0.3-4.2 MGD (CLA 2004). The Santa Monica Canyon (SMC) LFD is 

the largest of the diversions and operates automatically with the assistance of a rubber dam 

located in the open concrete-lined channel leading to the beach. When the water during wet 

weather reaches a level of 3 ft, the dam automatically deflates allowing flow to pass over this 

structure and onto the adjacent beach and surf zone. Once the storm passes and the water 

levels returns to 1.5 ft, the dam re-inflates and runoff once again is diverted into the sewer 
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Figure 6.  Geographic regions of Santa Monica Bay used for this study based on the movement of storm water 

plumes flowing from the Ballona Creek and Malibu watersheds. 
 

Data Compilation 

 Raw monitoring data for enterococci and E. coli along with associated rain data were 

provided by Heal the Bay and EMD, and spanned from 1988 through 2017, a total of 30 years. 

Monitoring data originated from shoreline monitoring programs conducted by the EMD, DHS, 

LACSD, and BC (Table 2).  Daily rain data, used to distinguish between wet and dry weather, 

were measured at the National Weather Service Los Angeles International Airport rain gauge.  

Additional rain data from EMD monitoring were used to fill several historical gaps (January 1988 

to May 1992, and October 1994 to January 1995). Wet weather days were defined as a day with 

³ 0.1 inches of rain plus the three following days. 

 
 Over the study period, there were numerous changes to monitoring locations, including 

stations eliminated, new stations added, shifting sampling locations, or changing of a station’s 

designation or lead sampling agency. Small-scale changes mainly consisted of moving the 
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sampling distance from the outlets of storm drains, creeks, or rivers. Some of the most 

substantial changes came on November 1, 2004 as part of the CSMP (CLA and CLA 2004). At this 

time, additional monitoring locations were added and all new and existing locations adjacent to 

freshwater outlets were sampled at point-zero, the location where the discharge from a storm 

drain or creek initially mixes with receiving ocean waters. 

 

Table 2.  Number of sampling sites, responsible monitoring agencies, and the number of low flow diversions in 
each of the three regions of Santa Monica Bay partitioned for this study. 

Geographic 
Region  Boundaries No. of 

Stations 
Associated 

Monitoring Agencies 
No. of 
LFDs 

North Bay Point Dume to Temescal 
Canyon 29 EMD & DHS 5 

Central Bay Santa Monica Canyon to 
Dockweiler State Beach 28 EMD & DHS 13 

South Bay  Manhattan Beach to Outer 
Cabrillo Beach 24 EMD, DHS, LACSD, & BC 6 

 
  

 The data set was reduced from more than 150 stations over the study period to 81 after 

older stations were combined or grouped under existing stations (Figure 7; Appendix A). This 

approach included combining stations with the same geographic coordinates or similar location 

descriptions, the grouping of pre- and post- point-zero stations, and site locations that 

overlapped among multiple agencies. Stations at Mother’s Beach in Marina del Rey were 

excluded from the study because they were in a different environmental setting. Mother’s 

Beach is an enclosed beach having poor water circulation, unlike SMB’s shoreline that is 

exposed to waves and currents. 

 

 The units for measured values of enterococci and E. coli reported herein are given as 

“organisms/100 ml” since two methods were used to enumerate FIB over the 30-yr study 

period.  Monitoring prior to around 2002 used membrane filtration where fecal coliforms and 

enterococci were reported as “(CFU)/100 ml”.  After this time, monitoring agencies switched to 

the chromogenic substrate method using Idexx Corporation materials, where concentrations of 

enterococci and E. coli were reported as “(MPN)/100 ml”. A 1-1 data translation was used 

between E. coli and older fecal coliform data as approved by the Los Angeles Regional Water 
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Quality Control Board in 2002 (CLA and CLA 2004). Non-detects (ND) were recorded as various 

values (from 1-10) depending on FIB group, agency responsible, or time within study period. To 

create a consistent ND throughout the dataset, all values less than or equal to 10 were set 

equal to 5. Analyst errors were deleted from the dataset. Values reported as greater than or 

less than a certain threshold value, had their signs dropped with the value reported as is. The 

final uniform dataset consisted of approximately 150,000 data points for each set of 

enterococci and E. coli data. 

 

 
Figure 7.  Location of the final 81 sampling locations used in this study.  Metadata for each is provided in 

Appendix A. 
 

Low-Flow Diversions 

 To assess the effectiveness of LFDs, data from the nearest downstream FIB monitoring 

stations were examined. LFD information (e.g. location, implementation date, dates of 
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operation) was provided by Los Angeles County Flood Control District and the City of Los 

Angeles’ Watershed Protection Division.  Criteria to include a LFD in this study were defined by 

the following: 1) it must divert runoff for treatment that would otherwise flow unencumbered 

into coastal waters, and 2) it must be located no more than 0.5 mi from the beach. LFDs further 

inland, mainly those associated with enclosed beaches, and self-treatment LFDs were excluded.  

Self-treatment LFDs do not divert flow into the sewers, but rather treat on site and LFDs further 

inland are more susceptible to additional stormwater inputs between the structures and beach 

waters. Based on these criteria, 27 LFDs were included in this study (Figure 8 4; Appendix B). 

The SMC LFD was selected as the LFD/station for an independent assessment since it is the 

largest LFD structure along the Bay’s shoreline and has a consistent set of monitoring data from 

its associated downstream monitoring site.  

 
Figure 8.  Location of the 27 low-flow diversions and associated monitoring stations assessed in this study. 
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Data Analysis 

 Rolling 30-day geometric means were calculated and graphed over time from 1988 

through December 2, 2017 for enterococci and E. coli as follows: 

1. all stations (wet weather, dry weather, and all weather combined);  

2. the three geographic regions of the Bay (north, central, south): wet weather, dry 

weather, and all weather combined;  

3. stations downstream of all LFDs during dry weather (these structures are only 

operational during dry weather); and 

4. the station downstream of the SMC LFD during dry weather.  

 

Trends were constructed using MATLAB software. Only data points through December 2, 

2017 were included in trends and statistical analysis, so that all points contained the full 30-day 

time frame in their calculation. Since the trend data were not normally distributed, the non-

parametric Kruskal-Wallis (KW) test was used to test the differences between dry and wet 

weather trends among the three geographic regions of the Bay and pre- and post- 

implementation of the SMC LFD dry weather trends.  

 

 

RESULTS 

Bay Wide 

 Wet weather concentrations for both bacterial groups were consistently higher than dry 

weather (Table 3, Figures 9 and 10).  Trends for both FIB groups were relatively constant 

beginning in 1988, then peaked around the shift to point-zero sampling (November 1, 2004).  

Levels decreased shortly thereafter up until the 2016-17 wet season. At this time, values 

became highly variable with peaks and lows, most noticeably during wet weather conditions.  

  

 The enterococci rolling 30-day geometric mean concentrations averaged from 9.9 to 

41.0 organisms/100 ml with the greatest average occurring during wet weather (Table 3). Early 

enterococci concentrations remained relatively consistent up until they exhibited a peak 
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around the point-zero sampling shift (Figure 9). Following this point, concentrations diminished, 

continuing a downward trend until the 2016-17 wet season. At this time, concentrations 

displayed considerable variability, with wet weather data exhibiting both the highest and 

lowest values of the study period (52.6 and 5.7 organisms/100 ml, respectively).  

 

 The E. coli rolling 30-day geometric mean values averaged from 34.3 to 73.9 

organisms/100 ml with the greatest values occurring during wet weather (Table 3). All E. coli 

trends were fairly constant from 1988 to about 1995, but then experienced a prolonged 

increase to the time of the point-zero sampling shift (Figure 10). After 2004, levels fell but did 

not reach earlier values measured in the late 1980’s to mid 1990’s. The 2016-17 wet season 

again showed substantial variability, predominantly for wet weather. Wet weather also showed 

several smaller increases and decreases for several years leading up to this point.   

