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Executive Summary ) e

Engineering

Background: In order to succeed in the short-term exploration and colonization of Mars, the transfer
vehicles need to be fully reusable, and in order to achieve this, they need to be able to make return
trips to Earth.

Problem Statement: Making trips back to Earth from Mars is unfeasible in the short term due to the
nonexistence of fuel or oxygen on Mars.

Objective: Build a roadmap and foundation for students pursuing Mars exploration internships or
capstone projects to develop a systems engineering analysis and model, of a solution to the problem.
detailed

Summary: Performed a high-level analysis of the problem, using system engineering methodology to
reach a potential solution, and created a system model using Cameo.

Conclusion: In situ, propellant production has a high potential to increase the short-term feasibility of
the Mars exploration missions and based on my research, it's the best alternative for a mission taking
place before 2030.

Clients: LMU students, Mars City Design, SAM at Biosphere 2.
5
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Engineering

Previous Studies:
B. S. Materials Engineering and Manufacturing.
Universidad Simon Bolivar, Venezuela.

Latest work experience:

. Systems Engineering Contractor for the
USSF Launch Enterprise (now AATS)

. Systems Engineer for Space Programs at Raytheon
Intelligence and Space

Hobbies:
. Snowboarding, surfing, climbing, hiking, traveling.

Where | have lived:
. Venezuela, The Netherlands, USA.
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Inspiration and Motivation

> Curiosity about space from an early age.

> Interest in space exploration and, most recently,
SpaceX’s Mars mission campaign.

> LMU’s Occupy Mars class.
> Desire to inspire and motivate students.
> New knowledge on Mars exploration.

> Potential connections with NASA and SpaceX.
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Why venture out of Earth?

> Overpopulation

> Increased energy consumption
> Overexploitation

> Pollution

> Extreme Climate change

> Epidemics

> Nuclear wars

> Asteroid strikes
> Growth of the Sun

“We are running out of space and the only places to go to are other worlds. It is time to explore other solar
systems. Spreading out may be the only thing that saves us from ourselves. | am convinced that humans
need to leave Earth.”

Stephen Hawking

15
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Why Mars? (yg) _Systems

% Engineering

Mars
25.0°

» Distance

> Similarities with Earth

> Resources

> Available data

> Can serve as a starting point to go to
other places in the galaxy

DISTANCE )
“Mars is a fixer-upper of a planet, but | think one day we can make g .
it a planet like Earth, and | think we should.” o=
Elon Musk
o
2 (22020000 miles oo oty L > @
-—-*;'——‘*:‘-,- Average distance from the Sun to #JDURNE”U
’/’—' the orbit paths of Earth and Mars mars.nasa.gov
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Why Starship?

> Lower cost

> High reusability
> Capability to deliver 1 M ton
to the surface of Mars in 10 years
> Future Oxygen orbital refilling capability
(to be tested in 2 years) ~E | £ &3
> It's In the final stage of development - 4 By YV A
> Picked by NASA for the Lunar mission = s T

“The total mass to orbit per Starship after one year would be the equivalent of the total mass to orbit today
worldwide (15,500 tons).”
Elon Musk

17
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Why use Mars Resources? A gy ctems

Engineering

Reduce mission and architecture mass and costs Every 1 kg of propellant made
Launch mass savings. on the Moon or Mars saves

Reduce launch numbers. 7.4 to 11.2 kg in LEO
Supports reuse of mission transportation assets.

Mars Crew Ascent Mission

. . T . - Oxygen only 75% of ascent prop. mass: 20 to 23 mT
Enhance or enable mission capabllltles not pOSSIbIe - Methane + Oxygen  100% of ascent prop. mass: 25.7 to 29.6 mT|

without them

Mission life extensions and enhancements.
Increased surface mobility and access.
Increased science.

1 kg propellant on Mars

1.9 kg used for EDL

Learn to use Space Resources can help us on Earth 63 kg used for T
Renewable Energy/CO2 Reduction, Recycling/Repurposing, Water propulsion higher orbit with ISRU
cleanup, Environmentally-friendly mining and construction propellant also
224 kg on Earth reduces propellant
N = mass needed for orbit
capture (TLI/TMI) and
departure burns (TEI)

Note: Ascentto

Estimates based on Aerocapture at Mars

ISRU: In Situ Resource Utilization TEl: Trans-Earth Injection
EDL: Entry, Descent and Landing TLI: Trans-Lunar Injection
TMI: Trans-Mars Injection
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Problem Statement & Objective

> Making return trips from Earth to Mars in the short term is
unfeasible due to the nonexistence of fuel or oxygen on
Mars.

