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Abstract

A partially ordered set, or poset, is governed by an ordering that may or may not relate
any pair of objects in the set. Both the bonds of a graph and the partitions of a set are
partially ordered, and their poset structure can be depicted visually in a Hasse diagram. The
partitions of {1, 2, ..., n} form a particularly important poset known as the partition lattice
Πn. It is isomorphic to the bond lattice of the complete graph Kn, making it a special case
of the family of bond lattices.

Dowling and Wilson’s 1975 Top-Heavy Conjecture states that every bond lattice has at
least as many elements in its upper half as in its lower half. The existing proof of this
conjecture by Huh et al. in 2017 relies heavily on algebraic geometry. In this paper, we
provide an alternate combinatorial proof for the Top-Heavy Conjecture on partition lattices.
To do this, we define a specific class of forests on n vertices and construct an abstract
simplicial complex ∆n out of the edge sets of these graphs. Then, we show that ∆n is a
shellable complex for all n, and we use this result to prove that Πn is a top-heavy lattice.
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CHAPTER 1

Introduction

1.1. Background

A graph is a mathematical object consisting of a series of vertices, or nodes, connected
by edges. Graphs can be used to model any network where objects or people are connected,
such as social media, flight paths, and machine learning decision trees.

A graph G is defined by its vertex set V (G) and edge set E(G). For instance, if vertices
1 and 2 have an edge between them in G, then 1, 2 ∈ V (G) and 12 ∈ E(G). We say that
vertices 1 and 2 are “adjacent.” A graph H is a subgraph of G if and only if V (H) ⊆ V (G)
and E(H) ⊆ E(G). In an induced subgraph H of G, any vertices in H that are adjacent
in G must also be adjacent in H. A graph is connected if it is possible to find a path
between any two of its vertices. If a graph is disconnected, its largest connected subgraphs
are known as connected components. A tree T is a connected graph with n vertices and
n − 1 edges, the minimum number of edges so that T remains connected. Equivalently, a
connected graph T is a tree if and only if it contains no cycles, or paths from a vertex to
itself that do not overlap.

A bond is a specific type of subgraph, defined as follows:

Definition 1.1. A subgraph H of graph G is a bond of G if and only if the following
hold:

1. V (H) = V (G)
2. Each connected component of H is an induced subgraph of G.

In Figure 1, subgraphs H1 and H3 are bonds of G, while H2 is not. Note that any two
vertices in G are adjacent, making it the complete graph on 4 vertices. The complete
graph on n vertices is denoted Kn.

One of the primary motivations for examining the bonds of a graph is that, all together,
they form an important combinatorial structure known as a partially ordered set. Oth-
erwise known as a “poset,” it is defined as follows:

Definition 1.2. A poset (P,≤), where P is a finite set and ≤ is a binary relation on P,
satisfies the following properties ∀ x, y, z ∈ P :

1. Reflexivity: x ≤ x
2. Antisymmetry: If x ≤ y and y ≤ x, then x = y.
3. Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

In totally ordered sets like the integers and real numbers, any two elements can be compared;
one is always larger than the other. However, in a partially ordered set, two elements may
or may not be related.

If we let the collection of bonds of a graph be our set P and take the subgraph relation
as our ordering ≤, the resulting structure satisfies all the above properties. It is called the
bond lattice of the graph. For a pair of bonds H1 and H2 in the poset, if H1 is a subgraph of

1
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Figure 1. A graph and subgraphs

H2, then H2 is “above” H1 in the ordering (or vice versa). But if neither bond is a subgraph
of the other, they are unrelated in the ordering.

The Hasse diagram of a bond lattice is a graph-like structure that visualizes a bond lattice,
with the nodes in the lattice representing individual bonds and the edges representing the
subgraph relations between them. Each bond H is located on a certain level of the lattice,
known as its rank. The rank of a bond is determined by its number of vertices minus its
number of connected components. The edges on the lattice form paths between H and its
subgraphs on the lower levels, as well as paths between H and its supergraphs on the higher
levels. Figure 2 shows the bond lattice for K4, graph G in the previous figure.

If G is a connected graph on n vertices, the lowest level of the bond lattice of G (rank
0) always contains one bond: the graph with n vertices and no edges. The highest level of
the bond lattice (rank n− 1) also contains a single bond: G itself.

There are many other instances of partial orders in mathematics. A partition is a way
of dividing a finite set into separate parts, or “blocks.” Partitions are written with slashes
or vertical lines dividing the blocks; for example, 1/2/3, 12/3, and 123 are partitions of the
set {1, 2, 3} (also denoted [3]). The set of partitions of [n] ordered by combining blocks is
another common partially ordered set. For instance, in the partition poset of [4], 12/34 ranks
above 1/2/34 because the former is formed by merging two blocks in the latter. However,
12/34 and 1/23/4 are unrelated.