 
Table 3. Descriptive statistics for enterococci and E. coli Bay wide trends for wet weather, dry weather, and all 

weather combined. 
 n Average Geometric Mean ± S.D. 

(organisms/100ml) 
Range 

(organisms/100ml) 

Enterococci:    

All weather 9652 12.3 ± 1.6 6.7-13.6 

Wet weather 1516 41.0 ± 5.3 5.7-52.6 

Dry weather 8136 9.9 ± 1.1 6.7-10.9 

E. coli:    

All weather 9652 38.4 ± 6.1 29.1-49.3 

Wet weather 1516 73.9 ± 9.3 26.7-113.4 

Dry weather 8136 34.3 ± 6.0 25.1-44.1 
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Figure 9. Enterococci rolling 30-day geometric mean values for SMB shoreline monitoring stations plotted over 

time for wet, dry, and all weather combined. 
 

 
Figure 10. E. coli rolling 30-day geometric mean values for SMB shoreline monitoring stations plotted over time 

for wet, dry, and all weather combined. 
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North, Central, and South Bay Regions 

 Concentrations for each of the two bacterial groups among the three Bay regions all 

differed significantly when comparisons were made for wet and dry weather (Figures 11 and 

12, Table 4). As with the Bay wide trends, wet weather concentrations for both bacterial groups 

were greater than dry weather for all regions of the Bay. Central Bay exhibited the highest wet 

weather measures for both bacterial groups. North Bay had the highest dry weather levels for 

enterococci and Central Bay had the highest for E. coli. South Bay had the lowest bacterial 

levels for both weather conditions.  

  

 Central Bay wet weather enterococci concentrations were over the TMDL numeric limit 

(35 organisms/100ml) for nearly the entire duration of the study period (Figure 11). Levels only 

dipped below the limit in early 2017 around the period of intense wet weather variability. 

North Bay wet weather enterococci values started above the limit, dipped below the limit 

around 2010-11, and then spiked back up in 2016-17. Dry weather enterococci values for all 

three regions stayed below the limit for the complete time period.  

 

 Both dry and wet weather E. coli concentrations of the three regions of the Bay were 

below the TMDL numeric limit (200 organisms/100ml) for nearly the whole study period (Figure 

12). The exception was wet weather in Central Bay. It started below the limit, began to steadily 

increase around 2010, passing the limit around the time of the 2016-17 wet season.  

 
Table 4. Average geometric means ± S.D. for wet and dry weather of the three regions of the Bay and results of 

the KW test comparing wet and dry weather trends among the various geographic regions. 
 
 

 
Average Geometric Mean 

± S.D. (organisms/100 ml) 

 

 
North Central South KW Test 

Statistic p Post-hoc 
Test Results 

Enterococci:      
Wet 45.5 ± 

10.4 63.1 ± 7.7 24.2 ± 2.4 3626.7 <0.001 for all C>N>S 

Dry 12.5 ± 2.4 10.2 ± 1.0 7.9 ± 0.5 7,004.0 <0.001 for all N>C>S 
E. coli:       

Wet 91.0 ± 9.3 128.5 ± 
27.7 35.2 ± 6.9 3056.3 <0.001 for all C>N>S 

Dry 45.5 ± 5.6 45.2 ± 10.8 19.9 ± 4.9 15210.1 <0.01 to 0.001 C>N>S 
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Figure 11. Wet and dry weather enterococci values for shoreline monitoring stations among geographic regions 
of SMB plotted over time. The enterococci rolling 30-day geometric mean numeric limit for the SMB Beaches 

Bacterial TMDL is shown in red to the right (35 organisms/100 ml). 

Figure 12. Wet and dry weather E. coli values for shoreline monitoring stations among geographic regions 
of SMB plotted over time. The E. coli rolling 30-day geometric mean numeric limit for the SMB Beaches Bacterial 

TMDL is shown in red to the right (200 organisms/100 ml). 
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Low-Flow Diversions 

 Dry weather concentrations of enterococci at stations downstream of the LFD sites were 

relatively constant until about 2005 when they began to diminish (Figure 13, Table 5), 

presumably reflecting the implementation of the LFD units from about 2001-2007.  A similar 

trend occurred for the SMC LFD, which became operational in 2003.  Here, the post-

implementation average concentration (10.33 ± 3.2 organisms/100 ml) was significantly less 

(KW test statistic= 4,571.9, p= <0.001) than that for the pre-implementation (17.1 ± 0.7) (Table 

6).   

 Similar to the Bay wide trends, dry weather E. coli levels at all stations downstream of 

LFDs and at the SMC LFD station exhibited a pattern where concentrations ramped up and 

peaked around the time of the point-zero sampling shift (Figure 14, Table 5).  After this time, 

concentrations for both trends diminish, though never return to levels as low as in the late 

1980’s to the mid 1990’s. Post-implementation E. coli concentrations at the SMC LFD (83.0 ± 

10.4 organisms/100 ml) were found to be significantly higher (KW test statistic= 845.3, p= 

<0.001) than pre-implementation (76.3 ± 5.1) (Table 6).  

 
Table 5. Descriptive statistics for enterococci and E. coli LFD dry weather trends. 

 

 n Average Geometric Mean ± S.D. 
(organisms/100ml) 

Range 
(organisms/100ml) 

Enterococci:    

Dry weather 6802 10.2 ± 1.3 6.9-11.3 

E. coli:    

Dry weather 6802 51.3 ± 10.5 33.4-68.8 
 
 
 

Table 6. Results of the KW test comparing dry weather FIB concentrations downstream of the SMC LFD before 
and after implementation. 

 
SMC LFD Pre-

Implementation 
SMC LFD Post-

Implementation 
 

 n 
Average Geometric 

Mean ± S.D. 
(organisms/100ml) 

n 
Average Geometric 

Mean ± S.D. 
(organisms/100ml) 

KW 
Test 

Statistic 

Post-
hoc 
Test 

Results 

p 

Enterococci: 
Dry Weather 2897 17.1 ± 0.7 3316 10.33 ± 3.2 4,571.9 Before 

> After <0.001 

E. coli: 
Dry Weather 2897 76.3 ± 5.1 3316 83.0 ± 10.4  845.3 Before 

< After <0.001 
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Figure 13. Dry weather enterococci values for all LFD downstream monitoring stations combined and the SMC 
LFD downstream monitoring station plotted over time. The number of new LFDs implemented each year is 

shown in red at the bottom of the figure. 

Figure 14. Dry weather E. coli values for all LFD downstream monitoring stations combined and the SMC LFD 
downstream monitoring station plotted over time. The number of new LFDs implemented each year is shown in 

red at the bottom of the figure. 
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DISCUSSION  
 

 While several studies have examined long-term (ranging from 3-10 years) bacterial 

pollution as an indicator of water quality, there appears to be no other published work that 

spans multiple decades (Mallin et al. 2000; Inamdar et al. 2002; Rodrigues et al. 2011; Thoe et 

al. 2018). Long-term assessment of E. coli and enterococci trends are essential to help evaluate 

the effectiveness of projects and practices designed to reduce recreational beach water 

pollution, especially as it relates to each indicator’s regulatory limits such as TMDLs. These 

TMDLs act as a maximum limit for SMB recreational water standards, in which various entities 

work together to bring beach waters into compliance by lowering the bacteria levels in the 

waters draining into SMB. TMDLs have been established for both wet and dry weather, with 

wet weather permitted more allowable exceedance days annually than dry. TMDL exceedances 

were not investigated as part of this study. Rather, bacterial levels over the study period were 

simply compared to their numeric targets.  

 

Enterococci  

 The U.S. EPA determined enterococci is the preferred indicator for marine waters (EPA 

2012). Enterococci concentrations in the Bay were consistently higher during wet weather 

conditions. Elevated bacterial levels due to rainfall has been demonstrated in previous studies 

(Griffith et al. 2009; Noble et al. 2003). This is due to increased contaminated urban runoff 

introduced in the form of stormwater plumes running from the watersheds into the Bay.  

