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Abstract

The Double Handcuff and K4 graphs can be generalized to a single family of spatial
graphs by adding a variable number of twists between two edges. We can identify
spatial graphs by calculating a quotient of the fundamental quandle, known as an
N -quandle, which is a spatial graph invariant. In this paper, we prove that the
N -quandle associated with this family of spatial graphs is finite when all but two

edges are given a label of 2, and the remaining two edges are assigned labels from the
natural numbers. To prove that the N -quandle is finite, we produce Cayley graphs
for each of the N -quandle components, providing corresponding proofs and analysis.
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CHAPTER 1

Introduction

1.1. Spatial Graphs

A graph G consists of a set V of vertices and a set E of edges which connect
distinct vertices. These graphs can be directed or undirected, but for our purposes
we will focus on the former. A spatial graph is a finite graph embedded in R3, and
as such can be considered a generalization of knots, which are simple closed curves
in R3, and links, which are collections of one or more knots which may overlap but
may not intersect. One important distinction between spatial graphs and these other
topological objects is that spatial graphs allow for the existence of intersections, which
result in vertices.

We can represent three dimensional spatial graphs in two dimensions using dia-
grams, which project the image of a graph from R3 to R2. To differentiate between
intersections, where two edges of a graph physically meet at a vertex, and crossings
in which two non-intersecting edges overlap in the projection, we represent the lower
curve of a crossing as broken. An example of a diagram of a knot, link, graph and
spatial graph is presented in Figure 1.

(a) Knot (b) Link (c) Graph (d) Spatial graph

Figure 1. Knot, link and graph diagrams

One important question in topology and knot theory is how to distinguish spatial
graphs. As Figure 2 demonstrates, diagrams do not uniquely identify spatial graphs,
since the edges of the graph can be transformed and twisted so as to change the
number of crossings without changing the fundamental structure of a spatial graph.
In this paper, we will explore alternative approaches to identifying a topological
object.
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(a) No crossings (b) One crossing (c) Four crossings

Figure 2. Various representations of K4.

(a) Double Handcuff

(b) Complete K4

Figure 3

In particular, we will consider two well known graphs: the Double Handcuff Graph
(Figure 3a) and the Complete (K4) Graph (Figure 3b). We can add k twists between
the a and b edges in each graph to generate a corresponding spatial graph, which now
is embedded in R3. The direction of the twists is depicted in Figure 4. Note that
these two graphs can be generalized to have the same form as depicted in Figure 5,
where G is a tangled double handcuff graph when k is even and it is a tangled K4
graph when k is odd.

1.2. Quandles, n-Quandles and N-Quandles

To distinguish spatial graphs, we must rely on a spatial graph invariant. One such
invariant is the fundamental quandle of a spatial graph.



Figure 4. k twists between the a and b edges.

A quandle is defined as a set Q with two binary operators, � and �−1 which
satisfy the following three axioms:

(1) ∀x ∈ Q, x� x = x
(2) ∀x, y ∈ Q, (x� y)�−1 y = x
(3) ∀x, y, z ∈ Q, (x� y)� z = (x� z)� (y � z)

Alternatively, quandle operators can be denoted with exponential notation such
that xy = x � y and xy = x �−1 y. For the remainder of the paper, we will utilize
exponential notation.

We assign quandle structure to spatial graphs by defining relationships at the
crossings and vertices of the graph. Consider a spatial graph G with vertices V and
edges E, some of which may be knotted or linked. The generators of its fundamental
quandle, Q, are the arcs (i.e. the portions of edges between crossings) of G. We define
relationships between these elements at the points where they cross and intersect.
First we will describe the relationship at crossings. Consider an arc xj that crosses
over a component, splitting it into arcs, xi on the left and xk on the right. We then
say that xi = xk � xj. Next, we will describe the relationship at vertices. Consider n
arcs, a1, a2, · · · an which are ordered counter-clockwise and meet at a vertex v. Then,

((x�ϵ1 a1)�
ϵ2 a2) · · ·�en an = x ∀x ∈ Q

Figure 5. A complete/double-handcuff graph with a block of k twists.



where ϵi = 1 when ai points out of v and ϵi = −1 otherwise. These relationships are
illustrated in Figure 6.