Much like a bond lattice, a partition lattice is a partial order on a collection of set
partitions. Like bonds, every partition has a rank in the lattice, given by the number of
elements in the set minus the number of blocks. Note that these figures can be drawn for
all posets and are known more generally as Hasse diagrams. Below is the partition lattice
for [4], often denoted Π4:

This lattice should look familiar; it is identical in structure, or isomorphic, to the bond
lattice of K4 shown in Figure 2. More generally, the bond lattice of Kn is isomorphic to the
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Figure 2. The bond lattice of the graph G in Figure 1

partition lattice Πn for all n ∈ N. This occurs because there is a one-to-one correspondence,
or bijection, between bonds and partitions. If the numbered vertices in each connected
component of a bond match the numbers in each block of a partition, then the bond and
the partition are equivalent under the bijection. Moreover, this bijection preserves the poset
structure; steps up or down in rank under the subgraph relation and the block ordering
are equivalent. Thus, the bond lattice of Kn and the partition poset of [n] are, for our
purposes, identical. In this sense, partition lattices are special types of bond lattices that
encode properties of complete graphs.

1.2. Motivation

In Figures 2 and 3, the upper half of the lattice contains more bonds than the lower half.
As it turns out, this holds for all bond lattices. In fact, it is even true for a more abstract
type of poset known as the lattice of flats of a matroid. Matroids provide a combinatorial
generalization of the ideas of linear independence and span from linear algebra, and they are
defined as follows:
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Figure 3. The Partition Lattice Π4

Definition 1.3. A matroid (E, f), where E is a finite set and f : E → Z is a function,
satisfies the following properties ∀ S ⊆ E, a, b ∈ E:

1. f(∅) = 0.
2. f(S) ≤ f(S ∪ {a}) ≤ f(S) + 1.
3. If f(S ∪ {a}) = f(S ∪ {b}) = f(S), then f(S ∪ {a, b}) = f(S).

For any S ⊆ E, we call f(S) the rank of S. The flats of E are the subsets with maximal
rank; adding another element to a flat will cause its rank to increase by one. The flats of a
matroid form a poset in the same manner as the bonds of a graph and the partitions of a
set, with the same lattice structure and the same concept of rank. In fact, bond lattices are
a special case of the more general matroids.

In 1975, Dowling and Wilson proposed the Top-Heavy Conjecture for all matroids
[3].

Theorem 1.1 (Top-Heavy Conjecture). Let d ≤ k/2, d, k ∈ N. For any matroid whose
highest rank is d, the number of flats of rank k is less than or equal to the number of flats of
rank d− k.



1.2. MOTIVATION 5

The Top-Heavy Conjecture implies that the upper half of a matroid’s lattice contains more
flats than the lower half. Huh and Wang proved the conjecture in 2017 for a subclass of
matroids known as realizable matroids, which includes bond lattices [4]. In 2023, Huh, Wang,
Braden, Matherne, and Proudfoot verified the conjecture for all matroids [2]. However, these
proofs make heavy use of elaborate algebraic geometry. In this paper, we provide a more
combinatorics-centered proof of the Top-Heavy Conjecture for partition lattices - one that
we believe can be generalized to other types of bond lattices and matroids.



CHAPTER 2

Tools for the Proof

2.1. Simplicial Complexes

The main tool in our proof of the Top-Heavy Conjecture for complete graphs is a com-
binatorial object known as an abstract simplicial complex. It is defined as follows:

Definition 2.1. An abstract simplicial complex ∆ is a finite collection of finite sets with
the following properties:

1. ∅ ∈ ∆.
2. If T ∈ ∆ and S ⊆ T , then S ∈ ∆.

The elements of a simplicial complex ∆ are called faces. The maximal faces, the ones which
are not proper subsets of any other faces in ∆, are called facets. If we combine the second
property above with the fact that facets are maximal, we see that ∆ consists entirely of the
facets and their subsets. Thus, a simplicial complex is uniquely determined by its facets.

For any face F in a simplicial complex ∆, the dimension of F is defined by dim(F ) =
|F | − 1. The dimension of ∆ is the dimension of its largest facet. A complex is called pure
if all its facets have the same dimension. A complex can be drawn as a graph-like structure
made of triangles of various dimensions, which correspond to the dimensions of the faces.
For instance, faces of dimension 0 (1 element) are drawn as points, faces of dimension 1
(2 elements) are drawn as line segments, faces of dimension 2 (3 elements) are drawn as
filled-in triangles, and faces of dimension 3 (4 elements) are drawn as filled-in tetrahedrons.
An n-dimensional triangle is called an n-simplex.