 

 Bay wide enterococci levels for all three weather conditions were relatively steady from 

the late 1980’s through the early 2000’s, until they then showed a small peak in late 2004. This 

peak can be partly attributed to the shift to point-zero sampling in November 2004. At this 

time, sampling distance was shifted from about 25-50 yards from a storm drain or creek mouth 

to directly at the point where discharge initially mixes with receiving ocean water. It has been 

previously demonstrated that higher FIB counts exist within a closer proximity to storm drains 

(Haile et al 1999). Bay wide long-term trends for both indicators support that assessment. 
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 Following the peak in 2004, concentrations began to diminish, presumably due in part to 

the implementation of LFDs along the shoreline, the majority of which became operational 

between 2003-2008. The SMC LFD, in particular, showed decreased enterococci concentrations 

following implementation. Bay wide concentrations continued a downward trend for over a 

decade, up until the 2016-17 wet season. At this time, concentrations fluctuated considerably, 

most noticeably for wet weather, which displayed both the highest and lowest values of the 

study period. Additional data from subsequent years is required to assess how the trends may 

stabilize over time.   

 

 The variability of the 2016-17 wet season may be attributed to a variation in 

precipitation over the preceding years. Southern California has an arid environment, 

characterized by long dry periods with a shorter and variable wet season. Consequently, 

contaminants build up on land during these dry periods and are then washed into coastal 

waters during rain events, leading to increased water quality problems (Noble et al. 2003). This 

issue becomes further intensified by heavy storms following extended periods of drought, as 

demonstrated by the 2016-17 wet season. During this period, the years of drought were trailed 

by substantial storms acting as a flushing mechanism, washing the accumulation of 

contaminants out into the Bay. This consequence was most apparent in the Central Bay, due to 

the influence of contaminant plumes introduced into beach waters via Ballona Creek.  

 

 Central Bay had the highest wet weather enterococci concentrations of the three 

geographic regions for nearly the entire duration of the study period, only fluctuating during 

the intense variability of the 2016-17 wet season. The high wet weather FIB counts in Central 

Bay were expected due to the presence of the widespread impervious surfaces throughout the 

Ballona Creek Watershed. South Bay had the lowest enterococci levels for all weather 

conditions, likely due to its smaller and less urbanized watersheds (Figure 3). North Bay was 

found to have the significantly greatest average for dry weather enterococci levels, though the 

averages for the three regions of the Bay were all fairly close, biologically speaking, only 

differing by less than 5 organisms/100 ml.  
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 Dry weather enterococci levels for all three geographic regions and South Bay wet 

weather remained below the TMDL numeric limit (35 organisms/100 ml) for the entire study 

period. Only North and Central Bay wet weather conditions appeared to surpass the TMDL 

target for an extended period of time. North Bay wet weather concentrations surpassed the 

limit at the beginning of the study period, began dropping following the point-zero sampling 

shift, and eventually dipped below the TMDL limit around 2010 where it remained up until the 

2016-17 wet season variability. Central Bay wet weather started off and continued above the 

limit, only briefly dipping below during the 2016-17 wet season variability. These results suggest 

wet weather, specifically in Central Bay, may present an ongoing challenge to achieving TMDL 

limits for enterococci.  

 

E. coli 

 E. coli has been a commonly used indicator for water quality for decades and remains 

part of the U.S. EPA’s recommended indicators of recreational water quality (EPA 2012). Like 

enterococci, wet weather concentrations of E. coli levels were steadily higher than dry weather 

for all geographic conditions. The pattern of the Bay wide E. coli trend was similar to 

enterococci in that it peaked around the shift to point-zero sampling, decreased shortly after, 

and displayed considerable variation during the 2016-17 wet season.  

 

 The noticeable difference between the two bacterial groups was that E. coli exhibited a 

prolonged ramp up to the point-zero sampling shift for about the previous five years. Part of 

this ramp up could be attributed to a change in quantification methods from membrane 

filtration, which measures fecal coliforms, to chromogenic substrate (using the Idexx 

Corporation’s Colilertmedia), which measures E. coli. The quantification methods change for E. 

coli, which came into effect around 2002, has a tendency to overestimate values (personal 

communication, Ioannice Lee, City of Los Angeles, Environmental Monitoring Division).  

Pisciotta et al. 2002 compared densities of E. coli in marine and freshwater samples using both 

the chromogenic substrate (with Colilert media) and membrane filtration.  They found that 



 23 
 

similar results were obtained in freshwater samples, but for marine water, estimates of E. coli 

densities ranged up to two orders of magnitude greater.  This result probably reflected the 

increased number of marine species able to grow in the Colilert media, such as species of Vibro, 

leading to false positives.   

 

 Following the shift to point-zero sampling, concentrations fell but never again reached 

levels as low as in the late 1980’s - early 1990’s, as the decline was less than the prolonged 

ramp up. Even for the SMC LFD trend, a decline in enterococci levels was apparent following 

implementation, though post-implementation average geometric mean was greater than pre-

implementation. The switch in quantification methods, possibly overestimating values, and 

shifting closer to the source of runoff both likely factor into the increased E. coli trends.  

 

 Regarding TMDLs for E. coli, only the Central Bay during wet weather was briefly over 

the numeric limit during the 2016-17 wet season. Similar to enterococci, South Bay had the 

lowest E. coli concentrations for both wet and dry weather conditions, with wet weather even 

lower than North and Central Bay dry weather.  

 

BMPs 

 LFDs were found to improve recreational beach water quality and appear to play a key 

role in this study.  However, these systems are utilized only during dry weather conditions. The 

decreasing bacterial trends, particularly for wet weather, indicate other BMPs throughout 

SMB’s watersheds have contributed to reducing contaminated runoff from flowing into beach 

waters. Low impact development (LID) has recently been identified as a preferred approach to 

stormwater management. LID incorporates a variety of green-architectural design approaches 

and BMPs that promote natural infiltration to reduce bacteria and other contaminants, while 

also reducing the volume of stormwater runoff eventually reaching the beach (U.S. EPA 2012, 

CLA 2016). This method of infiltration using vegetated swales and rain gardens has been shown 

to be an effective mean of reducing bacterial concentrations (Burkhard 2018).  
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Conclusions 

 This work suggests LFDs, along with other BMPs designed to restrict polluted runoff 

from flowing into beach waters, have been effective at reducing FIB concentrations at SMB 

beaches. Dry weather FIB levels appear to be steadily low, whereas wet weather levels, 

especially in Central Bay, exhibited a higher degree of variability and may present a more 

significant challenge to meet water quality standards going forward. LID projects and practices 

may be key in addressing wet weather flow. Implementation of biofiltration systems, 

particularly throughout the Ballona Creek Watershed, could be a cost-effective approach to 

reduce FIB concentrations during all weather conditions, while the increased vegetation and 

associated biodiversity would provide additional ecosystem services to urban areas. These 

proposed projects should be accompanied by careful monitoring both up and downstream to 

gauge their efficiency and refine designs.  

 

 In addition, further research is needed to examine the recreational coastal water quality 

implications of climate change. The 2016-17 wet season displayed intense variability in FIB 

concentrations, as the accumulation of contaminants, which built up during an extended dry 

period, was subsequently flushed into coastal waters due to heavy storms. Climate change may 

lead to increased precipitation intensity and variability.  The frequency of heavy rainfall events, 

as well as extreme drought has been projected to likely increase (Bates et al. 2008). This 

increase in extreme weather conditions could potentially exacerbate FIB pollution in 

recreational beach waters.  For this reason, it is important that LID systems continue to be 

deployed throughout the Bay’s watershed, and that shoreline FIB trends be monitored to 

determine these runoff control measures.  