A subset C ⊂ Q is called a component of Q if it is closed under � and �−1 such
that for all x, y ∈ C, x� y ∈ C and x�−1 y ∈ C. Note that multiple generators may
be in the same component.

Figure 6. Relations of the quandle at crossings and vertices.

Using these relationships, we can prove three lemmas that we will use throughout
the remainder of the paper.

Lemma 1.1. For all x, y, z ∈ Q,

xyz = xz y

Proof. By the second axiom of quandles,

x(yz )(yz) = x

x(yz )yzz = xz

x(yz )y = xz

x(yz )yy = xz y

xyz = xz y

□

Lemma 1.2. For all x, y, z ∈ Q,

x(yz) = xz yz

Proof. The second axiom of quandles gives us that (xz )z = x, so x(yz) =
((xz )z)(y

z). By the third axiom of quandles,

((xz )z)(y
z) = ((xz )y)z = xz yz

Therefore, x(yz) = xz yz □



Lemma 1.3. For all x, y, z ∈ Q,

x(yz ) = xz y z

Proof. By Lemma 1.2, x(yz ) = xz yz . Moreover, by Lemma 1.1, xz yz = xz yz =
xz y z. Thus, x(yz ) = xz y z. □

Although the fundamental quandle is a spatial graph invariant, it is infinitely large
for all spatial graphs except the unknot and the Hopf Link, and therefore fundamental
quandles are almost as difficult to identify as spatial graphs themselves.

To partially address this, we can define a quotient of the fundamental quandle,
called an n-quandle, which appends an additional axiom to the three quandle axioms:

4. ∀x, y ∈ Q, x(yn) = x for some n ∈ N
A more generalized form of the n-quandle is called an N -quandle. Suppose that

a quandle, Q, has k distinct components, C1, C2, . . . , Ck. Then, the N -quandle of G
has the property

4. ∀x ∈ Q, x(si)
ni = x for all generators si ∈ Ci, where 1 ≤ i ≤ k and N =

{n1, n2, . . . nk} is a set of natural numbers.

Depending on the choice of N , the N -quandle of a given spatial graph may be
finite, which allows for graphs to be distinguished from each other.



CHAPTER 2

Proof of Finite N-Quandle of Twisted Double Handcuff and
Complete Graph

2.1. Introduction to Twisted Double Handcuff and Complete Graph

In this section, we will prove that the Twisted Double Handcuff Graph and
Twisted Complete Graph, which we previously showed can be generalized to a spatial
graph G of the same form in Figure 5, have a finite N -Quandle, denoted QN(G). Ob-
serve thatQN(G) has six generators, a, b, c, d, e, f . We will show that the (2, 2, n1, n2, 2, 2)-
quandle of G is finite for all n1, n2 ∈ N. In particular,

|QN(G)| = 2kn1 + 2kn2 + 4kn1n2

First, we will give a presentation for QN(G). Our choice of N = (2, 2, n1, n2, 2, 2)
gives us six primary relations, namely,

• xa2 = x ∀x ∈ QN(G)

• xb2 = x ∀x ∈ QN(G)
• xcn1 = x ∀x ∈ QN(G)
• xdn2 = x ∀x ∈ QN(G)

• xe2 = x ∀x ∈ QN(G)

• xf2
= x ∀x ∈ QN(G)

Notice that this implies that xw = xw for all w ∈ {a, b, e, f}. Next, we will utilize the
relations given by Figure 6 to identify any secondary relations present in the graph.
We can use the crossing relations to determine the N-quandle elements assigned to
the two left-most arcs of G in terms of a, b and k.

Lemma 2.1. Let x denote the outer arc on the left side of G and let y denote the
inner arc. When k is even,

x = ba(ba)
k−2
2

y = a(ba)
k
2

When k is odd,

x = a(ba)
k−1
2

y = ba(ba)
k−1
2

Proof. We will prove the result using induction. The process described below is
demonstrated graphically in Figure 1.
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Figure 1. Quandle relations on twists.

Base case: Using the crossings relations, when k = 1, x = a and y = ba, and when
k = 2, x = ba and y = a(b

a) = aaba = aba by Lemma 1.2. Thus, the base cases hold.