> Build a roadmap and foundation for students pursuing Mars
exploration internships or capstone projects to develop a
detailed systems engineering analysis and model of a
solution to the problem.

21
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Out of Scope In Scope

> Chinese or Russian missions > American led Mars Missions

> Missions to other planets » Missions launched up to 2034
> Missions after 2034 > Publicly available technologies

> Classified technologies
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Primary Stakeholders Needs

gg| Loyola Marymount University
Systems
Engineering

NASA & SpaceX

>

>

>

All equipment taken to Mars need to fit within starship’s fairing and not exceed cargo load capacity.
Low cost

High reliability and operational life

Space Resource Utilization

First launch in 2029 (At the latest)

Mission elements to be scalable to allow the creation of Mars cities.

Rapid, safe & efficient transportation to Mars

Minimize Exposure to the in-space environment (Radiation & 0G)

Ability to return to Earth every 26 months

Autonomous operations on Mars

27
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Secondary Stakeholders Needs §5)  goyems

Engineering

Students
> The project must provide students with sufficient data and guidance

Mars City Design/Foundation
> The project needs to be aligned with MCD & MCF conferences’ audience

LMU’s Occupy Mars Class
> The presentation content must satisfy the instructors’ program content needs.

SAM at Biosphere 2

> The verification plan must include SAM as a test facility

> The system prototype needs to have interfaces that can be connected to their test systems
> The system prototype needs to be able to fit inside the Mars Analog

28
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High-Level Requirements

Requirement

Verification Method

HR1 | >

The systems forming the Mars mission
architecture shall be fully reusable.

» Design analysis

» Early integration and verification via digital
twin model demonstration

» Functional testing

» Stress testing simulation

HR2 | »

The limiting technology for the mission shall be
readily available before year 1 of the project.

» Demonstration of the capabilities and
functionalities of the technologies

HR3 | >

The cost of the system shall be less than $10B.

» Financial analysis

HR4 | »

The Mars transfer vehicle shall be capable of
reaching Mars in 180 days.

» Analysis of propulsive capabilities and
orbital mechanics
» Demonstration using digital twin

HR5 | »

The system shall be designed to be expandable.

» Design analysis

HR6 | >

The system shall be capable of making trips
from Mars to Earth every 26 months.

» Demonstration via digital twin
» Analysis of simulation data

ISPP: In Situ Propellant Production
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Measures of Effectiveness

Technology Readiness Level (TRL)

Y

> Earth-Mars Transfer Time

> Reusability
» Cost
> Scalability

Additional information in Appendix B
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Alternatives

> In situ production of propellant (fuel and oxygen)

> Importing resources to Mars from other solar bodies

> Alternative propulsion systems

> Hybrid propulsion systems

> Mega spaceships (capable of going to Mars and returning to earth without refilling)

> Orbital propellant and oxygen depots (in Mars orbit)

34

Additional information in Appendix C




Alternatives

Mars In Situ Production of Fuel and oxygen

Atmosphere Processing — Oxygen/Methane

Mars Ice Drilling & Extraction
Liquefaction & Storage

VWV Y VOV

Systems
Engineering

Resource & Site Regolith/Soil Excavation
Characterization & Sorting

Regolith/Soil 4

Transport

l Water/Volatile
Extraction

Regolith Regolith for
Crushing & t 0, & Metals
Processing

H,0, CO,from

Soil/Regolith

CO, from Mars A b Storage
Atmosphere L ‘ . — ) 7

Propellant Depot

Loyola Marymount University



Alternatives

Importing resources to Mars from other solar bodies

Hydrocarbons
Hydrogen
Nitrogen
Minerals
Oxygen
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Alternatives

Nozzle extension

TURBINE + EXHAUST

POSITRON I
bbb ATTENUATING NLET PLENUM

MATRIX

Antimatter Propulsion
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Alternatives

Hybrid propulsion systems (Chemical + non-Chemical or Advanced)

> Two or more propulsion technologies, at least one chemical and one non-chemical.