 

 

 

 

 

 
 



 25 
 

REFERENCES 
 
Abramson, M. (2014).  Ballona Creek low impact development rain gardens project.  Final 
 Project certification report. Report prepared by The Bay Foundation for the State of 
 California, State Revolving Fund Project No. C-06-6222-110, Grant Agreement No. 09-
 847-550. 96p. 
Ackerman, D. & Weisberg, S.B. (2003). Relationship between rainfall and beach bacterial 
 concentrations on Santa Monica Bay beaches. Water and Health, 1 (2) 85-89.  
Ackerman, D., Stein, E. D., & Schiff, K. C. (2005). Dry-season water quality in the San Gabriel 
 River Watershed. Bulletin of the Southern California Academy of Sciences, 104,125–145. 
 doi:10.3160/0038– 3872(2005)104[125:DWQITS]2.0.CO;2. 
American Public Health Association, American Water Works Association, and Water 
 Environment Federation. 22nd Ed. (2012). Standard methods for the examination of 
 water and wastewater (20th ed.). Washington: American Public Health Association. 
Ashbolt, N. J., Grabow, W.O.K. and Snozzi, M.  (2001).  Indicators of microbial 
 water quality.  pp. 289-316 in: Fewtrell, Lorna and Jamie Bartram (Editors).  Water Quality: 
 Guidelines, Standards and Health. World Health Organization, IWA Publishing, London, UK. 
Atiyah, P., Pendleton, L., Vaughn, R., & Lessem, N. (2013). Measuring the effects of stormwater 
 mitigation on beach attendance. Marine Pollution Bulletin. 72: 87-93.  
Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof. (2008). Climate change and water. 
 Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, 
 Geneva, 210 pp. 
Bureau of Sanitary Engineering. (1943). Report on a Pollution Survey of Santa Monica Bay 
 Beaches in 1942. Army Medical Library. Available at: 
 https://collections.nlm.nih.gov/catalog/nlm:nlmuid-31411050R-bk. 
Burkhard, Jamie Lynn, "Water Infiltration and Pollutant Retention Efficiencies in the Ballona 
 Creek Rain Garden" (2018). LMU/LLS Theses and Dissertations. 523. 
California Regional Water Quality Control Board- Los Angeles Region. (2011). State of the 
 Watershed- Report on Water Quality. Santa Monica Bay Watershed Management Area. 
 2nd edition. Available at: 
 https://www.waterboards.ca.gov/losangeles/water issues/programs/regional program
 /Water Quality and Watersheds/ws santamonica.shtml. 
City of Los Angeles, Environmental Monitoring Division. (2004). Santa Monica Bay Shoreline 
 Monitoring Report (June 1, 2002 – June 30, 2003). Los Angeles County 2002-03 Annual 
 Stormwater Monitoring Report. Appendix D. 
City of Los Angeles, Environmental Monitoring Division. (2015). Santa Monica Bay Shoreline 
 Monitoring Municipal Separate Storm Sewer System (MS4) Report (June 1, 2014 – May 
 31, 2015). Los Angeles County 2014-15 Annual Stormwater Monitoring Report. 
 Appendix D. 
City of Los Angeles. (2016). Planning and Land Development Handbook for Low Impact 
 Development (LID). Part B, Planning Activities, 5th Edition. Available at: 
 http://www.lastormwater.org/wp-content/files mf/lidmanualfinal.pdf.   



 26 
 

City of Los Angeles and the County of Los Angeles.  (2004).  Santa Monica Bay Beaches Bacterial 
 TMDLs.  Coordinated Shoreline Monitoring Plan.  Available at: 
 http://ladpw.org/wmd/npdes/beachplan/SMBBB TMDLs CSMP.pdf.  
Deflorio-Barker, S., Wing, C., Jones, R. M., & Dorevitch, S. (2018). Estimate of incidence and cost 
 of recreational waterborne illness on United States surface waters. Environmental 
 Health, 17(1). doi:10.1186/s12940-017-0347-9. 
Dojiri, M., Yamaguchi, M., Weisberg, S., & Lee, H. (2003). Changing anthropogenic influence on 
 the Santa Monica Bay watershed. Marine Environmental Research, 56(1-2), 1-14. 
 Doi:10.1016/s0141-1136(03)00003-5. 
Dorsey, J.H. (2010). Improving water quality through California’s Clean Beach Initiative: an 
 assessment of 17 projects. Environmental Monitoring and Assessment, 166, 95-111. 
 doi:10.1007/s10661-009-0987-5.  
Griffith, J.F., Schiff, K.C., Lyon, G.S., & Fuhrman, J.A. (2009). Microbiological Water Quality at 
 Non-Human Influenced Reference Beaches in Southern California During Wet Weather. 
 Marine Pollution Bulletin, 60 (4), 500-508. doi:10.1016/j.marpolbul.2009.11.015.  
Haile, R. W., Witte, J. S., Gold, M., Cressey, R., Mcgee, C., Millikan, R. C., Glasser, A., Harawa, N., 
 Ervin, C., Harmon, P., Harper, J., Dermand, J., Alamillo, J., Barrett, K., Nides, M., & Wang, 
 G. (1999). The Health Effects of Swimming in Ocean Water Contaminated by Storm 
 Drain Runoff. Epidemiology,10(4), 355-363. doi:10.1097/00001648-199907000-00004. 
Inamdar, S.P., Mostaghimi, S., Cook, M.N., Brannan, K.M., & McClellen P.W. (2002). A long-
 term, watershed-scale, evaluation of the impacts of animal waste BMPs on indicator 
 bacteria concentrations. Journal of the American Water Resources Association, 38 (3), 
 819-833. 
Mallin, M.A., Williams, K.E., Esham, E.C., & Lowe, R.P. (2000). Effect of human development on 
 bacteriological water quality in coastal watersheds. Ecological Application, 10 (4), 1047-
 1056. 
Noble, R. T., Dorsey, J. H., Leecaster, M., Orozco-Borbon, V., Reid, D., Schiff, K., and Weisberg, S. 
 B. (2000). A Regional Survey of the Microbiological Water Quality Along the Shoreline of 
 the Southern California Bight. Environmental Monitoring and Assessment. 64: 435-447. 
Noble, Rachel T., Stephen B. Weisberg, Molly K. Leecaster, Charles D. McGee, John H. Dorsey, 
 Patricia Vainik and Victoria Orozco-Borbon. (2003).  Storm effects on regional water 
 quality along the southern California shoreline.  J. Water and Health, 1(1): 23-31.  
Pendleton, L., editor. 2007. The economic and market value of coasts and estuaries: what’s at 
 stake? Restoring America’s Estuaries, Washington, D.C. 
Pisciotta, J.M., Rath, D.F., Stanek, P.A., Flanery, D.M., and Harwood, V.J. (2002). Marine Bacteria 
 Cause False-Positive Results in the Colilert-18 Rapid Identification Test for Escherichia 
 coli in Florida Waters. Applied and Environmental Microbiology, 68 (2), 539-544. doi: 
 10.1128/AEM.68.2.539-544.2002.  
Rodrigues, V., Ramaiah, N., Kakti, S., & Samant, D. (2011). Long-term variations in abundance 
 and distribution of sewage pollution indicator and human pathogenic bacteria along the 
 central west coast of India. Ecological Indicators, 11(2), 318-327. 
Schiff, K., Griffith, J., Steele, J. Arnold, B., Ercumen, A., Benjamin-Chung, J., Colford, Jr., J.M., 
 Soller, J., Wilson, R., and McGee, C. (2016). The surfer health study.  A three-year study 



 27 
 

 examining illness rates associated with surfing during wet weather. Southern California 
 Coastal Water Research Project, Technical Report 943. 112p. 
Thoe, W., Lee, O.H.K., Leung, K.F., Lee, T., Ashbolt, J., Yang, R.R., & Chui, S.H.K. (2018). Twenty-
 five years of beach monitoring in Hong Kong: A re-examination of the beach water 
 quality classification scheme from a comparative and global perspective. Marine 
 Pollution Bulletin, 131, 793-803.  
U.S. EPA. (2002a).  Method 1604: Total coliforms and Escherichia coli in water by membrane 

filtration using a simultaneous detection technique (MI medium).  Office of Water, EPA-821-
R-02-024.  18p. 