Inductive step: Now suppose that for an odd number of twists k,

xk = a(ba)
k−1
2

yk = ba(ba)
k−1
2

Then for k + 1 twists,

xk+1 = yk = ba(ba)
k−1
2 = ba(ba)

(k+1)−2
2

yk+1 = x
(yk)
k

= (a(ba)
k−1
2 )b

a(ba)
k−1
2

= a(ba)
k−1
2 a(ba)

k−1
2 ba(ba)

k−1
2

= a(ba)
k−1
2 (ab)

k−1
2 aba(ba)

k−1
2

= a(ba)
(k+1)

2

Therefore, the result holds by induction for the odd to even case. Using the same
logic, we get that result also holds for the even to odd case. □

The newly labelled graphs are given in Figure 2a when k is even and Figure 2b
when k is odd.

Now, we can apply the vertex relations at the four vertices to get four secondary
relationships that must hold for all x ∈ QN(G):



(a) Labelling on G when k is even, where
t = k

2 .

(b) Labelling on G when k is odd, where
t = k−1

2 .

Figure 2

• xaed = x ∀x ∈ QN(G)

• xbdf = x ∀x ∈ QN(G)

• xe(ab)kac = x ∀x ∈ QN(G)

• xc(ab)k−1af = x ∀x ∈ QN(G)

The last two relations hold for both the even and odd case since

xea(ba)
k
2 c = xe(ab)

k
2 a(ba)

k
2 c = xe(ab)kac = xe(ab)

k−1
2 (ab)a(ba)

k−1
2 c = xeba(ba)

k−1
2 c

and

xcba(ba)
k
2−1

f = xca(ba)
k
2−1 ba(ba)

k
2−1f = xc(ab)

k
2 a(ba)

k
2−1f = xc(ab)k−1af

= xc(ab)
k−1
2 a(ba)

k−1
2 f = xca(ba)

k−1
2 f

These relations yield the following quandle presentation for QN(G):

QN(G) = ⟨a, b, c, d, e, f | xa2 = x, xb2 = x, xcn1 = x, xdn2 = x, xe2 = x, xf2

= x

xaed = x, xbdf = x, xe(ab)kac = x, xc(ab)k−1af = x⟩ (1)

To show that QN(G) is finite, we will utilize a method developed by Winker,
which relies on the construction of a Cayley graph of QN(G) [1] and is described in
detail in [2]. The Cayley graph associated with an N -quandle is finite if and only if
the N -quandle is finite, where the vertices of the graph represent the unique elements
of the quandle, and the edges represent relations between these elements. In other
words, if two vertices, x and y of the Cayley graph are connected by an edge labelled
as a, it implies that xa = y.

In the following sections, we will prove that the Cayley graph associated with
QN(G) is finite, with 2kn1+2kn2+4kn1n2 vertices. More specifically, QN(G) consists
of six components, each generated by one of the six generators of QN(G). The four



components associated with a, b, e and f have size kn1n2. The component associated
with c has 2kn2 vertices and the component associated with d has 2kn1 vertices.

2.2. Important Relationships

Before proving the size of the N -quandle, we define several important lemmas
that will prove useful in later sections.

Lemma 2.2. For any element x ∈ Q,

• xbd = xd b = xf

• xdb = xbd

• xad = xd a = xe

• xda = xad

Proof. Given that xaed = x,

xae = xd

(xa)(ae) = (xa)d

xe = xad

Thus, we obtain that, xe = xad so xe = xd a. Therefore,

xad = xd a

xadad = x

xdadad = xd

xdadadd = xdd

xdada = x

xda = xad

Similarly, given that xbdf = x, xbd = f and xbd = xd b = xf = xf . Then,

xbdbd = x ⇒ xdbdb = x ⇒ xdb = xbd . □

Notice that this lemma implies that xa = xdad = xd ad and xb = xdbd = xd bd .
Therefore,

Lemma 2.3. For any element x ∈ Q,

xab = xdabd = xd abd = xef

Proof. By Lemma 2.2,

xab = x(dad)(d bd ) = xdabd = xef

Similarly,

xab = x(d ad )(dbd) = xd abd = xef



□

Lemma 2.4. For any element x ∈ Q,

x(ab)k = xc d = x(ef)k

Proof. Given the initial relationship xc(ab)k−1af = x, we see

x = xc(ab)k−1af

= xc(ab)k(ba)af

= xc(ab)kbf

= xc(ab)kb(bd) (Lemma 2.2)

= xc(ab)kd

Therefore, x(ab)k = xc d = x(ef)k by Lemma 2.3. □

Lemma 2.5. For all x ∈ Q,

xcdc d = x

Proof. By Lemma 2.4,

x = xc(ab)kd

= xc(dabd )kd (Lemma 2.3)

= xcd(ab)kd d

= xcd(ab)k

= xcdc d (Lemma 2.4)

□

Lemma 2.6. For w ∈ {a, b, e, f} and for all x ∈ Q,

xcidjw = xwc id j

Proof. We will prove the conclusion for a, b, e and f separately.