> This system combines the high thrust benefit of chemical propulsion needed to launch from Earth
with the efficiency of the non-chemical propulsion
(reduces the total mission propellant mass requirements).

38
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AoA (Trade Study)

On a scale of 1-5 (1=worst, 5=best) at satisfying the MoEs.

Alternatives

AoA: Analysis of Alternatives

TRL: Technology Readiness Level
ISPP: In Situ Propellant Production

Non-Chemical Hybrid Mars Mega
Propellant Propulsion Propulsion| ISPP [Spaceships
SCORE

TRL 1 3 3 4 1

» |Transit Time 5 2 3 5 4
g Reusability 5 4 4 5 4
Cost 1 4 4 3 1
Scalability 5 5 5 5 5

41
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Alternative Recommendation

Mars In Situ Production of Fuel and oxygen

> Enables the spaceships to return to Earth (reusability) in
the short term

> Decreases the cost of the mission

> The technology can be applied on earth to help reduce
pollution and global warming.

> Potentially scalable to enable the exploration of other
planets

43
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ibd [Block] Propellant Production System In Use [ 01 Propellant Production System In Use ] ]
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»
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>
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»
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Systems of Systems Architect, 1-1 C:\Usersiymart113\Downloads'Mars In Situ Propeliant Production Rafael M V3. mdzip 01 Propellant Produ
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Solution Architecture — Internal Block Diagram \g¢, _Systems
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[ibd [Block] Wars ISSP[ 07 ISPP1BD ] J

I : Propellant Production System
p1: Energy p3 : Energy th

3 : Energy
P2 o : Control System o6

p2: Vo

-] :CO2 Collection System

p7 : Waste

: lce Mining and Processing System
p3: Energy

p41: ~i0

p4 : Soil

This diagram shows the interconnections and flows between the
subsystems that constitute the Mars ISPP System
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ibd [Block] Propelant Production System| 12 PPS Internal Diagram | ]

This diagram shows the different subsystems within the propeliant production ystem and their inferactions. The
flows represent inputs and outputs of energy, raw materials, intermediate products and final products.
: Energy

P16 : ~Return HZ 3 Energy P16 RetumH2  p3: Energy

: Reactor Subsystem H20/CH4 Seperation : H20/CH4 Seperation H2/CH4 Seperation : H2/CH4 Seperation

p15: Sep Cutflow

p13: ~Reactor Qutfiow
p&: ~C02

p13 : Reactor Cutflow

pg:~C02 pIS ; ~Sep Outlow |

2 ety s p14 - Return H20

p12:DryHz | H2Dryer:HZ Dryer

P11 ~Wet H2

p3 : Energy Ip14 : ~Return H20 Vet H2 p3  Energy Energy

de-lon : De-lonizer water Electolyzer: 02 Dryer : 02 Drye

p12:Wet g2

p12:~wetoz]

Energy

CH4 Dryer : CH4 Dryer

p18 : Dry CH4.
Lbals

p18: ~Dry CH4

oy o2 L

CH4 Liquefaction : CH4 Liquefaction

Energy

3 Energy
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bdd [Package] 3 Logical Architecture [ 014 Mars ISPP Logical Architecture j/J

This diagram shows the subsystems that constitue the Mars ISPP
System of systems. My System of interest is the Propellant
Production System.

ablocks
Mars ISPP

:CunstraimE!Ioch:
| * ConstraintBiockl

|CH&TIow - real
| CH4flowmin : real = 30.0

ablocks
Propellant Production System

| = ConstraintBlock

«blocke | ¢ Reactor Subsystem
| ] X |H20/CH4 Seperation : HZ0/CH4 Seperation |
jdce Mgy sivell EnDGEssine Sy sl | |H2/CH4 Seperation | H2/CH4 Seperation
| - |CH4 Dryer | CH4 Dryer
|H20flow : real = 384.0 |CH4 Liquefaction : CH4 Liguefaction
5 : |H2 Dryer : H2 Dryer
L ! |de-lonizer : De-lonizer

ablocks | | weater Electolyzer : Water Electolyzer
|C0Z Collection System | Bk 7 |02 Dryer : 02 Dryer
[ = [, Hoocke |02 Liguefaction : 02 Liquefaction
|Control System | | module - Module