In the simplicial complex in Figure 1, the facets are {a, b, c}, {a, c, d}, and {d, e}. The
faces are all the subsets of those facets: {a, b, c}, {a, c, d}, {a, b}, {a, c}, {a, d}, {b, c}, {c, d},
{d, e} {a}, {b}, {c}, {d}, {e}, and ∅. The complex is not pure, since two of its facets have

a

b

c

d e

Figure 1. A Simplicial Complex
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Figure 2. Several Simplicial Complexes

dimension 2 and the other facet has dimension 1. For future reference, it is common to write
faces without set notation; for instance, {a, b, c} could be abbreviated as abc or a, b, c.

It is important to note that the faces of a simplicial complex form a poset when ordered
by inclusion, known as the face poset. The facets are the maximal elements in the face
poset and occupy the highest positions in its Hasse diagram. The rank of each face is its size,
or its dimension plus one. This poset structure inside every complex will become important
later, when we set up our proof of the Top-Heavy Conjecture for partition lattices.

Like graphs, simplicial complexes can be broken up into smaller pieces. A subcomplex
σ ⊆ ∆ is a collection of sets in ∆ that is also a complex. For example, in the complex
pictured in Figure 2, σ = {ab, ac, a, b, c, ∅} is a subcomplex. ab and ac are faces in the
original complex, but they are the facets of σ. Because facets uniquely determine a complex,
it is much easier to identify a subcomplex by its facets. We say that ab and ac “generate”
σ, or σ =< ab, ac >. Basic set theory operations are appropriate to use on subcomplexes.
For instance, if τ =< ad, cd >, then σ ∪ τ =< ab, ac, ad, cd > and σ ∩ τ =< a, c >. Note
that acd /∈ σ ∪ τ ; we can tell this from the drawing in Figure 2, as the triangle is not filled
in. Also note that all four complexes in Figure 2 are pure.

2.2. Shellability

It is not surprising that every simplicial complex is the union of its facets. Facets are
the building blocks of a complex; looking at Figures 1 and 2, we can imagine constructing
the complexes one facet at a time, “gluing” the pieces together at each step. A shelling
is a specific way of building a complex out of its facets, an order in which they are glued
together. It has two equivalent definitions:
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Figure 4. The Bowtie Complex

Definition 2.2 (Definition 1 of Shelling). A shelling of a complex ∆ is an ordering of its

facets F1, F2, ..., Ft such that ∀ 2 ≤ k ≤ t, (
⋃k−1

i=1 < Fi >) ∩ < Fk > is pure and of dimension
dim(Fk)− 1.

Definition 2.3 (Definition 2 of Shelling). A shelling of a complex ∆ is an ordering of
its facets F1, F2, ..., Ft such that ∀ 2 ≤ k ≤ t, ∃ a unique minimal face F ′

k ⊆ Fk that is not
contained in Fi ∀ i < k.

A complex ∆ is shellable if and only if there exists a shelling of ∆.

Figure 3 shows a step-by-step depiction of the shelling F1, F2, F3 of the complex in Figure
1, where F1 = abc, F2 = acd, and F3 = de. We can verify that this is a shelling by the first
definition, observing that < F1 > ∩ < F2 >=< ac > and (< F1 > ∪ < F2 >)∩ < F3 >=<
d >. < ac > is pure with dimension 1, one less than dim(F2) = 2, and < d > is pure with
dimension 0, one less than dim(F3) = 1. At each step, the subcomplex by which the new
facet is “glued” to the others is pure, and its dimension is one less than that of the new
facet. Thus, F1, F2, F3 is a shelling.

Alternatively, we can utilize the second definition. The face d ⊆ F2 is not a subset of F1,
so we say it is new. It is also minimal, as it is the smallest subset of F2 with this property.
Finally, d is unique, as it is the only new minimal face in < F2 >. Similarly, the face e ⊆ F3

is not contained in F1 or F2, is the smallest new face in < F3 >, and is the only face of its
kind. Thus, F2 and F3 contain new unique minimal faces, so F1, F2, F3 is a shelling. For
each facet in the shelling, we call the new unique minimal face the restriction set.
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Now, consider the ordering F1, F2 of the facets in the Bowtie Complex shown in Figure 4,
where F1 = abc and F2 = cde. We can see that this is not a shelling by both definitions.
The first definition fails because < F1 > ∩ < F2 >=< c >, which has dimension 0 while F2

has dimension 2. The second definition fails because d and e are both new minimal faces
in < F2 >, so F2 contains no unique new minimal face. The other possible ordering of the
facets is F2, F1, but this is not a shelling for similar reasons. Therefore, the complex is not
shellable.

