
LMU/LLS Theses and Dissertations

2022

VANET Broadcast Protocol: A Multi-Hop Routing Framework for VANET Broadcast Protocol: A Multi-Hop Routing Framework for

Vehicular Networks in ns-3 Vehicular Networks in ns-3

William M. Bjorndahl
Loyola Marymount University, wmbjorndahl@gmail.com

Follow this and additional works at: https://digitalcommons.lmu.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Bjorndahl, William M., "VANET Broadcast Protocol: A Multi-Hop Routing Framework for Vehicular
Networks in ns-3" (2022). LMU/LLS Theses and Dissertations. 1148.
https://digitalcommons.lmu.edu/etd/1148

This Thesis is brought to you for free and open access by Digital Commons @ Loyola Marymount University and
Loyola Law School. It has been accepted for inclusion in LMU/LLS Theses and Dissertations by an authorized
administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information,
please contact digitalcommons@lmu.edu.

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/etd
https://digitalcommons.lmu.edu/etd?utm_source=digitalcommons.lmu.edu%2Fetd%2F1148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lmu.edu%2Fetd%2F1148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/etd/1148?utm_source=digitalcommons.lmu.edu%2Fetd%2F1148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu

1

VANET Broadcast Protocol:
A Multi-Hop Routing Framework for Vehicular Networks in ns-3

by

William M. Bjorndahl

A thesis presented to the

Faculty of the Department of
Electrical Engineering

Loyola Marymount University

In partial fulfillment of the
Requirements for the Degree

Master of Science in Electrical Engineering

July 18, 2022

Advisor: Gustavo Vejarano, Ph.D.

2

CONTENTS

I Introduction 8
I-A Vehicular Ad-hoc Networks (VANETs) 8
I-B Contributions . 8

I-B1 Contribution 1: Develop a Multi-Hop Routing Protocol
on a VANET for ns-3 9

I-B2 Contribution 2: Provide Simulation Parameters and Setup
in ns-3 for a VANET 9

I-B3 Contribution 3: Document the development of a routing
protocol for ns-3 . 9

I-C Broadcasting in VANETs . 9
I-C1 Example: Ambulance 10
I-C2 Example: Police Probing 10

I-D Routing Data Packets Towards the Targeted Broadcast Area . . . 10
I-D1 Example: Ambulance Approaching Caravan Downstream 11
I-D2 Example: Upstream Traffic Alerts 11

I-E Related Work . 11

II Routing Algorithms 12
II-A First Hop Determination . 13
II-B Intermediate Hops . 14
II-C Limitations . 14

II-C1 Limitation 1: Packets are not broadcast to vehicles in
between a hop . 14

II-C2 Limitation 2: The UDP header is added on a data packet
at the incorrect layer 15

II-C3 Limitation 3: VBP only supports the transmission of
VBP data packets . 15

II-C4 Limitation 4: Simulations fail in complex road designs 15

III Routing Architecture 16
III-A Routing Protocol . 16
III-B VBP Neighbors . 18
III-C VBP Queue . 19
III-D Vanet Broadcast Helper . 20

IV Simulation Setup 21
IV-A Create Nodes & Set Mobility . 21
IV-B VanetBroadcastHelper . 22
IV-C Applications . 23

3

V Control Packets 25
V-A Generating & Sending . 26

V-A1 SendHello() . 26
V-A2 SendTo . 27
V-A3 StartHelloTx() . 27

V-B Receiving . 28
V-B1 NotifyInterfaceUp() 28
V-B2 RecvVbp() . 29
V-B3 RecvHello() . 29

VI Data Packets 31
VI-A RouteOutput() . 31
VI-B FindFirstHop() . 33
VI-C SetSendFirstHop() . 33
VI-D RouteInput() . 35
VI-E RoutePacket() . 36

VII Tests & Results 39
VII-A Experiment 1: Caravan Moving Towards Targeted Broadcast Area 39
VII-B Experiment 2: Caravan Moving Away from Targeted Broadcast Area 40
VII-C Experiment 3: Queuing When Caravan Moves Towards Targeted

Broadcast Area . 40
VII-D Experiment 4: Queuing When Caravan Moves Away from Targeted

Broadcast Area . 41

VIII Conclusions 42

IX Appendix: Calculate Traffic Levels 43

X Table of Acronyms 44

References 45

4

LIST OF FIGURES

1 Without DSRC technology . 8
2 With DSRC technology . 10
3 Police probing . 10
4 Downstream example . 11
5 Upstream example . 11
6 Packet transmission flowchart . 13
7 Packet reception & forwarding flowchart 14
8 ns-3 routing overview . 17
9 VBP Routing Protocol . 18
10 VBP Neighbors . 19
11 VBP Queue . 19
12 Vanet Broadcast Helper . 20
13 Network animator example . 22
14 The TBA mapped by the coordinates set in Listing 3 Line 6. 23
15 TCP/IP model . 23
16 Console output showing control packet 25
17 Console output showing data packet information 31

5

LIST OF TABLES

I First and next hop algorithms . 12
II Simulation parameters . 21
III Control data . 25
IV VBP data . 31
V Experiment 1 results . 39
VI Experiment 2 results . 40
VII Experiment 3 results . 41
VIII Experiment 4 results . 41
IX Level of service . 43

6

LISTINGS

1 Create() . 20
2 Mobility models . 21
3 Install Routing . 22
4 Install source application . 23
5 Install sink application . 24
6 SendHello() . 26
7 SendTo() . 27
8 StartHelloTx() . 27
9 NotifyInterfaceUp() . 28
10 RecvVbp() . 29
11 RecvHello() . 29
12 RouteOutput() . 32
13 FindFirstHop() . 33
14 SetSendFirstHop() . 34
15 RouteInput() . 35
16 RoutePacket() . 37