U.S. EPA. (2002b).  Method 1106.1:  Enterococci in water by membrane filtration using 
membrane-enterococcus-esculin iron agar (mE-EIA). Office of Water, EPA-821-R-02-021. 
12p. 

U.S. EPA. (2012).   Benefits of Low Impact Development.  How LID Can Protect Your 
 Community’s Resources.  Office of Wetlands, Oceans, and Watersheds 1200 
 Pennsylvania Avenue, NW, Washington, DC 20460 EPA 841-N-12-003A  
U.S. EPA. (2012). Recreational Water Quality Criteria. Available at: 
 https://www.epa.gov/sites/production/files/2015-10/documents/rwqc2012.pdf.  
U.S. EPA. Impaired Waters and TMDLs: Program Overview: 303 (d) Listing of Impaired Waters. 
 Available at: https://www.epa.gov/tmdl/program-overview-303d-listing-impaired-
 waters.  
U.S. EPA. Laws and Regulations: Summary of the Clean Water Act. Available at: 
 https://www.epa.gov/laws-regulations/summary-clean-water-act. 
U.S. EPA. State-Specific Water Quality Standards Effective under the Clean Water Act (CWA). 
 May 4, 2018. Available at: https://www.epa.gov/wqs-tech/state-specific-water-quality-
 standards-effective-under-clean-water-act-cwa.  
Washburn, L., Mcclure, K. A., Jones, B. H., & Bay, S. M. (2003). Spatial scales and evolution of 
 stormwater plumes in Santa Monica Bay. Marine Environmental Research, 56, 103-125. 
 doi:10.1016/s0141-1136(02)00327-6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
      



 28 
 

Appendix A 
ID  Latitude Longitude Location Description Historical Station Designations Agency  Sampling 

Periods  

SMB-O-1 34.01359 -118.79179 Unnamed Creek, projection 
of Zumirez Dr. (Little Dume)   EMD Jan '10- Dec '17 

SMB-1-6 34.01691 -118.78973 Walnut Creek outlet, 
projection of Wildlife Road   EMD Jan '05- Dec '17 

SMB-1-7 34.02024 -118.78656 
Paradise Cove Pier at 
Ramirez Canyon Creek 
mouth (point-zero) 

Jan '89- Dec '91: DHS (007); Jan 
'92- June '94: DHS (9); Jul'94- 
Dec '94: DHS (008); Jan '95- Oct 
'04: DHS (006) Paradise Cove, 
adjacent to west side of Pier 
(through 10/04) 

DHS Jan '89- Dec '17 

SMB-1-8 34.02527 -118.76579 Escondido Creek, just east 
of Escondido State Beach   EMD Jan '05- Dec '17 

SMB-1-9 34.02871 -118.75350 Latigo Canyon Creek mouth 
(point-zero) 

Jan '89- Dec '91: DHS (006) 
26000 Block, Latigo Shore Drive; 
Jan '92- June '94: DHS (8) 26000 
Block; Jul'94- Dec '94: DHS (007) 
26610 Latigo Shore Dr. Malibu; 
Jan '95- Oct '04: DHS (005) 
Latigo Canyon Creek entrance 
(through 10/04) 

DHS Jan '89- Dec '17 

SMB-1-
10 34.03264 -118.74212 Solstice Canyon at Dan 

Blocker County Beach   EMD Jan '05- Dec '17 

DHS 
(005a) 34.03320 -118.73314 Corral State Beach   DHS Jan '95- Aug '00 

SMB-O-2 34.03143 -118.71597 
Unnamed Creek, adjacent 
to public stairway at 24822 
Malibu Rd. 

  EMD Jan '10- Dec '17 

SMB-1-
11 34.03134 -118.71427 Puerco State Beach at creek 

mouth (point-zero) 

Jan '89-Dec '91: DHS (005) 
25000 Block, Malibu Rd.; Jan 
'92- June '94: DHS (7) 25000 
Block; Jul'94- Dec '94: DHS (006) 
Coral Beach 25500 PCH; Sep '00- 
Oct '04: DHS (004) Puerco 
Beach, 25500 Pacific Coast Hwy 
(at lifeguard station) (through 
10/04) 

DHS Jan '89-Dec '94, 
Sep '00- Dec '17 

SMB-1-
12 34.03042 -118.71126 

Marie Canyon storm drain 
at Puerco Beach, at 24572 
Malibu Rd. 

  EMD Jan '05- Dec '17 

DHS 
(003) 34.03071 -118.68262 Malibu Point (aka SMB-MC-

1) 

Jan '89- Dec '91: DHS (004); Jan 
92- June '92: DHS (6) Malibu 
Lagoon west side; Jul '94- Dec 
'94: DHS (005)  

DHS Jan '89- Dec '17 

S1 34.03430 -118.67838 Surfrider Beach (breach 
point) (aka SMB-MC-2)   EMD Jul '94-  Dec '17 

DHS 
(003a) 34.03637 -118.67796 Surfrider Beach (second 

point)- weekly 

Jan '92- June '94: DHS (5) Malibu 
Lagoon, east side; Jul '94- Dec 
'94: DHS (004) Surfrider 

DHS Jan '92- Aug '00 

DHS 
(002) 34.03714 -118.67600 Malibu Pier- 50 yards east 

(aka SMB-MC-3) 

Jan '92- June '94: DHS (4) 22956 
PCH, east of pier; Jul'94- Dec 
'94: DHS (003) Malibu Pier 

DHS Jan '92- Dec '17 

SMB-1-
13 34.03780 -118.67388 Carbon Beach at 

Sweetwater Canyon   EMD Jan '05- Dec '17 

SMB-1-
14 34.03607 -118.63659 Las Flores State Beach at Las 

Flores Creek (point-zero) 

Jan '89-June '94: DHS (003) 
Mouth of Las Flores Creek- DHS 
station; Jul '94- Dec '94: DHS 
(002) Las Flores Beach, 21150 
PCH- DHS station; Jan '95- Mar 
'99: DHS (001a) Las Flores Beach 
(through 10/04)- DHS station 

EMD 
Jan '89- Mar 
'99, Jan '05- 
Dec '17 
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DHS 
(001) 34.03641 -118.60952 Big Rock Beach at 19948 

PCH stairs (aka SMB-1-15) 
Jan '89- June '94: DHS (002); Jul 
'94-Dec '94: DHS (001)  DHS Jan '89- Dec '17 

S1-Old 34.03924 -118.59779 

West of house at 19324 PCH 
and west of Pena Creek. 1.1 
miles west of Topanga Cyn 
Blvd. Sample on west side 
of groin. 

  EMD Jan '88- Jun '92 

SMB-1-
16 34.03906 -118.59665 Pena Creek at Las Tunas 

County Beach   EMD Jan '05- Dec '17 

SMB-1-
17 34.03903 -118.58984 Tuna Canyon   EMD Jan '05- Dec '17 

S2 34.03781 -118.58261 Topanga Beach at creek 
mouth (aka SMB-1-18) 

Feb '89- June '94: DHS (001) -
DHS station EMD Feb '89-  Dec 

'17 

S2-Old 34.04005 -118.57514 

East end of Charthouse 
restaurant parking lot. 0.25 
miles east of Topanga Cyn 
Blvd 

  EMD Jan '88- Jun '92 

SMB-2-1 34.04122 -118.56703 Castlerock storm drain at 
Castle Rock Beach   EMD Jan '05- Dec '17 

SMB-2-2 34.03784 -118.55578 Santa Ynez drain at Sunset 
Blvd.   EMD Jan '05- Dec '17 

DHS 
(101) 34.03911 -118.55059 

Will Rogers State Beach at 
17200 PCH (1/4 mile east of 
Sunset drain) (aka SMB-2-3) 

  DHS 

Jul '94- Jan '98, 
March '98-Arp 
'15, Sep '15- 
Dec '17 

SMB-2-5 34.03832 -118.54521 
Will Rogers State Beach at 
Bel Air Bay Club drain near 
fence (point-zero) 

Jul '94- Oct '04: DHS (102) 16801 
Pacific Coast Highway, Bel Air 
Bay Club (chain fence) (through 
10/04) 

DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

S3-Old 34.03854 -118.54424 

Opposite fence at east side 
of boats at Bel Air Beach 
Club. 0.1 mile east of 
Bayclub Dr., and 0.7 miles 
east of sunset Blvd.  