We only need one shelling to prove that a simplicial complex ∆ is shellable, but we must
check every possible ordering of the facets before we can be sure ∆ is not shellable. Because
of this, shellability can be difficult to determine for larger complexes. This will become
apparent later, as we will determine the shellability of a specific class of complexes up to the
nth dimension in order to prove partition lattices are top-heavy.



CHAPTER 3

Methods

3.1. The Increasing Galaxy Complex

Now, we formulate our combinatorial proof for the Top-Heavy Conjecture on partition
lattices. To do this, we must define a simplicial complex arising from a particular class
of graphs. For these definitions, assume that the vertices of the graphs are numbered by
positive integers. Let an increasing star be a tree with one central vertex that is adjacent
to and smaller than the other vertices (in numbering). Let an increasing galaxy be a forest
on n vertices consisting of increasing stars. Here are the formal definitions:

Definition 3.1. An increasing star is a tree G with V (G) ⊆ [n], such that ∃! v ∈ V (G)
with uv ∈ E(G) and v < u ∀ u ∈ V (G) (u ̸= v).

Definition 3.2. An increasing galaxy is a forest F with V (F ) = [n], such that each
connected component of F is an increasing star.

The forest in Figure 1 contains two trees. In one tree, vertex 1 is adjacent to and less
than 2, 3, 4, and 5. In the other tree, vertex 6 is adjacent to and less than 7. Thus, the trees
are increasing stars, and the forest is an increasing galaxy on seven vertices. The edge set
of this galaxy is {12, 13, 14, 15, 67}.

Together, the edge sets of all possible increasing galaxies on n vertices form a simplicial
complex ∆n. We call this the increasing galaxy complex. The edge set of each galaxy
is a face in ∆n, and the edge sets of the maximal galaxies - to which adding another edge
cannot produce another galaxy - are the facets of ∆n. For example, the increasing galaxy in
Figure 1 is maximal because adding another edge would either produce a cycle, produce a
tree that is not a star, or disrupt the inside-out ordering of the vertices, all of which would
not result in another increasing galaxy. Thus, {12, 13, 14, 15, 67} is a facet in ∆7. In the
future, we will say that an increasing galaxy G is “equivalent” to a facet F if F = E(G).

1

3 2

4 5

6

7

Figure 1. An Increasing Galaxy
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Figure 2. The Increasing Galaxy Complexes for n = 2, 3, 4

The only increasing galaxy on one vertex is the graph with one vertex and no edges. So
∆1 is the trivial empty complex. Pictured in Figure 2 are the maximal increasing galaxies
on two, three, and four vertices, and the resulting galaxy complexes generated by their edge
sets. Note that the edges of the graphs become nodes in the drawing of the complex. As
n increases, the complex quickly becomes larger and more difficult to draw (∆5 contains a
filled-in tetrahedron and many filled-in triangles).

Now, notice that ∆1 and ∆2 are trivially shellable, {12, 13}, {23} is a shelling of ∆3, and
{12, 13, 14}, {12, 34}, {13, 24}, {14, 23}, {23, 24} is a shelling of ∆4. If this pattern continues



3.2. OUTLINE OF THE PROOF 12

∅

12 13 14 23 24 34

12, 13 12, 14 13, 14 14, 23 13, 24 12, 34 23, 24

12, 13, 14

Figure 3. Boolean Decomposition of the Face Poset of ∆4

and ∆n is shellable for all n ∈ N, we have a direct path to proving that Πn is top-heavy. We
outline this strategy below.

3.2. Outline of the Proof

In 1996, Björner and Wachs proved that if a complex ∆ is shellable, its face poset F (∆)
can be split into a series of simple posets called Boolean algebras [1]. The Boolean
algebra Bn is isomorphic to the poset given by the subsets of [n], ordered by inclusion. For
the theorem below, note that the poset interval [a, b] is the section of poset P with lowest
element a and highest element b; [a, b] is a smaller poset within P .

Theorem 3.1 (Björner-Wachs, 1996). Let F1, F2, . . . , Fk be a shelling of simplicial com-

plex ∆. Then F (∆) =
n⊔

i=1

[R(Fi), Fi], where R(Fi) is the restriction set of facet Fi in the

shelling, and [R(Fi), Fi] is a Boolean algebra.