7

Abstract

Vehicles are more frequently being built with hardware that supports wireless communica-
tion capabilities. Dedicated short-range communications (DSRC) is a standard that enables the
hardware on vehicles to communicate with one another directly rather than through external
infrastructure such as a cellular tower. With DSRC supporting small-range communications,
multi-hop routing is utilized when a packet needs to reach a long-range destination. A vehicular
ad-hoc network (VANET) broadcast protocol (VBP) was developed. This thesis introduces
VBP, an open-source framework for simulating multi-hop routing on mobile and wireless
vehicular networks. VBP is built for the routing layer of the network simulation tool called
network simulator 3 (ns-3) and contains a custom protocol that adapts to various traffic
conditions on a roadway. To test VBP we ran six simulations across three traffic levels.
Results confirm that VBP successfully routes packets or queues packets when a first or next
hop is not available. The development process of VBP is documented to help researchers who
are trying to create a custom routing protocol for ns-3.

8

I. INTRODUCTION

A. Vehicular Ad-hoc Networks (VANETs)
To support the development of intelligent transportation systems in the United States
the Federal Communications Commission allocated the 5.9 GHz band for DSRC-based
operations[1]. With other countries setting similar standards, opportunities exist to create
applications that may benefit driving safety such as:

• Emergency vehicles indicating direction of approach and alerting downstream drivers
to clear a lane

• Police polling a specific section of highway for a hijacked vehicle
• Vehicles notifying another vehicle when it is in their blind spot

Without DSRC technology, drivers rely on sounds such as sirens or horns to communicate
with other motorists. Figure 1 illustrates an ambulance dispatched to an emergency
location and highlights the inefficiencies of using sirens to alert surrounding drivers to
clear a lane. A siren may not be heard because the noise is reduced as it enters the cabin
of a vehicle. Further distractions such as loud music or a phone conversation reduce the
driver’s ability to perceive the oncoming emergency vehicle. This causes lane congestion
and leads to longer ambulance response times.

Fig. 1. Without DSRC technology

One way to circumvent the issue described in Figure 1 is to treat each vehicle as a
node on a wireless and mobile network. Considering the road environment as a VANET
allows us to use routing protocols to send messages between vehicles. In our VANET a
custom routing protocol facilitates the transfer of data packets from a source vehicle to a
destination vehicle. Other VANETs may support packet exchange between a vehicle and
infrastructure along a highway, called vehicle-to-infrastructure or vehicle-to-everything.

B. Contributions
To the best of our knowledge this thesis identifies three unique contributions.

9

1) Contribution 1: Develop a Multi-Hop Routing Protocol on a VANET for ns-3:
There are many network simulators available for researchers. These tools have built-in
functionality for generic routing protocols that work on networks such as a group of
computers connected via ethernet. Some available simulators are made specifically for
VANETs[2] but require a pre-defined route to be set before the simulation starts. Not
supported in these simulators are multi-hop routing and routes that update based on traffic
condition. VBP, described in this thesis, provides multi-hop capabilities that produce a
small end-to-end delay using dynamic routing based on the traffic environment. VBP is
created for ns-3 at the routing layer and expands on the work of a lab member[3]. The lab
member created routing algorithms for various traffic conditions and VBP implements
these algorithms on the routing layer of the TCP/IP model.

A component of VBP is called the targeted broadcast area (TBA). This is the region
of highway that we want the broadcast to reach. A vehicle that contains the data packet
will broadcast it to all other vehicles within communication range. The two parameters
for the TBA are location and expiration time. These are defined in our framework and
discussed in later sections.

2) Contribution 2: Provide Simulation Parameters and Setup in ns-3 for a VANET: We
simulate VANETs in ns-3 to verify the functionality of our routing protocol, VBP. Our
simulation models contain all the necessary components for a researcher to easily test our
protocol. The simulation scripts we provide can be adjusted for different mobility models
such as the starting position and velocity of each vehicle. The simulation infrastructure
we provide can be easily modified and debugged.

3) Contribution 3: Document the development of a routing protocol for ns-3: A brief
overview of routing is provided in the documentation of ns-3[4]. While a researcher
can explore ns-3’s codebase for implemented routing protocols, the process to develop a
custom routing protocol is ambiguous. No documentation or guide details this procedure,
leading to the third contribution of this thesis: document our creation of a custom routing
protocol for ns-3. Also provided is the open-source code of VBP that researchers can
use for their projects.

C. Broadcasting in VANETs
VBP uses two types of packets: control and data. Control packets are sent and received

by every vehicle within communication range. They provide information about each
neighboring vehicle. More details about control packets are provided in Section V. Data
packets are routed by algorithms to travel from a source to a destination. More details
about these packets are provided in Section VI. Vehicles in our simulations are configured
to send packets a maximum distance of 250m. A data packet can ’hop’ every 250m until
it reaches the TBA. The goal of a data packet is to reach the TBA with a small end-to-end
delay.

10

1) Example: Ambulance: Figure 2 shows how the problems presented in Figure 1
can be alleviated through VANETs. Safety is increased because vehicles have more time
to pull over and the ambulance will have less impeding traffic when approaching the
emergency.

Fig. 2. With DSRC technology

2) Example: Police Probing: Another application that benefits from VANETs is sur-
veying a road for a specific vehicle. Figure 3 illustrates how packets can hop among
vehicles on a road until the vehicle of interest is found. This application can relay to
the police the location of a specific vehicle, which is useful to detect hijacked cars.

Fig. 3. Police probing

D. Routing Data Packets Towards the Targeted Broadcast Area
No central controller is used to make routing decisions, meaning vehicles only know

about other vehicles through packet exchange. Each node is responsible for the forward-
ing and reception of all data packets. Routing is used to find a path for data packets so
they reach the destination.