First consider the case when w = a. Observe that

xcidja = xcidj−1(da) = xcidj−1ad

by Lemma 2.2. We can repeat this process j times to obtain xcidja = xciad j
. Now

observe that the relationship xe(ab)kac = x yields the following equations:

xc = xe(ab)ka

xc = xa(ba)ke



Therefore,

xcidja = xciad j

= x[e(ab)ka]iad j

= x[ea(ba)k]iad j

= x[ead(ba)kd ]iad j

(Lemma 2.3)

= x[ee(ba)kd ]iad j

(Lemma 2.2)

= x[(ba)kd ]iad j

= x[aa(ba)kd ]iad j

= xa[a(ba)kd a]id j

= xa[a(ba)ke]id j

(Lemma 2.2)

= xac id j

Next, consider the case when w = b. Notice that

xcidjb = xcidj−1(db) = xcidj−1bd

by Lemma 2.2. We can repeat this process j times to obtain xcidjb = xcibd j
. Also,

observe that the relationship xc(ab)k−1af = x yields

xc = xfb(ba)k

xc = x(ab)kbf

Then,

xcidjb = xcibd j

= x[fb(ba)k]ibd j

= x[bdb(ba)k]ibd j

= xb[db(ba)kb]id j

= xb[d(ab)k]id j

= xb[dd (ab)kd]id j

= xb[(ab)kbf ]id j

(Lemma 2.2)

= xbc id j

Next, consider the case when w = e. Notice that

xcidje = xcidj−1(de) = xcidj−1ed



by Lemma 2.2. We can repeat this process j times to obtain xcidje = xcied j
. Then,

xcidje = xcied j

= x[e(ab)ka]ied j

= x[ea(ba)k]ied j

= xe[a(ba)ke]id j

= xec id j

Finally, consider the case when w = f . Observe that

xcidjf = xcidj−1(df) = xcidj−1fd

by Lemma 2.2. We can repeat this process j times to obtain xcidjf = xcifd j
. Then,

xcidjf = xcifd j

= x[fb(ba)k]ifd j

= xf [b(ba)kf ]id j

= xf [(ab)kbf ]id j

= xfc id j

Therefore in all cases, xcidjw = xwc id j
.

□

2.3. The a and b Components

In this section we will first show that the size of the a-component in the quandle
Q has size kn1n2. To illustrate the structure of the component, Figure 3 presents a
Cayley graph representation of the a-component of the quandle when n1 = 3, n2 = 2
and k = 4. The Cayley graph is distinctly divided into k layers, each with n1nk points,
such that there are a total of kn1n2 points, as desired. Each of these layers has a
torus-like structure, a diagram of which is presented in Figure 4. There are n1 vertical
cross-sections of the torus, representing the c-edges, and n2 horizontal cross sections
representing the d-edges. Each torus can also be represented by a square using its
identification space, as displayed in Figure 4. The set of tori are then connected by
alternating pairs of a/e and b/f edges.

The torus structure of each level is given by Lemma 2.5, which tells us that

xcdc d = x. This relationship gives us the c and d square patterns in Figure 4. The
alternating pairs of a/e and b/f edges between the tori can be explained by the initial

relationships xaed = x and xbdf = x. Since xbdf = x, we can start at any point in a
torus, move up to the following torus along a b-edge, travel horizontally along a d-edge
of the torus, and return to the original point via an f -edge. The same occurs with
a/e edges. Thus, the behavior of the Cayley graph at and between tori is accounted
for.



Figure 3. Cayley graph of the a-component when n1 = n2 = 3 and
k = 4.

Therefore, the remainder of this section will explain the behavior at the bottom
and top most tori. At the bottom-most torus, which contains the a-element, b and
f -edges serve as connectors to the following torus. By Theorem 2.1 and Theorem 2.2,
the a and e-edges on the bottom torus connect to a different point within the same
torus.