COZflow : real= 25.0

|ModuleMassLimit : real = 200.0

| Module\MofumLimit : real
|ModuleLenghtLimit : real
|ModuleHeightLimit : real
| ModuleWidthLimit ; real
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bdd [Package] 2 Subsystems [ 0594 PPS Subsystems | |

ablocks . .
Propellant Production System [EREs Evhekd Guntraim of the

| Propellant Production System. #
|shows all of the subsy=stems that
compose the system.

| NB.I.UE.}.C; | : E . i o | P, S —

- ublocks ublocks |
iHZDa'CH# Seperation | Reactor Subsystem Water Electolyzer |

 ablocks | [ «blocks | : | [«

i I::-ll:i ;.:-l;:o
CH4 Dryer | . CH4 Liquefaction H2/CH4 Seperation
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Detalled Requirements — ISPP System

Loyola Marymount University
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Requirement Verification Method
SR1 | » The ISPP system shall be capable of producing a minimumof 30Kg | » Process simulation using Mars atmospheric conditions and gravity
of methane per hour » System prototype testing using Mars atmospheric conditions
SR2 | » TheISPP system shall be capable of producing a minimum of 110 » Process simulation using Mars atmospheric conditions and gravity
Kg of oxygen per hour » System prototype testing using Mars atmospheric conditions
SR3 | » Thelce mining and processing system shall be capable of extracting | » Process simulation using ice surface and sub-surface ice content data
a minimum of 67.5 Kg of Ice per hour from Mars surface from Mars Rovers
» System prototype testing in Mars analog
SR4 | » The Carbon dioxide collection system shall be capable of extracting » System prototype testing using Mars atmospheric conditions
a minimum of 8.25 Kg of CO2 per hour from Mars’s atmosphere. » Process simulation using Mars atmospheric conditions ang gravity
SR5 | » The system shall be able to perform all its functions without failure » Analysis of the system using reliability calculations, and models based
in Mars environment for a period of 5 years on the design of the system
» System prototype testing in Mars analog
SR6 | » All systems and subsystems shall be designed in compliance with » Design review

starship cargo volume and load capacity
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Detalled Requirements — ISPP System
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Systems
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Requirement

Verification Method

SR7 | » The ISPP system shall be fully operable by an autonomous control
system.

» System prototype testing

SR8 | > The Mars transfer vehicle shall have a minimum Delta-V capability of
6 Km/s for cruising and 8.5 Km/s for Mars entry.

> Demonstration
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Requirements — ISSP System & Subsystems

Requirements Derivation Map

[[&] 5101 Staheholder Meeds =- - [

ISPP: In Situ Propellant Production

1.1 SpaceX & NASA Needs Fl-

110 Autonomy =

1.2 Cargo B
11 Communications
1.6 Launch in 2029

[E sk
1.3 Low Cost /
~ = [HsR

1.1 Propellant Refill Bl ——————__

o

| 4 Reliability & Life &I———————= [ SR

1.9 Return

7 Scalability

5M1.1.5 Space Resource Utilization

5111 8 Transportation E—

7 Autonomy

< 6 Design

4C02 Extraction —
3 loe extraction

i oo / S5R1:2
1 Methane Production o B sat s
2 Oxygen Production [l ;

5 Reliability
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Requirements — ISSP System & Subsystems

srequirements
ISPP System Requirements

«functionalRequirements
Methane Production
Id ="SR.1"
Text = “The system shall be
capable of producing a
minimum of 30 Kg of
methane per hour

o verifyMethod = Test

«functionaRegquirements
Oxygen Production

Id = "SR.2"
Text = "The ISPP system
shall be capable of
producing a minimum of 110
Kg of oxygen per hour"
verifyMethod = Test

sextendedRequirements
Ice extraction

[la="sr3"

Text = "The Ice mining and
processing system shall be
capable of extracting a
minimum of 67.5 Kg of Ice
per hour from Mars surface

«extendedRequirements
CO2 Extraction

Id = "SR.4"
Text = "The Carbon dioxide
collection system shall be
capabie of extracting a
minimum of 8.25 Kg of CO2
per hour from Mars
stmosphere.