We utilize the routing layer so each vehicle can perform the following:
• Generate and transmit control packets
• Maintain a neighbor list based on received control packets from other nodes
• Determine the optimal next-hop in various traffic conditions for data packets
• Queue data packets if no hop found
• Identify location of the TBA relative to vehicle position

11

The following examples demonstrate some behaviors of data packet routing in VBP
traffic simulations. This shows how VANET can be used in real-world scenarios.

1) Example: Ambulance Approaching Caravan Downstream: This example shows a
fast moving ambulance approaching a constant velocity caravan of cars. The ambulance
transmits a data packet once it is in communication range (250m) of a downstream vehi-
cle heading towards the TBA, signifying the ’first-hop’. Routing algorithms implemented
in VBP find the next available hop so the packet reaches the TBA in minimal time. Our
protocol detects five potential next-hops since any vehicle can receive and forward data
packets. VBP chooses the head of the caravan as the ’second-hop’ since it is closest to
the TBA and moving towards the TBA, illustrated in Figure 4.

Fig. 4. Downstream example

2) Example: Upstream Traffic Alerts: This example presents an ambulance blocking
the road to help a crashed vehicle. Directly behind the ambulance is stopped traffic while
traffic further beyond that is still moving at normal highway speeds. The ambulance sends
a data packet upstream to alert incoming traffic to prepare to stop.

Fig. 5. Upstream example

E. Related Work
OMNeT++ is an open-source network event simulation library and framework similar

to ns-3. While OMNeT++ has built-in routing capabilities, its feature set is not com-
parable to the functionality of the VBP framework built for ns-3 at the routing layer.
OMNeT++ is limited to static routing, where a route is pre-configured[5]. In VBP each
node monitors their list of neighbors and uses this information to calculate the first hop
and intermediate hops of a route.

12

II. ROUTING ALGORITHMS

Routing algorithms determine the route for a data packet traveling from a source to a
destination vehicle. Routes consist of two types of hops: the first hop and intermediate
hops. Each vehicle can receive and forward data packets while the source node has the
additional capability to generate and send these packets. A data packet will be queued
on a vehicle until a next hop is available.

For the first and next hops, we use the following criteria to select the algorithm of
the hop so the data packet reaches the destination with minimal end-to-end delay:

• Center of TBA location relative to a vehicle position
• Vehicle direction
• Traffic level
The data packet contains the TBA location and expiration time and this information is

accessible by the node upon reception of a packet. To determine if an vehicle is moving
towards or away from the TBA, VBP checks the velocity of the vehicle, V . Also used
by our algorithms is the vehicle’s distance to the center of the TBA, XTBA

Every node uses and maintains information about itself and its neighbors to sense its
traffic environment. A node knows its neighbor information, such as the distance of a
node within one hop, XN and the IP address of vehicles ahead and behind. VBP checks if
a packet comes from behind (traveling downstream) or from ahead (traveling upstream).
We also formulate if a vehicle is expected to reach the center of the TBA before the
zone expires through the message delivery time, TMD. These calculations involve the
current vehicle position, the center position of the TBA and the neighborhood speed.
Table I presents the first and intermediate hop algorithms.

TABLE I
FIRST AND NEXT HOP ALGORITHMS

Traffic Levels

Upstream Upstream Downstream Algorithm of
Towards TBA Away TBA Towards TBA First/Next Hop

High maxXTBA

Medium max
√

T 2
MD +X2

N

Low maxTMD

High minXTBA

Medium min
√

V 2 +X2
TBA

Low minV

High minXTBA

Medium max
√

V 2 +X2
N

Low minTMD

13

A. First Hop Determination
The first hop occurs after the source vehicle generates a packet. We describe the

process to find the first hop in Figure 6. As an example, consider the case in Figure 2
where an emergency vehicle alerts downstream traffic to pull over to the side of the road.
The emergency vehicle generates a data packet that travels downstream to vehicles a
distance of 250m. The first hop will have to be accomplished so the alert can broadcast to
surrounding vehicles and hop to the next forwarding node. The algorithms that determine
the first hop are narrowed down to the following:

High Traffic = minXTBA

Medium Traffic = max
√

V 2 +X2
N

Low Traffic = minTMD

(1)

Fig. 6. Packet transmission flowchart

14

B. Intermediate Hops
An intermediate hop occurs when a node forwards a packet to the next node. Upon a

node receiving a first or next hop, VBP decides if the packet forwards to the next hop
vehicle. These intermediate hops occur until no next hop is available, where a packet
is queued on the most recent recipient node. Using Figure 2 as an example, the first
hop vehicle forwards the data packet to the next hop which is farther downstream than
other vehicles in the traffic. Our algorithm chooses the vehicle to forward to based on
Figure 7.

Fig. 7. Packet reception & forwarding flowchart

C. Limitations
1) Limitation 1: Packets are not broadcast to vehicles in between a hop: While VBP

supports multi-hop capabilities, packets are not broadcast to the vehicles in between a
hop. The Internet layer of the TCP/IP model is used to route packets on our protocol.
To transmit a packet we set a destination MAC address to specify the vehicle to receive
the packet. On our route we specify the destination IP address as a broadcast, allowing

15

all vehicles within transmission range to see the packet at the Internet layer. Since we
set one MAC address as the recipient vehicle, nodes without a matching MAC address
cannot take delivery of the packet.