  EMD Jan '88- Jun '92 

SMB-2-4 34.03755 -118.54284 
Will Rogers State Beach at 
Pulga Canyon storm drain 
(point-zero) 

Feb '89- June '94: DHS (101) 
Pulga Storm Drain 50 yards west 
& DHS (102) Pulga Storm Drain 
50 yards east Jul '94- Oct '04: S3 
Pulga Canyon storm drain 50 
yards east (through 10/04) 

EMD Feb '89- Dec '17 

SMB-2-6 34.03471 -118.53660 
Will Rogers State Beach at 
Temescal Canyon drain 
(point-zero) 

Jul '94- Oct '04: DHS (103) Will 
Rogers State Beach - Temescal 
Canyon, 25 yards east of drain 
(through 10/04) 

DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

SMB-2-7 34.02685 -118.52061 
Will Rogers State Beach at 
Santa Monica Canyon drain 
(point-zero) 

Feb '89- June '94: DHS (103) 
Santa Monica Canyon storm 
drain, west & DHS (104) Santa 
Monica Canyon storm drain, 
east- both DHS stations; Jul '94-
Oct '04: S4 Santa Monica 
Canyon, Will Rogers State Beach 
(through 10/04) 

EMD Feb '89- Dec '17 

S4-Old 34.02323 -118.51538 

East side of Santa Monica 
Swim Club and opposite 
west fence of yellow house, 
opposite large palm trees 

  EMD Jan '88- Jun '92 

DHS 
(104a) 34.02331 -118.51520 Santa Monica Beach at San 

Vicente Bl. Jul '94- Dec '94: DHS (104)  DHS Jul '94- Nov '95, 
Jan '96-Aug '00 

SMB-3-1 34.01963 -118.51070 
Santa Monica Beach at 
Montana Ave. drain (point-
zero) 

Jul '94- Dec '94: DHS (105); Jan 
'95- Oct '04: DHS (104) Santa 
Monica at Montana Ave. (25 
yards. so. of drain) (through 
10/04) 

DHS Jul '94- Nov '95, 
Jan '96- Dec '17 
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SMB-3-2 34.01453 -118.50423 
Santa Monica Beach at 
Wilshire Blvd. drain (point-
zero) 

Jul '94- Dec '94: DHS (106) 
Wilshire Blvd; Jan '95- Oct '04: 
DHS (105) Santa Monica at 
Arizona (in front of the drain) 
(through 10/04) (now Wilshire) 

DHS Jul '94-Nov '95, 
Jan '96- Dec '17 

S5-Old 34.01415 -118.50389 
Opposite 21-story 
skyscraper at Wilshire Blvd. 
Next to Lifeguard tower #12 

  EMD Jan '88- Jun '92 

SMB-3-3 34.00827 -118.49738 Santa Monica Municipal 
Pier (point-zero) 

Feb '89-Apr '89: DHS (105) Santa 
Monica Pier, north & DHS (106) 
Santa Monica Pier, south- both 
DHS stations; May '89- June '94: 
DHS (106) Santa Monica Pier, 
south- DHS station; Jul '94- Oct 
'04: S5 Santa Monica Municipal 
Pier- 50 yards southeast 
(through 10/04) 

EMD Feb '89- Dec '17 

SMB-3-4 34.00509 -118.49338 
Santa Monica Beach at 
Pico/Kenter storm drain 
(point-zero) 

Feb '89- Apr '89: DHS (107) 
Pico/Kenter storm drain, north 
& DHS (108) Pico/Kenter Storm 
Drain, south- both DHS stations; 
May '89-June '94:  DHS (106) 
Pico/Kenter Storm Drain, north 
& DHS (107) Pico/Kenter storm 
drain, south- both DHS stations; 
Jul '94- Oct '04: S4 Santa Monica 
Beach at Pico/Kenter storm 
drain (through 10/04) 

EMD Feb '89- Dec '17 

DHS 
(106) 34.00225 -118.49084 

Santa Monica Beach at 
Strand St. (in front of the 
restrooms) (aka SMB-3-9) 

Jul '94-Dec '94: DHS (107)  DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

S6-Old 34.00168 -118.49022 

Opposite second restroom, 
which is tan with a brown 
roof. Next to lifeguard 
tower #24. 0.3 mile south of 
Pico storm drain 

  EMD Jan '88- Jun '92 

SMB-3-5 33.99650 -118.48527 
Ocean Park Beach at 
Ashland Ave. drain (point-
zero) 

Feb '89- Apr '89: DHS (109) 
Ashland Av storm drain, north & 
DHS (110) Ashland Av. storm 
drain, south- both DHS stations; 
May '89- Jun '94: DHS (108) 
Ashland Av. storm drain, north 
& DHS (109) Ashland Av. storm 
dram, south- both DHS stations; 
Jul '94-Dec '94 DHS (108) 
Ashland Av. storm drain, north- 
DHS station & S7 Ashland Av. 
storm drain, south; Jan '95- Aug 
'00: DHS (106a) Ashland Av. 
storm drain, north- DHS station 
& S7 Ashland Av. storm drain, 
south; Aug '00-Oct '04: S7 
Ashland Av storm drain, south 
(through 10/4) 

EMD 
Feb '89- Nov 
'95, Jan'96- Dec 
'17 

SMB-3-6 33.99323 -118.48238 Venice City Beach, at the 
Rose Ave. storm drain   EMD Jan '05- Dec '17 

DHS 
(107) 33.98897 -118.47877 Venice City Beach at Brooks 

Ave. drain (aka SMB-3-7) Jul '94-Dec '94: DHS (109) DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

SMB-3-8 33.98518 -118.47670 
Venice City Beach at 
Windward Ave. drain (point-
zero) 

Jan '89- Apr '89: DHS (111) 
Windward storm drain, north & 
DHS (112) Windward storm 
drain, south-both DHS stations; 
May '89-Jun '94: DHS (110) 
Windward storm drain, north & 
DHS (111) Windward storm 

EMD Jan '89- Dec '17 
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drain, south- both DHS stations; 
Jul '94- Oct '04: S8 Venice City 
Beach at Windward Av.-  50 
yards north (through 10/04) 

S7-Old 33.98321 -118.47300 

Opposite restroom, which is 
tan with a brown roof. 0.1 
miles north of County 
Lifeguard Headquarters (an 
octagonal shaped building). 
The station is near lifeguard 
tower #21 

  EMD Jan '88- Jun '92 

DHS 
(108) 33.97800 -118.46773 Venice Fishing Pier- 50 yards 

south (aka SMB-2-8) Jul '94- Dec '94: DHS (110) DHS 
Jul '94- Nov '95, 
Jan '96-  Dec 
'17 

S8-Old 33.96983 -118.46128 

Opposite Outrigger St. 
Opposite blue and gray 
four-story building. The 
station is 0.70 miles north of 
Marina channel concrete 
wall 

  EMD Jan '88- Jun '92 

DHS 
(109) 33.96728 -118.46048 Venice City Beach at Topsail 

St. (aka SMB-2-9) Oct '94- Dec '94: DHS (111)  DHS 
Oct '94- Nov 
'95, Jan '96- 
Dec '17 

SMB-BC-
1 33.96075 -118.45761 

Dockweiler State Beach at 
Ballona Creek mouth (point-
zero) 

Jan '89- Apr '89: DHS (201)- DHS 
station; Jul '94- Oct '04: S10 
Ballona Creek entrance- 50 
yards south (through 10/04) 