«functionaiRequirements
Re liability
Id ="SR.5"

Text = "The system shall be able to

perform all its functions without
failure in the Mars environment for a

minimum period of 5 years."
verifyMethod = Analysis

«extendedRequirements
Design
&
Text = "All systems and
subsysiems shall be
designed in compliance with
starship cargo volume and
lcad capacity

verifyMethod = Analysis

<extendedRequirements
Autonomy
Id ="SR.T"
Text = "The System shall be
fully operable by an external
autonomous control system’
verifyMethod = Demonstrati

verifyMethod = Analysis

~ ,_, e
«deriveReqts eder
ederiveReqts / «deriveRegts ~

«requirements arequirements
H2 Pressure COZ Pressure
Id = "SSR 1.3 Id = "SSR1.4"
Text = "Hydrogen s hall be Text = "Carbon Dioxide shall
compressed to 400 bar” be compressed to5 2 bar

«requirements
Conversion
Id = "SSR1.2
Text = "The reactor shall
convert a 100% of CO2 into
Methane”

arequrements
Tem perature
Id = "SSR1.1"
Text = "The reactor shall
operate at a temperature of
320 Degrees celsius”

erequrements
S5R 1 Reactor Subsystem
Requirem ents
id=""
Text="
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Implementation Plan

> Modeling (Digital Twin)
» Simulation

> Analysis

» Manufacturing

5| Loyola Marymount University

Systems
Engineering

> Assembly & Integration

» Testing

> Operations
> Mission Monitoring and Control

> Data gathering

6
Years
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Verification Plan

Y

Smaller scale prototype testing

First article testing and inspection

Loyola Marymount University

Systems
Engineering

» Test Prototypes in Mars Analogs
» Functional testing

» Operational testing

> Mechanical and structural testing

» Environmental testing

Delivery Phase
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High-Level Requirements — Verification Status \%g/ Systems

Engineering
Requirement Verification Method Verification Status
HR1 | » The systems forming the Mars mission > Design analysis Pending
architecture shall be fully reusable. > Early integration and verification via digital twin model

demonstration
» Functional testing
> Stress testing simulation

HR2 | > The limiting technology for the mission » Demonstration of the capabilities and functionalities of the Pending
shall be readily available before year 1 of technologies
the project.

HR3 | > The cost of the system shall be less than > Financial analysis Pending
$10B.

HR4 | » The Mars transfer vehicle shall be capable | > Analysis of propulsive capabilities and orbital mechanics Pending
of reaching Mars in 180 days. > Demonstration using digital twin

HR5 | » The system shall be designed to be > Design analysis Pending
expandable.

SR6 | » The system shall be capable of making > Demonstration via digital twin Pending

trips from Mars to Earth every 26 months. > Analysis of simulation data
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. . e | Systems
Validation Plan ) Enincenng
> Concept Of Operations Analysis > Analysis of mission data from the first two
» Stakeholder requirements validation criteria uncrewed spaceships
definition. > Gather and analyze performance metrics monthly

> Re-evaluate alternatives semi-annually (TRL might> Gather and analyze propellant composition data
increase) and determine whether the monthly
implemented solution is still the one that better

satisfies the MOEs. Determine whether the amount and quality of

propellant produced satisfy the mission needs
> before sending any crewed spaceships to Mars.

A\

Analysis of data from testing in Mars analogs.

Mission Concept & : :
Feasibility Analysis Phase Delivery Phase Operations Phase
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Risk Analysis ) e

Engineering

> Risk 1 — Chemical process failure
Description: Chemical process involved in producing Methane and Oxygen fails due to equipment
malfunction.
Mitigation: Design the chemical reactor subsystem with full redundancy.

> Risk 2 — Loss of power
Description: Power supply temporarily or permanently interrupted.
Mitigation: Design the power system with full redundancy and have an alternate power source to
increase reliability further.

> Risk 3 — Missing launch window (20 DAYS)
Description: Delays in production or testing could cause a schedule slip that can compromise the 20-
day launch window.
Mitigation: Plan to have enough time buffer to absorb delays in production or testing and still have the
hardware ready to launch on time.