As an example, the decomposition of F (∆4) into Boolean algebras is shown in Fig-
ure 3. The sections of each color in the Hasse diagram represent a Boolean interval from
a restriction set to a facet. Working from our previous shelling of ∆4, [R(F1), F1] ∼= B3

(blue), [R(F2), F2] ∼= B1 (green), [R(F3), F3] ∼= B1 (orange), [R(F4), F4] ∼= B1 (red), and
[R(F5), F5] ∼= B0 (yellow). All together, their disjoint union is the entire poset, F (∆4).
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This decomposition is useful here because Boolean algebras are always top-heavy posets;
in fact, they are symmetric, with equally many elements of higher and lower rank. Let
the halfway point of a poset be its highest rank divided by two; we can visualize it as
a horizontal line drawn through the Hasse diagram, separating elements of high and low

rank. The halfway point of F (∆4) is dim(∆4)+1
2

= 3
2
. Notice how the Boolean intervals are

positioned in the Hasse diagram in Figure 3: their halfway points are greater than or equal
to the halfway point of the face poset. The halfway point of [R(Fi), Fi] is

3
2
for all 1 ≤ i ≤ 4,

while [R(F5), F5] has halfway point 2. If a poset is made up of top-heavy intervals arranged
in this manner, then it must be top-heavy.

Thus, if we can show ∆n is shellable, and that the Boolean intervals corresponding to
its facets are arranged at or above the halfway point of F (∆n), then we have that F (∆n) is
top-heavy. We prove this formally below:

Theorem 3.2. Let ∆ be a simplicial complex with k facets. Then F (∆) is top-heavy if
the following hold:

(a) F1, F2, ..., Fk is a shelling of ∆.
(b) ∀ i ∈ [k], |Fi|+ |R(Fi)| ≥ dim(∆) + 1.

Proof. Let F (∆) denote the face poset of ∆. Since F1, F2, ..., Fk is a shelling order, by
Theorem 3.1, we have that

F (∆) =
n⊔

i=1

[R(Fi), Fi]

where [R(Fi), Fi] is a Boolean algebra Pi ∀ i ∈ [k]. Since the rank of each face in F (∆) is
given by its size, the interval [R(Fi), Fi] has length |Fi|−|R(Fi)|. Because the interval begins
at rank |R(Fi)|, its halfway point in the face poset is given by

|R(Fi)|+
|Fi| − |R(Fi)|

2
=

|Fi|+ |R(Fi)|
2

.

By our second assumption,

|Fi|+ |R(Fi)| ≥ dim(∆) + 1 ⇒ |Fi|+ |R(Fi)|
2

≥ dim(∆) + 1

2
.

We know |Fi|+|R(Fi)|
2

is the halfway point of Pi within F (∆), and dim(∆)+1
2

is the halfway point
of F (∆) since dim(∆) + 1 is its highest rank. Thus, each Boolean algebra comprising F (∆)

has a halfway point greater than or equal to the halfway point of F (∆). Since F (∆) =
n⊔

i=1

Pi,

every face in ∆ is contained in exactly one Boolean algebra Pi. Combining these facts, we
get that for all 0 ≤ i ≤ r/2, the number of elements of rank i in F (∆) is less than or equal
to the number of elements of rank r − i where r is the maximum rank of F (∆). Therefore,
F (∆) is top-heavy. □

Finally, returning to the ∆4 example from before, observe that F (∆4) has the same
number of elements at each rank as the partition lattice Π4: one element of rank 0, six
elements of rank 1, seven of rank 2, and one of rank 3. We call the vector [1, 6, 7, 1] the
f-vector of the complex, the number of faces of each dimension. Comparing the Hasse
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diagrams, we could draw Π4 by rearranging the edges in ∆4. Clearly, if one is top-heavy,
then so is the other. We will soon prove that this is true for all n. Therefore, if we can show
F (∆n) is top-heavy, we have our desired result that Πn is top-heavy!

In summary, here is the outline of our final proof:

1.) Show that the increasing galaxy complex ∆n is shellable.
2.) Show that |Fi|+ |R(Fi)| ≥ dim(∆n) + 1 for every facet Fi in the shelling.
3.) Show that F (∆n) and Πn have the same number of elements at each rank.

To show these things, we will need to prove two fascinating correspondences: the bijec-
tion between faces of ∆n and partitions of [n], and the bijection between facets of ∆n and
partitions of [n− 1].

3.3. The Faces-Partitions Bijection

Theorem 3.3. Let ∆n be the increasing galaxy complex on n vertices. Then ∆n has Bn

faces, where Bn is the nth Bell number (the number of partitions of [n]).