EMD 

Jan '89- Apr '89, 
Jul '94-Oct '04, 
Nov '04- Aug 
'14 

S11 33.95646 -118.45184 
Dockweiler State Beach at 
Culver Blvd. drain (aka SMB-
2-10) 

  EMD Jul '94-  Dec '17 

S9-Old 33.95300 -118.44913 

Opposite south end of 
fence, south of 
condominium complex. The 
station is 0.7 miles south of 
Ballona Creek channel. The 
station is halfway between 
lifeguard towers #43 and 
#44 

  EMD Jan '88- Jun '92 

SMB-2-
11 33.94436 -118.44516 

North Westchester storm 
drain at Dockweiler State 
Beach 

  EMD Jan '05- Dec '17 

S10-Old 33.94001 -118.44184 

South of groin, 0.15 mile 
south of State Maintenance 
Building. The distance from 
station #9 to station #10 is 
1.00 mile. The distance from 
station #10 to Imperial 
storm drain is 0.75 mile 

  EMD Jan '88- Jun '92 

DHS 
(110) 33.93870 -118.44100 

Dockweiler State Beach at 
World Way (south of D&W 
jetty) (aka SMB-2-12) 

Jul '94- Sep '94: DHS (116) 
Epinard St. extended, Playa del 
Rey; Oct '94- Dec '94: DHS (116) 
World Way extended, Playa del 
Rey 

DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

SMB-2-
13 33.93006 -118.43713 

Dockweiler State Beach at 
Imperial Hwy drain (point-
zero) 

Jan '89-Apr '89: DHS (202) 
Imperial Hwy storm drain, north 
& DHS (203) Imperial Hwy storm 
drain, south- both DHS stations; 
May '89-Dec '91: DHS (116) -
DHS station; Jan '92-Jun '94: 
DHS (117) -DHS station; Jul '94- 
Oct' 04: S12 Imperial HWY 
storm drain- 50 yards north 
(through 10/04) 

EMD Jan '89- Dec '17 
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S11-Old 33.92740 -118.43551 

South of groin, opposite the 
south end of Hyperion (C-8) 
building. The distance from 
station #10 to station #11 is 
0.95 miles, or 0.2 mile south 
of Imperial storm drain 

  EMD Jan '88- Jun '92 

DHS 
(111) 33.91893 -118.43159 

Hyperion Treatment Plant 
One Mile Outfall (aka SMB-
2-14) 

Jul '94- Dec '94: DHS (117) 
Opposite Hyperion, 1m marker DHS Jul '94- Nov '95, 

Jan '96- Dec '17 

DHS 
(112) 33.91561 -118.42973 

Dockweiler State Beach at 
Grand Ave. drain (aka SMB-
2-15) 

Jan '89-Apr '89: DHS (204) 
Grand Ave. storm drain, north & 
DHS (205) Grand Ave. storm 
drain, south; Jul '94-Dec '94: 
DHS (118) 

DHS 
Jan '89-Apr '89, 
Jul '94- Nov '95, 
Jan '96- Dec '17 

S12-Old 33.90550 -118.42341 

Opposite 45th St., El Porto 
section of Manhattan 
Beach. 1.6 Miles north of 
Manhattan Beach pier 

  EMD Jan '88- Jun '92 

S13 33.90180 -118.42200 Manhattan State Beach at 
40th Street (aka SMB-5-1)   BC Jul '94-  Dec '17 

DHS 
(113) 33.89446 -118.41893 Manhattan Beach at 28th 

St. drain (aka SMB-5-2)   DHS Jan '02- Dec '17 

SMB-5-3 33.88381 -118.41323 Manhattan Beach Pier drain 
(point-zero) 

Jul '94- Oct '04: S14 Manhattan 
Beach Pier- 50 yards south 
(through 10/04)- EMD station  

BC Jul '94- Dec '17 

S13-Old 33.88003 -118.41083 

Opposite Mediterranean 
style house with a red tile 
roof. Opposite 6th St. in 
Manhattan Beach. 0.3 mile 
south of Manhattan Beach 
pier. 1.4 miles north of 
Hermosa Beach pier 

  EMD Jan '88- Jun '92 

DHS 
(114) 33.87137 -118.40726 Hermosa City Beach at 26th 

St. (aka SMB-5-4) Jul '94- Dec '94: DHS (119) DHS Jul '94- Nov '95, 
Jan '96- Dec '17 

S15 33.86120 -118.40297 Hermosa Beach Pier- 50 
yards south (aka SMB-5-5) 

Jan '88- Jun '92: S14 South side 
of Hermosa Pier- EMD station  BC Jan '88- Jun '92, 

Jul '94-  Dec '17 

DHS 
(115) 33.85191 -118.39971 

Herondo Street storm drain- 
(in front of the drain) (aka 
SMB-6-1) 

Jul '94- Dec '94: DHS (120) -DHS 
station EMD 

Jul '94-  Nov 
'95, Jan '96- 
Dec '17 

SMB-6-2 33.83868 -118.39125 Redondo Municipal Pier 100 
yards south 

Jan '89-Apr '89: DHS (206) 
Redondo Pier, north & DHS 
(207) Redondo Pier, south- both 
DHS stations; May '89- Dec '89: 
DHS (117) Redondo Pier, north 
& DHS (118) Redondo Pier, 
south- both DHS stations; Jan 
'92- Jun '94: DHS (118) Redondo 
Pier, north & DHS (119) -both 
DHS stations; Jul '94- May '13: 
S16 Redondo Municipal Pier, 
south side - EMD station 
*overlap from Nov '04- May '13 
with RB monitoring 

BC Jan '89- Dec '17 

S15-Old 33.83525 -118.39047 

Opposite end of stairway of 
restroom at the south end 
of the Redondo Beach 
Veterans Park. 0.25 mile 
south of Redondo Beach 
Pier. The pier sample is 
taken at the south side of 
the Redondo Beach pier 

  EMD Jan '88- Jun '92 

SMB-6-3 33.83384 -118.39082 Redondo State Beach at 
Sapphire Street   BC Nov '04- Dec 

'17 
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DHS 
(116) 33.83227 -118.39098 

Redondo State Beach at 
Topaz St. - north of jetty 
(aka SMB-6-4) 

Jul '94- Dec '94: DHS (121)  DHS 

Jul '94- Nov '96, 
Jan '96- Dec 
'98, Apr '99- 
Dec '17 

S16-Old 33.81983 -118.39088 
Opposite south end of 
concrete ramp at Avenue "I" 
in Redondo Beach 

  EMD Jan '88- Jun '92 

SMB-6-5 33.81982 -118.39107 Torrance Beach at Avenue I 
drain (point-zero) 

Jan '89- Apr '89: DHS (208) Ave I 
storm drain, north & DHS (209) 
Ave I storm drain, south- both 
DHS stations; Jul '94- Oct '04: 
S17 Redondo State Beach at Ave 
I (through 10/04) -EMD station  

BC Jan '89-Apr '89, 
Jul '94- Dec '17 

S18 33.80435 -118.39466 
Malaga Cove, Palos Verdes 
Estates - at trail outlet (aka 
SMB-6-6) 

  BC Jul '94-  Dec '17 

LACSDM 33.80342 -118.39613 
Malaga Cove, Palos Verdes 
Estates - at rocks (aka SMB-
7-1) 

Jan '88- Jun '92: S17 at the rocks 
at the bottom of the emergency 
road at Malaga Cove. 0.60 mile 
south of concrete ramp 
opposite Via Riviera in Torrance- 
EMD station 

LACSD 

Jan '88- Jun '92, 
Jan '97- Dec 
'00, Dec '01 
(Sampled only 
once), Jan '02- 
Dec '17 

LACSDB 33.79290 -118.40700 
Palos Verdes (Bluff) Cove, 
Palos Verdes Estates (aka 
SMB-7-2) 