65




1 Loyola Marymount University

Risk Analysis ( » .)  Systems

Engineering

Probability

Additional information in Appendix E
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Cost Analysis

Production Costs

> Mars ISPP System = $2 - $6B

>  Starship’s Raptor engine= $2M
Starship Qty 9, Super Heavy Qty 33
Total Engines = 42 = $84M
Booster = $230M
Starship = $200
Tanker (In-orbit refilling) = $130M

Launch Costs
Methane cost = $400/Ton
Oxygen cost = $160/Ton

>
>
> Super heavy + Starship use 3.510 Ton LOX and 989 Ton LCH4

> Total Propellant cost per launch = $960,000 (to orbit) + (In-Orbit Refill)
>

"

Launch Site Costs = $200,000 per launch

otal Launch Cost per trip to mars = $62 M (For one starship)

Total Mission Costs
~$10B

LOX: Liquid Oxygen . . o .
LCH4: Liquid Methane Additional information in Appendix F
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Ethical Considerations

> Astronauts’ health and life
> Pollution of Earth
> Potential damage to Martian life if there is any

> Bringing Martian life (microbes) back to earth could wipe out life on earth
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Conclusion

In situ propellant production has a high potential to increase the short-term feasibility of the Mars
exploration missions.

Based on my research, it's the best alternative for a mission to be launched before 2030.
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Recommendations for Future Work

> Expansion of the model to include peripheral systems and
subsystems

> Perform propellant production process simulations
> Perform research on Artificial Intelligence and Robotics

> Perform detailed design of systems and subsystems
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Working on this project has led to an increase in my knowledge and skills in:

vV V V ¥V VYV V VYV V

Space Exploration Missions
\EIsS

Orbit transfers

Space Systems

Rocket Engines

Rocket Fuel

System Modeling

Research
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Acronyms

AoA: Analysis of Alternatives
ISRU: In situ resource utilization
ISSP: In Situ Propellant Production
ISP: Specific Impulse

LOX: Liquid Oxygen

LCH4: Liquid Methane

MoE: Measure of Effectiveness
RP-1: Rocket Propellant One

SLS: Space Launch System
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Activity Diagram

vity] 04 Produce Propellant [ 04 Produce Propeliant |

<alocates «sllocates «alocates «allocates - «allocates
Ice Mining and Processing System Control System Mars ISSP Propeliant Storage €02 Collection System

in :H20

"
Initialize
System

Power ON

Electric Power

{stream}

|
input : H20 ¥
{stream} Suction Water

{stream)

|
v co2

Suction CO2 fstream}

inCO2In

{stream)

in : Electric Power

H20
{stream}

H20
stream)

Produce Methane and Oxygen

02
02
l,_ tream}

Store Oxygen

Store Methane

Shut Down
System

The control system Initializes and staris the Propeliant ISRU system aWater and CO2 enter the system from the Regolith
System and CO2 collection system respectively. Methane and Oxygen are produced and stored for later use. The control
system then shuts down the ISPP system
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Parametric Diagram

par [Block] Reactor Subsystem|[ 18 Reactor Subsystem CH4 Parametric ])

: Sabatier Reactor M2

This diagram shows the parametric relationships between the CHAFlow : Real
reactants and the product inside the reactor subsystem. The T

Equation in constraint block 6 is derived from the chemical
equation shown below.

constraints T
: Sabatier Reactor M1
: ConstraintBlock8 :

{TotalCH4Flow =CH4Flow 1+CH4Flow 2+CH4Flow 3}

CH4Flow 1
CH4Flow : Real

CH4Flow 3

: Sabatier Reactor M3
TotalCH4Flow

CH4Flow : Real

SABATIER REACTION CO:z + 4Hz = CHa + 2H20

o fe CH: H20

\ »
molocula, \  moloeulsr  suface //’ // product
: /

«constraint»
\, dissociation raachan domioa : ConstraintBlock9
adsorption * 02' SOIp!

CO2Hz +COH » CH: H20 {TotalCH4Flow 2MinTotalCH4Flow }
catalyst MinTotalCH4 Flow

TotalCH4 Flow — TotalCH4Flow : Real

Flow In L e IMinTotalCHAFlow MinTotalCH4Flow : Real
: ConstraintBlock11 | Mubadiicabasi. SECEE [N

{Flow In>MinTotalCH4Flow }
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The stakeholders ]
represented in this diagram
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Id ="SN1.1.1"
Text = "4 Starships need to
be refilled with fuel and
oxygen in Mars in a period

erequirements
Cargo
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Text = "All equipment
brought to Mars needs to fit
within Starship's fairing and
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Low Cost
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Text = "All Mars operations
need to be autonomous until
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Requirements — Reactor Subsystem
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SSR 1 Reactor Subsystem
Requirements

|d - !l1t|
Text=""

it

I
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Temperature

Id ="SSR1.1"

Text = "The reactor shall
operate at a temperature of
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convert a 100% of CO2 into
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Measures of Effectiveness \%g/j Efgﬁ;f:;;; ;

TRL: Technology Readiness Level

Technology Readiness Level (TRL): Degree of maturity of the critical technology elements necessary
to implement a solution. High TRL reduces cost and implementation time.