Proof. Define the mapping ϕ : ∆n → Πn as follows: let F be an increasing galaxy
equivalent to a face in ∆n, and let u, v ∈ V (F ). If u and v are in the same connected
component of F , then let u and v occupy the same block in partition ϕ(F ) ∈ Πn. This
map is well-defined, as F has n vertices, so partitioning its vertices by component gives a
partition P ∈ Πn. We prove ϕ is a bijection.

ϕ is injective: Let F and G be increasing galaxies on n vertices, with F ̸= G. Suppose,
toward contradiction, that ϕ(F ) = ϕ(G). Then F and G have components F1, F2, ..., Fk and
G1, G2, ..., Gk, respectively, where Fi and Gi have the same vertices (k ∈ N, 1 ≤ i ≤ k). Let
V (Fi) = V (Gi) = {v1, v2, ..., vm}, where v1 is the smallest vertex in the set. Since Fi and
Gi are components of increasing galaxies, they are increasing stars, so E(Fi) = E(Gi) =
{v1v2, v1v3, ..., v1vm} with v1 as the central vertex. But then Fi and Gi have the same vertex
set and edge set, so
Fi = Gi ⇒ F = G, a contradiction. Therefore, ϕ(F ) ̸= ϕ(G), and ϕ is injective.

ϕ is surjective: Let P = P1/P2/.../Pk be a partition in Πn (k ∈ N). Take each block
Pi = {v1, v2, ..., vm}, where v1 is the smallest element in Pi, and draw a graph Si with
V (Si) = {v1, v2, ..., vm} and E(Si) = {v1v2, v1v3, ..., v1vm}. This graph is an increasing star

on m vertices, with central vertex v1. Therefore, F =
k⋃

i=1

Si is an increasing galaxy on n

vertices. Since the vertices in the components of F match the vertices in the blocks of P , we
have that ϕ(F ) = P . Therefore, ϕ is surjective.

Since ϕ : ∆n → Πn is a bijection, ∆n has Bn faces. □

3.4. The Facets-Partitions Bijection

Theorem 3.4. Let ∆n be the increasing galaxy complex on n vertices. Then ∆n has
Bn−1 facets, where Bn−1 is the (n− 1)th Bell number (the number of partitions of [n− 1]).
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Proof. Let An be the set of facets of ∆n, and let Π2,...,n denote the partition poset of
{2, ..., n}. Note that Πn−1

∼= Π2,...,n. Define the mapping θ : An → Π2,...,n as follows: let
F be a maximal increasing galaxy equivalent to a facet in ∆n, and let u, v ∈ V (F ) with
u ̸= 1, v ̸= 1. If u and v are in the same connected component of F that does not contain
1, then let u and v occupy the same block in partition θ(F ) ∈ Π2,...,n. If u is in the same
component as 1, then let u be a solitary block, or singleton, in θ(F ). This map is well-
defined, as F has n − 1 vertices other than 1, so partitioning these vertices by component
gives a partition P ∈ Π2,...,n. We prove θ is a bijection.

θ is injective: Let F and G be maximal increasing galaxies on n vertices, with F ̸= G.
Suppose, toward contradiction, that θ(F ) = θ(G) = B1/.../Bk/{c1}/.../{cm}, where |Bi| > 1
∀ i ∈ [k] and {cj} is a singleton ∀ j ∈ [m]. Then F and G have components F1, F2, ..., Fk, F

′

and G1, G2, ..., Gk, G
′, respectively, where V (Fi) = V (Gi) = Bi

∀ i ∈ [k] and V (F ′) = V (G′) = {1, c1, ..., cm}.
Since F ′ and G′ are components of increasing galaxies, they are increasing stars, so

E(F ′) = E(G′) = {1c1, 1c2, ..., 1cm} with 1 as the central vertex. Similarly, each pair of
components Fi and Gi has some smallest vertex vi ∈ Bi, so the components have the same
edge set with vi as the central vertex. But then Fi and Gi have the same vertex set and
edge set, as do F ′ and G′, so Fi = Gi, F

′ = G′ ⇒ F = G, a contradiction. Therefore,
θ(F ) ̸= θ(G), and θ is injective.

θ is surjective: Let P = B1/.../Bk/{c1}/.../{cm} be a partition in Π2,...,n, where
|Bi| ≥ 2 ∀ i ∈ [k] and cj is a singleton ∀ j ∈ [m]. For each block Bi = {v1, v2, ..., vr},
where v1 is the smallest element in Bi, draw a graph Si with V (Si) = Bi and E(Si) =
{v1v2, v1v3, ..., v1vr}. This graph is an increasing star with central vertex v1.