  LACSD 

Jan '97- Dec 
'00, Dec '01 
(Sampled only 
once), Jan '02- 
Dec '17 

LACSD1 33.74090 -118.40400 Long Point, Rancho Palos 
Verdes (aka SMB-7-3)   LACSD 

Jan '97- Nov '97 
(Entero only), 
Dec '97- Apr 
'98, May '98- 
Mar '99 (Entero 
only), Apr '99- 
Dec '17 

LACSD2 33.74159 -118.37919 Abalone Cove Shoreline 
Park (aka SMB-7-4) 

Jan '89- Apr '89: DHS (210) 
Abalone Cove- DHS station  LACSD 

Jan '89, Apr '89, 
Jan '97, Feb '97- 
Mar '99 (Entero 
only), Apr '99- 
Dec '17 

LACSD3 33.73557 -118.35948 
Portuguese Bend Cove, 
Rancho Palos Verdes (aka 
SMB-7-5) 

  LACSD 

Jan '97, Feb '97- 
Oct '97 (Entero 
only), Nov '97- 
Feb '98, Mar 
'98 (Entero 
only), Apr '98- 
May '98, Jun 
'98- Oct '98 
(Entero only), 
Nov '98- Dec 
'17 

LACSD5 33.71756 -118.32211 Royal Palms State Beach 
(aka SMB-7-6)   LACSD 

Jan '97- Oct '97, 
Nov '97- Apr 
'98, May '98- 
Mar '99 (Entero 
only), Arp '99- 
Dec '17 

DHS 
(211) 33.71773 -118.32182 White Point     DHS Jan '89- Apr '89 

LACSD6 33.70760 -118.29536 Wilder Annex, San Pedro 
(aka SMB-7-8)   LACSD 

Jan '97, Feb '97- 
May '97 (Entero 
only), Jun '97- 
Aug '97, Sep 
'97- Oct '97 
(Entero only), 
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Nov '97, Dec 
'97- Mar '99 
(Entero only), 
Apr '99- Dec '17 

LACSD7 33.70889 -118.28401 Cabrillo Beach, ocean side 
(aka SMB-7-9) 

Jan '89- Apr '89: DHS (212) 
Outer Cabrillo Beach LACSD 

Jan '89- Apr '89, 
Jan '97- Mar 
'97, Apr '97- Jan 
'98 (Entero 
only), Feb '98- 
Apr '98, May 
'98- Mar '99 
(Entero only), 
Apr '99- Dec '17 

 
EMD = Environmental Monitoring Division (City of Los Angeles) 
DHS = Department of Health Services (Los Angeles County) 
LACSD = Los Angeles County Sanitation District 
BC = Beach Cities (City of Redondo Beach, City of Manhattan Beach, City of Hermosa Beach)  
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Appendix B       

Project  Latitude Longitude 

FIB 

Monitoring 

Station 

Location 
Construction 

Completion Date 
Agency  

Ashland Avenue 

(phase 2) 
33.99938 -118.48150  SMB-3-5  

103 Ashland Ave, Santa 

Monica, CA. 90405  
6/10/06 LACFCD 

Avenue I 33.81952 -118.38983  SMB-6-5  

Esplanade & Avenue I, 

Redondo Beach, CA. 

90277 

2/16/06 LACFCD 

*Electric Avenue 

Pump Plant 
33.99303 -118.47265  DHS (107)   

314 Brooks Ave, Venice, 

CA. 90291 
4/15/01 LACFCD 

Herondo Street 33.85359 -118.39416  DHS (115)   

445 1/2 Herondo St, 

Hermosa Beach, CA. 

90254 

8/16/05 LACFCD 

Manhattan, 28th 

& The Strand 
33.89424 -118.41874  DHS (113)   

Strand @ 28th St., 

Manhattan Beach, CA. 

90266 

3/26/07 LACFCD 

Parker 

Mesa/Castlerock 
34.04168 -118.56723  SMB-2-1  

PCH and Coastline Dr., 

Los Angeles, CA. 90272  
4/10/07 LACFCD 

Pershing Drive, 

Line C 
33.93091 -118.43329  SMB-2-13  

Imperial Hwy w\o 

Pershing, Playa del Rey, 

CA. 90045 

4/17/06 LACFCD 

Playa del Rey 33.95964 -118.44743  S11   

Culver Blvd & Pershing 

Dr., Playa Del Rey, CA. 

90045 

4/15/01 LACFCD 

Pulga Canyon  34.03876 -118.54240  SMB-2-4  
16510 Pac. Coast Hwy, 

Los Angeles, CA. 90272 
6/22/04 LACFCD 

Rose Avenue 

(phase 2) 
33.99765 -118.47510  SMB-3-6  

300 Rose Ave, Venice, 

CA. 90291 
6/14/05 LACFCD 

Santa Ynez 34.03837 -118.55471  SMB-2-2  

17310 Sunset Blvd, 

Pacific Palisades, CA. 

90272 

6/22/06 LACFCD 

Westchester 33.94533 -118.44287  SMB-2-11  
8184 Vista del Mar, 

Playa del Rey, CA. 90293 
7/29/04 LACFCD 

Marquez Avenue 34.03951 -118.54944 N/A 

17015 PCH, Los Angeles, 

CA 90272 (intersection 

of Marquez Ave & PCH)  

7/15/06 CLA 

Bay Club Drive 34.03963 -118.54581 SMB-2-5 

230 Arno Way., Los 

Angeles, CA 90272 

(intersection of Bay Club 

& Arno Way)  

1/24/01 CLA 

Temescal Canyon 34.03588 -118.53572 SMB-2-6 

15733 Temescal Canyon, 

Los Angeles, CA 

90291(intersection 

Temescal Cyn & PCH-

Parking Lot)  

6/23/03 CLA 
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Palisades Park  34.03124 -118.52484 N/A 
15100 Pacific Coast Hwy, 

Los Angeles, CA 90272  
11/28/00 CLA 

Santa Monica 

Canyon 
34.02783 -118.51937 SMB-2-7 

152 W. Channel Rd, Los 

Angeles, CA 90402 

(intersect of West 

Channel Rd & PCH)  

6/10/03 CLA 

Thornton Avenue 33.99323 -118.47571 N/A 

Intersection of Thornton 

Pl / Main St / Royal CT, 

Los Angeles, CA 90291  

11/28/00 CLA 

Venice Pavilion  33.98869 -118.47153 SMB-3-8 

Intersection of 

Windward Ave & Main 

St., Los Angeles, CA  

6/10/03 CLA 

Imperial Highway 33.93091 -118.42917 SMB-2-13  

Imperial Hwy West of 

Pershing Dr., Playa del 

Rey, CA 90045  

4/15/06 CLA 

Montana Avenue 34.02223 -118.50745 SMB-3-1 Montana Avenue  6/30/07 CSM 

Wilshire Blvd 34.01680 -118.50121 SMB-3-2 Wilshire Boulevard  8/31/07 CSM 

Santa Monica Pier 

(SMURRF) 
34.00957 -118.49717 SMB-3-3 

Santa Monica Pier 

(SMURRF)  
10/1/97 CSM 

Pico-Kenter 

(SMURRF)  
34.00638 -118.49191 SMB-3-4 Pico-Kenter (SMURRF)  1/1/93 CSM 

Redondo Beach 

Pier  
33.83878 -118.39025 SMB-6-2 Redondo Beach Pier  5/15/06 RB 

Sapphire Drain  33.83361 -118.38968 SMB-6-3 
Sapphire St. & Catalina 

Ave  
12/31/09 RB 

Manhattan Beach 

Pier  
33.88435 -118.41181 SMB-5-3 

Manhattan Beach Blvd 

and Ocean Ave  
6/15/06 MB 

 
*Electric Avenue LFD is a pump plant, opposed to all other stand-alone LFDs 
 
LACFD = Los Angeles County Flood Control District  
CLA = City of Los Angeles Watershed Protection Division 
CSM = City of Santa Monica 
RB = City of Redondo Beach 
MB = City of Manhattan Beach 
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