Earth Mars Transfer Time: Amount of time it takes to travel from Earth to Mars or from Mars to
Earth. It varies with different propulsion systems. A shorter transfer time also reduces the exposure
to the in-space environment (Radiation and 0G).

Reusability: The system'’s ability to be used multiple times during the mission or for multiple
missions and still be capable of fulfilling its objective. It reduces cost and risk and improves mission
continuity.

Cost: Amount of money necessary to develop and operate the system.

Scalability: The system’s ability to be augmented in size and capabilities. A scalable architecture
increases the feasibility of expanding the initial Mars outposts into cities in the future.
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TRL

TRL: Technology Readiness Level

= E—

TRLS

TRL8

- *Actual system completed and “flight qualified” through test and

demonstration (ground or space)

TRL7

*System prototype demonstration in a space environment

TRL6 ‘

/

*System/subsystem model or prototype demonstration in a relevant
environment (ground or space)

TRL5
Component and/or breadboard validation in relevant environment

TRL2
TRL1

Loyola Marymount University

Systems
Engineering




Technology Readiness Level (TRL) Systems
Engineering
Level Definition TRL Description
L Scientific research begins to be translated
1 Basic principles observed and reported ) :
into applied research and development.
Invention begins. Once basic principles are
2 Technology concept and/or application formulated. observed, practical applications can be
invented.
Analytical and experimental critical function and/or characteristic proof of Acfuv_e research and.develop.ment is initiated.
3 This includes analytical studies and
concept. )
laboratory studies.
Basic technological components are
4 Component and/or breadboard validation in laboratory environment. integrated to establish that they will work
together.
The basic technological components are
5 Component and/or breadboard validation in a relevant environment. integrated with reasonably realistic
supporting elements.
A representative model or prototype system,
6 System/subsystem model or prototype demonstration in a relevant environment. |which is well beyond that of TRL 5, is tested
in a relevant environment.
7 System prototype demonstration in an operational environment. Z;:ngpe near, or at, planned operational
8 Actual system completed and qualified through test and demonstration. Technology has been proven to work'ln Its
final form and under expected conditions.
9 Actual system has proven through successful mission operations. The actual application (.Df t.he techn_o.logy In its
final form and under mission conditions.
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Alternatives

In Situ Production of Fuel and oxygen

Strengths S |
Long term cost and operational advantages > Challenging implementation

>

YV V VY V

Reduce the number of launches
Enables Space Commercialization
Abundance of CO2 in the atmosphere
Estimated abundance of water ice

s ‘ Loyola Marymount University
e ) Systems

\%/’ Engineering

Weaknesses

> Extreme operational conditions

> No personnel available to perform
maintenance and repairs

> Water mining could present complex
challenges
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Importing propellant to Mars from other solar bodies

Strengths

>

>

High quantities of gases from different
sources
No need to produce; just collect

97

Weaknesses
> Challenging implementation
> Long travel time

Y VY

Not feasible in the short term
High cost
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Alternative propulsion systems (Non-chemical, Advanced Propulsion)

Strengths Weaknesses

> Non-Chemical propulsion sub-system could > Not enough thrust to launch from earth
be capable of bringing the starships back to (overcome Earth'’s gravity)
Earth when it has little or no propellant left. > The return trip can take a longer time.