Theorem 2.1. For all i, j ≥ 0,

ac
idja = ac

id j

This theorem follows immediately from Lemma 2.6.

Theorem 2.2. For all i, j ≥ 0,

ac
idje = ac

id j−1



Figure 4. Each a-component contains k tori as depicted above. The
torus above would be found in a graph where n1 = 3 and n2 = 2.
Each torus has n1 vertical cross sections (represented in red) and n2

horizontal cross section (represented in green). The intersections of the
cross sections are the points of the Cayley graph. The torus can also be
represented using its square identification space, where opposite points
are identified (e.g. the bottom left point is identified with the top left,
top right, and bottom right points.)

Proof. Lemma 2.6 gives us that ac
idje = aec

id j
. Therefore,

ac
idje = aec

id j

= aadc
id j

(Lemma 2.2)

= aac
idd j

(Lemma 2.5)

= ac
id j−1

□



The top-most torus varies depending on whether k is even or odd. When k is
even, b and f -edges again serve as connectors between the torus and the one below it.
Theorem 2.3 and Theorem 2.4 again indicate that the a and e-edges connect to other
points on the torus. When k is odd, a and e-edges now serve as connectors between
the torus and the one below it. Theorem 2.5 and Theorem 2.6 demonstrate that the
b and f -edges connect to other points on the torus.

Theorem 2.3. When k is even,

a(ba)
k
2−1bcidja = a(ba)

k
2−1bc i−1d j−1

Proof. By Lemma 2.6,

a(ba)
k
2−1bcidja = a(ba)

k
2−1bac id j

= a(ba)
k
2 c id j

Therefore,

a(ba)
k
2−1bcidja = a(ba)

k
2 c id j

= a(ba)
k
2 (c d )c i−1d j−1

(Lemma 2.5)

= a(ba)
k
2 (ab)kc i−1d j−1

(Lemma 2.4)

= a(ab)
k
2 c i−1d j−1

= a(ba)
k
2−1bc i−1d j−1

□

Theorem 2.4. When k is even,

a(ba)
k
2−1bcidje = a(ba)

k
2−1bc i−1d j−2

Proof. By Lemma 2.6,

a(ba)
k
2−1bcidje = a(ba)

k
2−1bac id j−1

= a(ba)
k
2 c id j−1

Also using the same argument as in Theorem 2.3, we can see that

a(ba)
k
2 c id j−1

= a(ba)
k
2−1bc i−1d j−2

Therefore,

a(ba)
k
2−1bcidje = a(ba)

k
2−1bc i−1d j−2

□

Theorem 2.5. When k is odd,

a(ba)
k−1
2 cidjb = a(ba)

k−1
2 c i+1d j+1



Proof. By Lemma 2.6,

a(ba)
k−1
2 cidjb = a(ba)

k−1
2 bc id j

Therefore,

a(ba)
k−1
2 cidjb = a(ba)

k−1
2 bc id j

= a(ab)
k+1
2 c id j

= a(ab)
k+1
2 (dc)c i+1d j+1

= a(ab)
k+1
2 (ba)kc i+1d j+1

= a(ba)
k− k+1

2 c i+1d j+1

= a(ba)
k−1
2 c i+1d j+1

□

Theorem 2.6. When k is odd,

a(ba)
k−1
2 cidjf = a(ba)

k−1
2 c i+1d j

Proof. By Lemma 2.6,

a(ba)
k−1
2 cidjf = a(ba)

k−1
2 fc id j

Therefore,

a(ba)
k−1
2 cidjf = a(ba)

k−1
2 fc id j

= a(ba)
k−1
2 bdc id j

= a(ba)
k−1
2 bc id j−1

Therefore, using the same logic as in Theorem 2.5,

a(ba)
k−1
2 cidjf = a(ba)

k−1
2 bc id j−1

= a(ba)
k−1
2 c i+1d j

□

Therefore, every element in the a-component belongs to an n1 × n2 sized torus
and there are k such tori. Furthermore, it is easy to verify that all secondary relations
are satisfied. Therefore, the a-component has kn1n2 elements.

To verify that the b-component also has kn1n2 elements, we can easily check that
there is an automorphism between the Graph A (left) and Graph B (right) in Figure 5,
where a maps to b, d maps to c and e maps to f . Therefore, the b-component must
have the same size as the a-component.