To fix this we should specify a broadcast address rather than a specific vehicle address
when setting the next hop. To limit every node from forwarding the broadcast packet,
we should update our header data fields to include next hop ahead IP address and next
hop behind IP address. These fields will be used during reception of a data packet,
confirming a specific vehicle IP address is the next hop. When a vehicle IP address is
the next hop, VBP will allow the node to forward and deliver the packet. Otherwise, the
node can only locally deliver the broadcast packet. This ensures we keep the multi-hop
capabilities while broadcasting the packet to vehicles in between hops.

2) Limitation 2: The UDP header is added on a data packet at the incorrect layer:
VBP is a framework for ns-3 that is developed at the Internet layer of the TCP/IP model.
At this layer we do not have access to modify the headers of an upper layer, the Transport
layer, where UDP headers reside. This means UDP headers cannot be added or removed
at a lower level such as the Internet layer. We noticed when a node receives a packet
(on the Internet layer) a UDP header (Transport layer) is not found. We add the UDP
header manually on the Internet layer as a patch, which is incorrect conceptually.

3) Limitation 3: VBP only supports the transmission of VBP data packets: When a
packet is transmitted to the first hop we specifically check for VBP data packets. This
means only VBP data packets can be routed using our framework. If researchers wish
to use our framework for different types of data, they will have to modify this function
to accept their packets.

4) Limitation 4: Simulations fail in complex road designs: The calculations of this
protocol will fail if the forwarding vehicle makes a U-turn. Our routing protocol works
on straight roads with minor changes in direction.

16

III. ROUTING ARCHITECTURE

In VBP a data packet is sent from a source to a destination. This process is called
unicast routing. Our framework consists of simulation scripts, a helper and a routing
module. The helper and routing module are partitioned into the following C++ classes:

• VanetBroadcastHelper
• RoutingProtocol
• VanetRoutingHeader
• VbpHelloHeader
• VbpQueue
• VbpNeighbors
• RoutingTableEntry
• RoutingTable

VBP routing module

The files that contain the implementation of each class can be found here.

A. Routing Protocol
Class RoutingProtocol handles the routing capabilities of VBP and in-

herits class Ipv4RoutingProtocol from ns-3. Eight functions originating in
Ipv4RoutingProtocol are expected to be implemented:

• RouteOutput()
• RouteInput()
• NotifyInterfaceUp()
• NotifyInterfaceDown()
• NotifyAddAddress()
• NotifyRemoveAddress()
• PrintRoutingTable()
• SetIpv4()

A routing overview diagram is provided by ns-3[4], shown in Figure 8. The main classes
in the diagram are Ipv4RoutingProtocol and Ipv4L3Protocol because it han-
dles routing and forwarding of data packets. VBP lies within the Ipv4RoutingProtocol
space and can access connected objects as displayed in the figure. Notably we use:

• UDP layer to execute RouteOutput()
• Sockets to interface between the routing protocol and applications
• Ipv4L3Protocol to send data packets

https://github.com/Intemnets-Lab/VANET-Broadcast-Protocol/tree/main/ns-3.35/scratch/vanet-broadcast-protocol

17

Fig. 8. ns-3 routing overview

The routing diagram for VBP is shown in Figure 9. VBP Neighbors is accessed
for both neighborhood and routing purposes. VanetBroadcastHelper is used by
the simulation, which is outside of our routing protocol environment. Objects (boxed)
and functions (highlighted) are organized based on its process in the routing protocol
in VBP. Items highlighted green are public functions and highlighted blue are private
functions.

The VBP routing protocol is split between these processes:
• Initializing VBP in the simulation
• Maintaining and accessing neighborhood information
• Routing data packets

18

Fig. 9. VBP Routing Protocol

B. VBP Neighbors
Each vehicle starts the simulation with an empty neighbor list. As the simulation

runs, control packets are exchanged between vehicles within a one hop distance. A node
updates its neighbor list with the information found in these exchanged packets. Our
routing protocol uses this neighbor list for calculations that help determine both the
first and next hop of a data packet. Figure 10 exhibits the functions used by a node to
maintain its neighbor list and obtain neighbor information.

19

Fig. 10. VBP Neighbors

C. VBP Queue
VBP queues packets on a node when no next hop is found. The functions used to

create the queue are indicated in Figure 11.

Fig. 11. VBP Queue

20

D. Vanet Broadcast Helper
A Helper bridges the simulation to the routing module by installing routing and

internet capabilities on the nodes. Our helper class VanetBroadcastHelper
inherits from class Ipv4RoutingHelper found in the internet module of ns-3.
The functions used to create the helper are specified in Figure 12.

Fig. 12. Vanet Broadcast Helper

The helper contains a function called Create() that initializes VBP (Listing 1
Line 6 - Line 7) and internet capabilities (Line 8 - Line 9) on the simulation vehicles.
We instruct nodes to begin transmitting control packets (Line 10) and for the simulation
to set the TBA (Line 11).

Listing 1. Create()
1 Ptr<Ipv4RoutingProtocol>
2 VanetBroadcastHelper::Create(Ptr<Node> node) const
3 {
4 NS_ASSERT_MSG(!(isnan(m_broadcastArea[0]) isnan(m_broadcastArea[1]) isnan(

m_broadcastArea[2]) isnan(m_broadcastArea[3])),"Need to set coordinates of broadcast
area with VanetBroadcastHelper");

5
6 Ptr<vbp::RoutingProtocol> agent = m_agentFactory.Create<vbp::RoutingProtocol>();
7 node->AggregateObject(agent);
8 Ptr<Ipv4> ipv4 = node->GetObject<Ipv4>();
9 agent->SetIpv4(ipv4);

10 agent->StartHelloTx();
11 agent->SetBroadcastArea(m_broadcastArea);
12 return agent;
13 }

21

IV. SIMULATION SETUP

Table II introduces the parameters used by our simulations. Some items are used for
the network setup while others are used for the Friis Propagation Loss Model, which
models the line of sight path loss in free space[6].