> Generally more efficient than chemical
propulsion (higher ISP).
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Hybrid propulsion systems (Chemical + non-chemical)
Strengths Weaknesses
> Non-Chemical propulsion sub-system could » Current non-chemical propulsion
be capable of bringing the starships back to technology has lower thrust, so the return
Earth when it has little or no propellant left. trip to Earth time can take a longer time

> Higher ISP
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Alternatives

Propellant Depots in Mars orbit

ACES Based Depot

Deployable Suns

I (shown in secti

Propellant / I
Transfer/Docking

Interface I

Depot

ACES 41 Module

(Converted to LO2 Storage)

LH2 Depot

Figure 10. A Single Launch, Dual-Fluid Propellant Depot. Credit ULA
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Propellant Depots in Mars orbit
Strengths
> Would enable Mars to be a strategic stop for Weaknesses
trips between Earth and other planets > Needs propellant to come from somewhere
> Would provide economic and logistics (not a source)
benefits to a Mars colony > Not Long development time, so not a short-
> Would facilitate the transfer to other solar term solution.

bodies
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Alternatives

Mega Spaceships

Strengths

> High cargo and passenger capacity >
> Could serve as a temporary Mars habitat >
> Could be used for long-distance missions >

102
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Weaknesses

Long time to be designed and developed
Very high cost

Not likely to be able to launch from Earth
with the current technology

Higher loads and vibrations due to size
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> Define Problem Statement > Develop System Architecture

> Define Scope > Develop Requirements

> Define stakeholders and their needs > Define Subsystems

> Research current literature > Develop a System model

> Define and assess Measures of > Develop Verification and Validation
Effectiveness Plans

> Talk to subject matter experts > Perform Risk and Opportunities

> ldentify and Asses Alternatives Analysis

> Develop Concept of Operations > Develop Cost Estimates

> Develop Implementation Plan
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Risk Analysis

Type: internal —Technical
ID: R1
Title: Chemical Process Failure

Description: Chemical process involved in producing Methane and Oxygen fails due to equipment malfunction.

Original Assessment
Probability = Possible
Impact = Catastrophic

Mitigation: Design the chemical reactor subsystem with full redundancy.

Assessment after mitigation
Probability = Highly Unlikely
Impact = Moderate
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Risk Analysis

R1 - Chemical Process Failure

IMPACT
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Risk Analysis

Type: internal —Technical
ID: R2
Title: Loss of Power

Description: Power supply temporarily or permanently interrupted.

Original Assessment
Probability = Possible
Impact = Catastrophic

Mitigation: Design the power system with full redundancy and have an alternate power source to increase reliability further.

Assessment after mitigation
Probability = Unlikely
Impact = Moderate
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Risk Analysis

R2 - Loss of Power

IMPACT
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Risk Analysis

Type: internal —Non-Technical
ID: R3
Title: Missing launch window (20 DAYS)

Description: Delays in production or testing could cause a schedule slip that can compromise the 20-day launch window.

Original Assessment
Probability = Likely
Impact = Major

Mitigation: Plan to have enough time buffer to absorb delays in production or testing and still have the hardware ready to
launch on time.

Have contingency testing facilities

Have multiple suppliers

Assessment after mitigation
Probability = Unlikely
Impact = Major
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Risk Analysis

R3 - Missing launch window

IMPACT
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Price
(2019 dollars)

Reusability
S / kN Ratio

Potential cost
(per flight)

Flight Record
Reliability

Merlin

<S1M

10 flights
$1,170 : 1kN
S117 : 1kN

il
99.9%

No
$6,527 : 1kN
$6,527 : 1kN

79

100%

No
$4,431: 1kN
$4.431:1kN

17
100%

~ $2M

50 flights
~$1,000: 1kN
~$20:1kN

Yet to fly

N/A

~ $8M

25 flights
~$3,333:1kN
~$133: 1kN

Yet to fly

N/A

>$50M

19 flights
$26,881: 1kN
$1,414 : 1kN

135

>99.5%



FY2020: 0.36% OF U.S. BUDGET COMMITTED TO SPACE

B NASA
EVERYTHING ELSE
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With full reuse, our overall architecture

FABRICATION COST

LIFETIME LAUNCHES

LAUNCHES PER MARS TRIP

AVERAGE MAINTENANCE COST PER USE

TOTAL COST PER ONE MARS TRIP

Amortization, Propellant, Maintensnie)

IAC 2016 - Late Breaking News: Making Humans a Multiplanetary Species

COSITS

enables significant reduction in cost to Mars

BOOSTER IANKER S5HIP

Cost/ton to Mars: <$140,000
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Why Starship?
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Caveats & Limitations

> Limited time and resources
> Limited knowledge of the technology

> Limited feedback from stakeholders
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