Figure 5. On the basis of isotopic moves, we can transform Graph A
(left) into Graph B (right).

2.4. The c and d Components

Next, we will show that the d-component in QN(G) has 2kn1 elements. Again,
we illustrate the component using a Cayley graph in Figure 6. The Cayley graph of
the d-component consists of 2k n1-cycles of c, connected by alternating a/b and e/f
edges. Every vertex has a d-loop at it.

Figure 6. Cayley graph of the d-component of QN(G) when n1 = 3,
n2 = 2 and k = 4.

First, we will prove the existence of the d-loops at every vertex.

Theorem 2.7. For i ≥ 0,

• d(ab)
id = d(ab)

i

• d(ab)
iad = d(ab)

ia



Proof. We will prove this result using induction. For the base case, note that
by Lemma 2.2, da = ddad = dad, so

dabd = d(ad)bd = dad(d b) = dab (2)

Furthermore, using our result from (2),

dabad = d(abd)ad = dabd(d a) = daba (3)

Therefore, the base cases hold.

Now, assume that d(ab)
id = d(ab)

i
and d(ab)

iad = d(ab)
ia. Then,

d(ab)
i+1d = d(ab)

iabd

= d(ab)
iad b

= d(ab)
iab (Inductive Hypothesis)

= d(ab)
i+1

(4)

Moreover,

d(ab)
i+1ad = d(ab)

i+1d a

= d(ab)
i+1a

using our result from (4). Therefore, d(ab)
id = d(ab)

i
and d(ab)

iad = d(ab)
ia by mathe-

matical induction.
□

Next, Theorem 2.8 and Theorem 2.9 justify the cyclical a/b and e/f pattern, and
show that it is closed.

Theorem 2.8. For all i ≥ 0,

• d(ab)
ia = d(ab)

ie

• d(ab)
ib = d(ab)

if

• d(ab)
i
= d(ab)

iae

• d(ab)
i+1

= d(ab)
iaf

Proof. By Theorem 2.7, d(ab)
ia = d(ab)

iad = d(ab)
ie using the relationship xaed =

x. Moreover, d(ab)
i
= d(ab)

id = d(ab)
iae.

Similarly, using the relationship xbdf = x, we see d(ab)
ib = d(ab)

id b = d(ab)
if . More-

over, d(ab)
i+1

= d(ab)
iabd = d(ab)

iaf .
□

Theorem 2.9.

d(ab)
n1k = d



Proof. First, we will show that for i ≥ 0, dc
i
= d(ab)

ik
. The case for i = 1 can

be inferred directly from Theorem 2.10. Now suppose that for i = j, dc
j
= d(ab)

jk
.

Then,

dc
j+1

= dc
jc = d(ab)

jkc

By the base case,

d(ab)
jkc = d(ab)

jk(ab)k = d(ab)
jk+k

= d(ab)
(j+1)k

Therefore, the result holds by mathematical induction. From here, it is easy to see
that

d(ab)
n1k = dc

n1 = d

□

The n1-cycle structure for the c edges is justified by the fact that c has order n1

such that xcn1 = x for all x ∈ QN(G). Theorem 2.10 explains how these c cycles are
embeded into the graph’s structure. In particular, c connects any vertex with the
vertex (ab)k away from it.

Theorem 2.10. For all i ≥ 0,

d(ab)
ic = d(ab)

i+k

Proof. Given that x(ab)k = xc d by Lemma 2.4,

d(ab)
k

= dc d

d(ab)
kd = dc

d(ab)
k

= dc (5)

by Theorem 2.7. Thus,

d(ab)
ic = d(ab)

i(ab)k

= d(ab)
i+k

□

Thus, every element in the d-component can be written as d(ab)
i
or d(ab)

ia for some
i ∈ N. Moreover, d(ab)

n1k = d so there can only be 2n1k such possible elements.
Furthermore, it is easy to verify that all secondary relations are satisfied. Therefore,
the d-component has 2kn1 elements.

To verify that the c-component has 2kn2 elements, Figure 7 demonstrates that
we can rotate G such that the c edge assumes the position of the d edge in a graph
G′ that is isotopic to G. Therefore, using the same procedure as above on G′, we can
show that the c component must have 2kn2 elements.