Next, draw another graph S ′ with V (S ′) = {1, c1, ...cm} and E(S ′) = {1c1, 1c2, ..., 1cm}.

This is also an increasing star, and its central vertex is 1. Therefore, F =
k⋃

i=1

Si ∪ S ′ is an

increasing galaxy on n vertices. Since the vertices in the components Si match the vertices
in the non-singleton blocks of P , and the vertices in S ′ (besides 1) match the vertices in the
singleton blocks of P , we have that ϕ(F ) = P .

Finally, we must show F is a maximal increasing star, so that it corresponds to a facet of
∆n. To do this, we show it is impossible to add an edge to F and produce another increasing
galaxy. Let u and v be two distinct, non-adjacent vertices in F . There are six cases:

1. u, v ∈ V (Si). Adding the edge uv would produce the cycle u, v1, v, which would not
result in an increasing galaxy.

2. u, v ∈ V (S ′). Adding the edge uv would produce the cycle u, 1, v, which would not
result in an increasing galaxy.

3. u ∈ V (Si), v ∈ V (Sj), i ̸= j. Since |Bi| ≥ 2 and |Bj| ≥ 2, there exists some vertex
a ∈ V (Si) adjacent to u and some vertex b ∈ V (Sj) adjacent to v. Adding the edge uv would
produce the path a, u, v, b. This rules out an increasing galaxy because the longest possible
path in a star contains three vertices.
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4. u ∈ V (Si), v ∈ V (S ′), v ̸= 1. Then v is adjacent to 1, and since |Bi| ≥ 2, there exists
some vertex a ∈ V (Si) adjacent to u. Therefore, adding the edge uv would produce the path
a, u, v, 1, ruling out an increasing galaxy.

5. u ∈ V (Si), u ̸= v1, v ∈ V (S ′), v = 1. Adding the edge uv would produce the path
1, u, v1. For this path to exist in a star, u must be the central element. But u > 1, so this
would not be an increasing star.

6. u ∈ V (Si), u = v1, v ∈ V (S ′), v = 1. Since |Bi| ≥ 2, there exists some vertex
a ∈ V (Si) adjacent to u. Therefore, adding the edge uv would produce the path 1, v1, a. But
this cannot produce an increasing star since v1 > 1.

Therefore, F is a maximal increasing galaxy, and it corresponds to facet of ∆n. So θ is
surjective.

Since θ : An → Π2,...,n is a bijection, ∆n has Bn−1 facets. □



CHAPTER 4

Results

4.1. The Proof

With the above theorems in our arsenal, we are ready for the main proof! One final
helpful definition: a linear extension of a poset (P,≤) is a total ordering ◁ on P such that
if x < y in the poset, then x ◁ y. A linear extension is a total order on the elements of a
poset that obeys the original partial order.

Theorem 4.1 (Top-Heavy Conjecture for Partition Lattices). Let d ≤ n−1
2
,

d, n ∈ N. In the partition lattice Πn, the number of elements of rank d is less than or equal
to the number of elements of rank n− 1− d.

Proof. As outlined above, there are three parts to this proof:
1.) Show that the increasing galaxy complex ∆n is shellable.
2.) Show that |Fi|+ |R(Fi)| ≥ dim(∆n) + 1 for every facet Fi in the shelling.
3.) Show that F (∆n) and Πn have the same number of elements at each rank.

1.) First, we prove ∆n is shellable. Let θ be the bijection between the facets of ∆n

and the partitions of {2, 3, ..., n} defined in Theorem 3.4. For each facet Fi, let Πi = θ(Fi).
We prove that if (Π1,Π2, ...,Πk) is a linear extension of the partition lattice Π2,..,n, then
(F1, F2, ..., Fk) is a shelling of ∆n.

Let Πi = B1/B2/.../Bk/{c1}/{c2}/.../{cm}, where |Bj| ≥ 2 ∀ j ∈ [k] and c1, ..., cm are
singletons. Define the edge set Ei = {ab | ∀ j ∈ [k], a = min(Bj), b ∈ Bj, a ̸= b}. We prove
(F1, F2, ..., Fk) satisfies the second definition of a shelling (Definition 2.3) by showing that
Ei is a new unique minimal face in Fi; that is, R(Fi) = Ei.

First, we show that Ei is new. Suppose, toward contradiction, that Ei ⊆ Fh, where h < i.
Since Ei ⊆ Fh, Πh must contain blocks β1, β2, ..., βk where Bj ⊆ βj ∀ j ∈ [k]. Since Πh ̸= Πi,
for at least one singleton cq in Πi (q ∈ [m]), cq is in some block βj in Πh. But then Πh is
formed by merging blocks in Πi, so Πi < Πh in the partition poset.