TABLE II
SIMULATION PARAMETERS

Simulation Parameter Value
Net Address 10.1.1.0

Net Mask Address 255.255.255.0
Net Broadcast Address 10.1.1.255

UDP Port 8080
VBP Port 8081

Source Start Time [s] 1
Pk Interarrival Time [s] 1

Vehicle Distance [m] 5
Vehicle Speed [m

s
] 15

Frequency [Hz] 2.4e9
Sys Loss 1

Min Loss [dB] 0
Tx Power [dBm] 110

Tx Gain [dB] 0
Rx Gain [dB] 0

Rx Sensitivity [dBm] 0

A. Create Nodes & Set Mobility
The simulation script initializes the vehicular network we wish to model by creating

nodes (Listing 2 Line 4 - Line 6) and setting mobility (position and velocity) on the
nodes (Line 8 - Line 12).

Listing 2. Mobility models
1 #include "ns3/mobility-module.h"
2 #include "ns3/constant-velocity-mobility-model.h"
3
4 uint32_t NumNodes = 5;
5 NodeContainer nodes;
6 nodes.Create(NumNodes);
7
8 float vehicleDistance = 50;
9 float vehicleSpeed = 5; //low 5, medium 15, high 30

10 for (int i = 0; i < int(NumNodes); i++) {
11 nodes.Get(i)->GetObject<ConstantVelocityMobilityModel>()->SetPosition(vehicleDistance*

i, 0, 0));
12 nodes.Get(i)->GetObject<ConstantVelocityMobilityModel>()->SetVelocity(vehicleSpeed, 0,

0));}

It is necessary to import the ns-3 modules that set position and velocity of nodes
(Line 1 - Line 2). The simulation is set for each vehicle to start 50 meters apart
(Line 8) and move at a velocity of 15 meters per second (Line 9). Traffic levels of

22

the simulation are adjusted by modifying these values. The simulation described by
Listing 2 is illustrated through the network animator, illustrated in Figure 13.

Fig. 13. Network animator example

B. VanetBroadcastHelper
VanetBroadcastHelper is called to install VBP on the simulation nodes (List-

ing 3 Line 5 & Line 7). Also required is InternetStackHelper which installs
internet stack capabilities such as IP, TCP and UDP on each node (Line 4 & Line 8).

Listing 3. Install Routing
1 #include "vanet-broadcast-helper.h"
2 #include "ns3/internet-module.h"
3
4 InternetStackHelper stack;
5 VanetBroadcastHelper vbp;
6 vbp.SetBroadcastArea({100000, -10, 100050, 10});
7 stack.SetRoutingHelper(vbp);
8 stack.Install(nodes);

The user specifies the rectangular TBA coordinates in meters relative to the origin
(Line 6). The coordinates follow the set {x1, y1, x2, y2}, where x1 and y1 represents
the x-coordinate and y-coordinate of the upper left corner of the TBA and x2 and y2
represents the x-coordinate and y-coordinate of the bottom right corner of the TBA.

The coordinates set on Line 6 are exemplified in Figure 14. Positive ’y’ is in the
downward direction which follows the design principles set in other modules of ns-3.

23

Fig. 14. The TBA mapped by the coordinates set in Listing 3 Line 6.

C. Applications
VBP routes data packets that are generated at the application layer of the TCP/IP

model (Figure 15). For example, a dispatched emergency vehicle has a source application
to create alert messages that will be sent to far-away traffic. All vehicles have a sink
application, allowing it to receive packets generated from the source application.

Fig. 15. TCP/IP model

The simulation script accesses the application layer to install both the source and
sink applications. A socket is created to access the source node (Listing 4 Line 3) and
initialize the app (Line 5 & Line 6) two seconds into the simulation (Line 7).

Listing 4. Install source application
1 #include "VbpApp.h"
2
3 Ptr<Socket> udpSourceSocket = Socket::CreateSocket(nodes.Get(0), UdpSocketFactory::

GetTypeId());
4 Ptr<MyRandomExpTrafficApp> udpSourceAppPtr = CreateObject<MyRandomExpTrafficApp>();
5 udpSourceAppPtr->Setup(udpSourceSocket, Ipv4Address(NET_BROADCAST_ADDRESS), VBP_PORT,

PacketSize, DataRate(AppDataRate), PRNGRunNumber);
6 nodes.Get(0)->AddApplication(udpSourceAppPtr);
7 udpSourceAppPtr->SetStartTime(Seconds(2));

24

Sink applications allow a node to receive packets generated by source applications.
Every node should have this ability, explaining the loop process (Listing 5 Line 3 -
Line 11). The set up process is similar to the source application (Line 5 - Line 10).

Listing 5. Install sink application
1 #include "MyRandomExpTrafficApp.h"
2
3 for(uint32_t i = 0; i < NumNodes; i++)
4 {
5 Ptr<Socket> vbpSocket = Socket::CreateSocket(nodes.Get(i), UdpSocketFactory::GetTypeId

());
6 Ptr<VbpApp> vbpAppPtr = CreateObject<VbpApp>();
7 vbpAppPtr->Setup(vbpSocket, VBP_PORT);
8 nodes.Get(i)->AddApplication(vbpAppPtr);
9 vbpSocket->SetRecvCallback(MakeCallback(&ReceivePacket));

10 vbpAppPtr->SetStartTime(Seconds(SOURCE_START_TIME));
11 }

25

V. CONTROL PACKETS

Control packets are assigned port number 655 and packet type ’h’ in our framework.
They generate and transmit from each vehicle ten times every second. Also known
as hello packets, their purpose is to exchange information between two nodes within
communication range. The parameters of a hello packet header are presented in Table III.