Figure 7. By rotating G 180 degrees along the y-axis, we obtain an
isotopic graph.

2.5. The e and f Components

In this section we will show that the size of the e-component in the quandles has
size kn1. Figure 8 presents a Cayley graph of the e-component, which has a structure
very similar to the a-component, but with different behavior on the top and bottom
torus.

Theorem 2.11 and Theorem 2.12 explain the behavior of the N-quandle at the
bottom-most torus containing the e element.

Theorem 2.11. For all i, j ≥ 0,

ec
idja = ec

id j+1

Proof. Lemma 2.6 gives us that ec
idja = eac

id j
. Therefore,

ec
idja = eac

id j

= eed c
id j

(Lemma 2.2)

= eec
id d j

(Lemma 2.5)

= ec
id j+1

□

Theorem 2.12. For all i, j ≥ 0,

ec
idje = ec

id j

This theorem follows immediately from Lemma 2.6.
Theorem 2.13, Theorem 2.14, Theorem 2.15 and Theorem 2.16 explain the behav-

ior of the N-quandle at the top-most torus.



Theorem 2.13. When k is even,

e(fe)
k
2−1fcidja = e(fe)

k
2−1fc i−1d j

Proof. By Lemma 2.6,

e(fe)
k
2−1fcidja = e(fe)

k
2−1fac id j

= e(fe)
k
2−1f(ed )c id j

= e(fe)
k
2 c id j+1

Therefore,

e(fe)
k
2−1fcidja = e(fe)

k
2 c id j+1

= e(fe)
k
2 (c d )c i−1d j

= e(fe)
k
2 (ef)kc i−1d j

= e(ef)
k
2 c i−1d j

= e(fe)
k
2−1fc i−1d j

□

Theorem 2.14. When k is even,

e(fe)
k
2−1fcidje = e(fe)

k
2−1fc i−1d j−1

Figure 8. Cayley graph of the e-component when n1 = n2 = 3 and
k = 4.



Proof. By Lemma 2.6,

e(fe)
k
2−1fcidje = e(fe)

k
2−1fec id j

= e(fe)
k
2 c id j

Therefore,

e(fe)
k
2−1fcidje = e(fe)

k
2 c id j

= e(fe)
k
2 (c d )c i−1d j−1

(Lemma 2.5)

= e(fe)
k
2 (ef)kc i−1d j−1

(Lemma 2.4)

= e(ef)
k
2 c i−1d j−1

= e(fe)
k
2−1fc i−1d j−1

□

Theorem 2.15. When k is odd,

e(fe)
k−1
2 cidjb = e(fe)

k−1
2 c i+1d j+2

Proof. By Lemma 2.6,

e(fe)
k−1
2 cidjb = e(fe)

k−1
2 bc id j

Therefore,

e(fe)
k−1
2 cidjb = e(fe)

k−1
2 bc id j

= e(fe)
k−1
2 fd c id j

= e(fe)
k−1
2 fc id j+1

= e(ef)
k+1
2 c id j+1

= e(ef)
k+1
2 (dc)c i+1d j+2

= e(ef)
k+1
2 (fe)kc i+1d j+2

= e(fe)
k− k+1

2 c i+1d j+2

= e(fe)
k−1
2 c i+1d j+2

□

Theorem 2.16. When k is odd,

e(fe)
k−1
2 cidjf = e(fe)

k−1
2 c i+1d j+1



Proof. By Lemma 2.6,

e(fe)
k−1
2 cidjf = e(fe)

k−1
2 fc id j

Therefore,

e(fe)
k−1
2 cidjf = e(fe)

k−1
2 fc id j

= e(fe)
k+1
2 c id j

= e(fe)
k+1
2 (dc)c i+1d j+1

= e(ef)
k+1
2 (fe)kc i+1d j+1

= e(fe)
k− k+1

2 c i+1d j+1

= e(fe)
k−1
2 c i+1d j+1

□

Therefore, every element in the e-component belongs to an n1×n2 sized torus and
there are k such tori. Furthermore, it is easy to verify that all secondary relations are
satisfied. Therefore, the e-component has kn1n2 elements.

To verify that the f -component also has kn1n2 elements, we can again use the
automorphism from Figure 5.

2.6. Conclusion

We conclude that QN(G) has 2kn1 + 2kn2 + 4kn1n2 elements and is therefore
finite.
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