∴ Πi ◁ Πh in the linear extension.
∴ Fi comes before Fh in the facet ordering, a contradiction. Thus, Ei is a new face.

Next, we show that Ei is a minimal new face in Fi. Consider any face E ⊆ Fi such that
|E| < |Ei|. Then ∃ some edge ab such that ab ∈ Ei but ab /∈ E. Assume a, b ∈ Bj (j ∈ [k])
and a < b. Then E ⊆ Fh, where

Πh = B1/B2/.../(Bj − {b})/.../Bk/{c1}/{c2}/.../{cm}/{b}.
But then Πi is formed by merging blocks in Πh, so Πh < Πi in the partition poset.
∴ Πh ◁ Πi in the linear extension.
∴ Fh comes before Fi in the facet ordering. Since E ⊆ Fh, E is not a new face. Thus, Ei

is a minimal new face.

17
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Finally, we show that Ei is a unique minimal new face in Fi. Let G ⊆ Fi be a new face
that is distinct from Ei. Then Ei ⊂ G; otherwise, there is some edge in Ei that is not in G,
and the above result follows that G is not new. Therefore, |Ei| < |G| and G is not minimal.
So Ei is the only minimal new face in Fi.

Since every facet Fi contains a unique minimal new face R(Fi), then (F1, F2, ..., Fk) is a
shelling of ∆n.

2.) For the next part of our proof, we show that |Fi|+|R(Fi)| ≥ dim(∆n)+1 for each facet
Fi. For the increasing galaxy equivalent to Fi, B1, B2, ..., Bk, and {1, c1, c2, ..., cm} are the
vertex sets of the connected components. Note that for any forest F , |E(F )| = |V (F )| −C,
where C is the number of components of F . Since the galaxy with edge set Fi has k + 1
components, we have that

|Fi| = n− k − 1.

Similarly, the galaxy equivalent to R(Fi) = Ei has k components with vertex sets
B1, B2, ..., Bk. The only vertices in [n] missing from this galaxy are 1, c1, c2, ..., cm, so it
has n−m− 1 vertices. Therefore,

|R(Fi)| = n−m− k − 1.

Combining these results, we have that

|Fi|+ |R(Fi)| = 2(n− 1)− 2k −m.

Since dim(∆n) + 1 = n− 1, we must show that

2(n− 1)− 2k −m ≥ n− 1

⇔ 2k +m ≤ n− 1.

Since every vertex in [n] occurs in a non-singleton Bj (j ∈ [k]), is a singleton cq (q ∈ [m]),
or is equal to 1, we have that

n =
k∑

j=1

|Bj|+m+ 1

∴ n− 1 =
k∑

j=1

|Bj|+m.

Finally, since |Bj| ≥ 2, we see that

2k ≤
k∑

j=1

|Bj|

∴ 2k +m ≤
k∑

j=1

|Bj|+m

∴ 2k +m ≤ n− 1.

Therefore, |Fi|+ |R(Fi)| ≥ dim(∆n) + 1 as desired.
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3.) Since ∆n is shellable, and |Fi| + |R(Fi)| ≥ dim(∆n) + 1 for each facet Fi in the
shelling, by Theorem 3.2, the face poset F (∆n) is top-heavy. We conclude by showing that
Πn is also top-heavy.

By Theorem 3.3, there exists a bijection ϕ between the faces of ∆n and the partitions of
[n], so F (∆n) and Πn have an equal number of elements. Let F be a face in ∆n of size r.
Then F has rank r in F (∆n). Since the galaxy with edge set F is a forest on n vertices, it
has n− r components. Thus, as defined in Theorem 3.3, the partition ϕ(F ) has n− r blocks,
giving it rank n − (n − r) = r in Πn. Therefore, ϕ preserves rank, so F (∆n) and Πn have
the same number of elements of each rank. Since F (∆n) is top-heavy, Πn is also top-heavy,
and we are done.

□

4.2. Future Research

We now have a combinatorial proof that partition lattices are top-heavy. Partition lattices
are useful objects, encoding properties of partitions and complete graphs; however, they are
a special case of the bond lattice, which is merely one type of realizable matroid. Future
research could explore the use of shelling arguments to prove that other classes of bond
lattices and realizable matroids are top-heavy.

Additionally, this paper makes no mention of the topological consequences of shellability.
For instance, Björner and Wachs showed that any shellable complex is equivalent under
homotopy (deformation) to a wedge of spheres, a series of spheres of various dimensions
joined together in a chain-like structure [1]. Future work could explore the homotopies of
the increasing galaxy complex or other shellable complexes.
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