TABLE III
CONTROL DATA

Control Parameter Example Description
Packet type h Signifies control ’hello’ packets

Position X [m] 376.949 X-coordinate of current node
Position Y [m] 0 Y-coordinate of current node
Speed X [m

s
] 5.007 Speed of node in x-direction

Speed Y [m
s

] 0 Speed of node in y-direction
Neighbors ahead 5 number of one-hop neighbors downstream
Neighbors behind 5 number of one-hop neighbors upstream

Neighbor furthest ahead X-Pos [m] 625.651 neighboring node furthest ahead in the x-plane
Neighbor furthest ahead Y-Pos [m] 0 neighboring node furthest ahead in the y-plane

Neighbor furthest behind X-Pos [m] 126.466 neighboring node furthest behind in the x-plane
Neighbor furthest behind Y-Pos [m] 0 neighboring node furthest behind in the y-plane

Average Speed X [m
s

] 5.007 Average x-plane speed of neighboring nodes
Average Speed Y [m

s
] 0 Average y-plane speed of neighboring nodes

Fig. 16. Console output showing control packet

26

A node is considered a neighbor of another node if a hello packet is exchanged between
them. Each node has a list of neighbors that initially starts empty at the beginning of
a simulation. This list updates as a node either maintains contact with a neighbor or
establishes contact with a new node. After thirty seconds of not receiving a hello packet
from a neighbor, its entry on the neighbor list is dropped. The VBP routing module uses
the neighbor list entries when calculating the optimal route of a data packet.

A. Generating & Sending
1) SendHello(): Nodes generate and send control packets every one-hundred millisec-

onds. In the VBP these tasks are completed by RoutingProtocol::SendHello()
and RoutingProtocol::StartHelloTx().
SendHello() creates the hello packet (Listing 6 Line 9) and calculates the control

data (Line 14 through Line 28) that is added to the packet’s header (Line 44).
The socket is used to calculate the position (Line 14) and velocity (Line 15) of a

node. We call functions of class VbpNeighbors() to gather information about the
furthest neighbor ahead (Line 17 - Line 21), the furthest neighbor behind (Line 23 -
Line 27). We set this data in the hello header (Line 29 - Line 41). With the data set, a
node broadcasts control packets to its neighbors (Line 47 - Line 58).

Listing 6. SendHello()
1 void
2 RoutingProtocol::SendHello()
3 {
4 NS_LOG_FUNCTION(this);
5 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j = m_socketAddresses

.begin(); j != m_socketAddresses.end(); ++j)
6 {
7 Ptr<Socket> socket = j->first;
8 Ipv4InterfaceAddress iface = j->second;
9 Ptr<Packet> packet = Create<Packet>();

10 // create header here
11 VbpHelloHeader HelloHeader;
12
13 // get info needed in packet from sockets
14 Vector pos = m_thisNode->GetObject<MobilityModel>()->GetPosition();
15 Vector vel = m_thisNode->GetObject<MobilityModel>()->GetVelocity();
16 // set dummy values to header setData (pass hardcoded values)
17 Vector furthestAhead = Vector3D(NAN, NAN, 0);
18 int furthestIdxAhead = m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetNeighborFurthestAheadByIndex(pos);
19 if (furthestIdxAhead >= 0)
20 {
21 furthestAhead = Vector3D(m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetNeighborPositionX(furthestIdxAhead), m_neighborsListPointer->GetObject<
VbpNeighbors>()->GetNeighborPositionY(furthestIdxAhead), 0);

22 }
23 Vector furthestBehind = Vector3D(NAN, NAN, 0);
24 int furthestIdxBehind = m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetNeighborFurthestBehindByIndex(pos);
25 if (furthestIdxBehind >= 0)
26 {
27 furthestBehind = Vector3D(m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetNeighborPositionX(furthestIdxBehind), m_neighborsListPointer->GetObject<
VbpNeighbors>()->GetNeighborPositionY(furthestIdxBehind), 0);

27

28 }
29 HelloHeader.SetData(m_helloPacketType,
30 pos.x,
31 pos.y,
32 vel.x,
33 vel.y,
34 m_neighborsListPointer->GetObject<VbpNeighbors>()->

Get1HopNumNeighborsAhead(),
35 m_neighborsListPointer->GetObject<VbpNeighbors>()->

Get1HopNumNeighborsBehind(),
36 furthestAhead.x,
37 furthestAhead.y,
38 furthestBehind.x,
39 furthestBehind.y,
40 m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetAvgSpeedNeighborX(vel.x),
41 m_neighborsListPointer->GetObject<VbpNeighbors>()->

GetAvgSpeedNeighborY(vel.y));
42
43 // add header to packet
44 packet->AddHeader(HelloHeader);
45
46 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise
47 Ipv4Address destination;
48 if (iface.GetMask() == Ipv4Mask::GetOnes())
49 {
50 destination = Ipv4Address("255.255.255.255");
51 }
52 else
53 {
54 destination = iface.GetBroadcast();
55 }
56 Time jitter = Time(MilliSeconds(Period_HelloTx + m_uniformRandomVariable->

GetInteger(0, Jitter_HelloTx)));
57 Simulator::Schedule(jitter, &RoutingProtocol::SendHello, this);
58 SendTo(socket, packet, destination);
59 }
60 }

2) SendTo: After setting the data of the hello header RoutingProtocol::SendTo()
sends the control packet to the destination socket (Listing 7 Line 4).

Listing 7. SendTo()
1 void
2 RoutingProtocol::SendTo(Ptr<Socket> socket, Ptr<Packet> packet, Ipv4Address destination)
3 {
4 socket->SendTo(packet, 0, InetSocketAddress(destination, VBP_HELLO_PORT));
5 }

3) StartHelloTx(): StartHelloTx() calls SendHello(), beginning the trans-
mission of hello packets in our simulation. A variable called jitter is used to slightly
deviate from a true period of a hundred milliseconds, modeling a realistic design in
communications. (Listing 8 Line 5).

Listing 8. StartHelloTx()
1 void
2 RoutingProtocol::StartHelloTx()
3 {
4 m_uniformRandomVariable = CreateObject<UniformRandomVariable>();
5 Time jitter = Time(MilliSeconds(Period_HelloTx + m_uniformRandomVariable->GetInteger

(0, Jitter_HelloTx)));
6 Simulator::Schedule(jitter, &RoutingProtocol::SendHello, this);
7 }

28

B. Receiving
Nodes receive hello packets from all nodes within transmission range. It

is expected that a control packet comes from a known socket, created in
NotifyInterfaceUp(). A receiving node receives and processes hello packets using
RoutingProtocol::RecvVbp() and RoutingProtocol::RecvHello().

1) NotifyInterfaceUp(): NotifyInterfaceUp says if a node’s interface is active,
the vehicle is findable by other nodes through control packets. We create two sockets
for control packets on each node, one for local discovery and one for external discovery
(Listing 9 Line 24 and Line 34).

Listing 9. NotifyInterfaceUp()
1 void
2 RoutingProtocol::NotifyInterfaceUp(uint32_t interface)
3 {
4 /*
5 Protocols are expected to implement this method to be notified of the state change of

an interface in a node.
6 */
7 NS_LOG_FUNCTION(this);
8 if (interface > 1)
9 {

10 NS_LOG_WARN("VBP does not work with more then one interface.");
11 }
12 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol>();
13 if (l3->GetNAddresses(interface) > 1)
14 {
15 NS_LOG_WARN("VBP does not work with more then one address per each interface.");
16 }
17 Ipv4InterfaceAddress iface = l3->GetAddress(interface, 0);
18 if (iface.GetLocal() == Ipv4Address("127.0.0.1"))
19 {
20 return;
21 }
22 // include check that m_socketaddresses is empty and m_socketSubnetBroadcastAddresses

is empty. Print out message only one interface is allowed if check fails
23 // Create a socket to listen only on this interface
24 Ptr<Socket> socket = Socket::CreateSocket(GetObject<Node>(), UdpSocketFactory::

GetTypeId());
25 NS_ASSERT(socket != 0);
26 socket->SetRecvCallback(MakeCallback(&RoutingProtocol::RecvVbp, this));
27 socket->BindToNetDevice(l3->GetNetDevice(interface));
28 socket->Bind(InetSocketAddress(iface.GetLocal(), VBP_HELLO_PORT));
29 socket->SetAllowBroadcast(true);
30 socket->SetIpRecvTtl(true);
31 m_socketAddresses.insert(std::make_pair(socket, iface));
32
33 // create also a subnet broadcast socket
34 socket = Socket::CreateSocket(GetObject<Node>(), UdpSocketFactory::GetTypeId());
35 NS_ASSERT(socket != 0);
36 socket->SetRecvCallback(MakeCallback(&RoutingProtocol::RecvVbp, this));
37 socket->BindToNetDevice(l3->GetNetDevice(interface));
38 socket->Bind(InetSocketAddress(iface.GetBroadcast(), VBP_HELLO_PORT));
39 socket->SetAllowBroadcast(true);
40 socket->SetIpRecvTtl(true);
41 m_socketSubnetBroadcastAddresses.insert(std::make_pair(socket, iface));
42
43 << "NotifyInterfaceUp "
44 << "--- " << m_ipv4->GetNInterfaces() <<

" Interfaces");
45
46 m_thisNode = socket->GetNode();

29

47 m_neighborsListPointer->GetObject<VbpNeighbors>()->SetThisNode(m_thisNode);
48 }

2) RecvVbp(): RecvVbp() verifies that received packets are from known sockets
for either a local interface (Listing 10 Line 13) or broadcast interface (Line 17). Control
packets are passed to RecvHello() to further process hello packets (Line 39).

We recommend debugging hello header information from the log functions in RecvVbp()
(Line 28 - Line 36).

Listing 10. RecvVbp()
1 #include "vbp-hello-packet-header.h"
2
3 void
4 RoutingProtocol::RecvVbp(Ptr<Socket> socket)
5 {
6 NS_LOG_FUNCTION(this);
7 Address sourceAddress;
8 Ptr<Packet> packet = socket->RecvFrom(sourceAddress);
9 InetSocketAddress inetSourceAddr = InetSocketAddress::ConvertFrom(sourceAddress);

10 Ipv4Address sender = inetSourceAddr.GetIpv4();
11 Ipv4Address receiver;
12
13 if (m_socketAddresses.find(socket) != m_socketAddresses.end())
14 {
15 receiver = m_socketAddresses[socket].GetLocal();
16 }
17 else if (m_socketSubnetBroadcastAddresses.find(socket) !=

m_socketSubnetBroadcastAddresses.end())
18 {
19 receiver = m_socketSubnetBroadcastAddresses[socket].GetLocal();
20 }
21 else
22 {
23 NS_ASSERT_MSG(false, "Received a packet from an unknown socket");
24 }
25 // remove the header from the packet:
26 VbpHelloHeader destinationHeader;
27 packet->PeekHeader(destinationHeader);
28 NS_LOG_LOGIC("---Tx From --- " << sender);
29 NS_LOG_LOGIC("---Tx To --- " << receiver);
30 NS_LOG_LOGIC("---Begin Header Information --- ");
31 NS_LOG_LOGIC("Packet Type: " << destinationHeader.GetPacketType());
32 NS_LOG_LOGIC("Position X: " << destinationHeader.GetPositionX());
33 NS_LOG_LOGIC("Position Y: " << destinationHeader.GetPositionY());
34 NS_LOG_LOGIC("Speed X: " << destinationHeader.GetSpeedX());
35 NS_LOG_LOGIC("Speed Y: " << destinationHeader.GetSpeedY());
36 NS_LOG_LOGIC("---End Header Information --- ");
37 if (destinationHeader.GetPacketType() == m_helloPacketType)
38 {
39 RecvHello(packet, receiver, sender);
40 NS_LOG_LOGIC("Neighbors List: " << "Receiver " << receiver << " Sender " << sender

<< " Packet type: " << destinationHeader.GetPacketType());
41 }
42 }

3) RecvHello(): RecvHello() determines if the node receiving the control packet
is ahead or behind the sender (Listing 11 Line 7 - Line 37). Then the sending node is
added to the receiving node’s list of neighbors (Line 41 - Line 54).

Listing 11. RecvHello()
1 void

30

2 RoutingProtocol::RecvHello(Ptr<Packet> p, Ipv4Address receiver, Ipv4Address sender)
3 {
4 VbpHelloHeader helloHeader;
5 p->PeekHeader(helloHeader);
6 // determine if forwarding node is ahead=1 or behind=0 by using dot product
7 float dotProduct;
8 float dotProductVel;
9 Vector receiveNodePos = m_thisNode->GetObject<MobilityModel>()->GetPosition();

10 Vector diff = Vector3D(helloHeader.GetPositionX(), helloHeader.GetPositionY(), 0) -
receiveNodePos; // vector pointing from receiving node to forwarding node

11 Vector receiveNodeVelocity = m_thisNode->GetObject<MobilityModel>()->GetVelocity();
12
13 if (receiveNodeVelocity.GetLength() == 0)
14 {
15 // if receiving node not moving, don’t process anymore
16 return;
17 }
18
19 dotProductVel = receiveNodeVelocity.x * helloHeader.GetSpeedX() +

receiveNodeVelocity.y * helloHeader.GetSpeedY();
20 if (dotProductVel <= 0)
21 {
22 // if velocity vectors do not align, don’t process because neighbor moving in

opposite direction
23 return;
24 }
25
26 dotProduct = receiveNodeVelocity.x * diff.x + receiveNodeVelocity.y * diff.y;
27 uint16_t direction; // 0 = behind, 1 = ahead
28 if (dotProduct >= 0)
29 {
30 // if dot product positive, then ahead
31 direction = 1;
32 }
33 else
34 {
35 // if dot product negative, then behind
36 direction = 0;
37 }
38
39 // use received packet to update neighbors information in object neighbors
40 // will add node as new neighbor or update information for that neighbor
41 m_neighborsListPointer->GetObject<VbpNeighbors>()->AddNode(sender,
42 direction,
43 helloHeader.GetNumNeighborsAhead(),
44 helloHeader.GetNumNeighborsBehind(),
45 helloHeader.GetPositionX(),
46 helloHeader.GetPositionY(),
47 helloHeader.GetSpeedX(),
48 helloHeader.GetSpeedY(),
49 helloHeader.GetNeighborFurthestAheadX(),
50 helloHeader.GetNeighborFurthestAheadY(),
51 helloHeader.GetNeighborFurthestBehindX(),
52 helloHeader.GetNeighborFurthestBehindY(),
53 helloHeader.GetAvgSpeedX(),
54 helloHeader.GetAvgSpeedY());
55 }

31

VI. DATA PACKETS

Data packets are assigned port number 8081 and packet type ’d’ in our framework.
Also referred to as VBP packets, they are generated by the application on the source
node (Listing 4) and routed using the routing layer of the TCP/IP model (Figure 15).
Table IV introduces the parameters contained in the header of the data packets.

TABLE IV
VBP DATA

Parameter Example Description
Packet type d Signifies VBP data packet

Previous Hop IP 10.1.1.1 IPv4 Address of previous hop node
TBA Pos 1 X [m] 100000 X-coordinate of upper left TBA point
TBA Pos 1 Y [m] -10 Y-coordinate of upper left TBA point
TBA Pos 2 X [m] 100050 X-coordinate of bottom right TBA point
TBA Pos 2 Y [m] 10 Y-coordinate of bottom right TBA point

TBA Expiration Time [s] 1e+09 Time

Fig. 17. Console output showing data packet information

A. RouteOutput()
RoutingProtocol::RouteOutput() deals with outgoing data packets from

the source node by facilitating the packet’s first hop. This occurs after the packet is
generated by the source application. The input parameters are

32

• Ptr<Packet> packet, the packet to be routed by VBP
• const Ipv4Header &header, used as an input parameter
• Ptr<NetDevice> oif, the output interface netdevice. May be zero, or may be bound

via socket options to a particular output interface.
• sockerr, Output parameter for error regarding sockets

Prior to routing RouteOutput() checks for available socket interfaces (List-
ing 12 Line 7 - Line 12). Then the data of the packet is set (Line 22) and
added to the VBP header (Line 23). We confirm that a first hop is avail-
able with RoutingProtocol::FindFirstHop() (Line 28) and if so, call
RoutingProtocol::SetSendFirstHop() (Line 32). If no first hop is currently
available a loopback route is returned (Line 45).

Listing 12. RouteOutput()
1 Ptr<Ipv4Route>
2 RoutingProtocol::RouteOutput(Ptr<Packet> p, const Ipv4Header &header, Ptr<NetDevice> oif,

Socket::SocketErrno &sockerr)
3 {
4 NS_LOG_FUNCTION(this);
5 Ptr<Ipv4Route> route;
6
7 if (m_socketAddresses.empty())
8 {
9 sockerr = Socket::ERROR_NOROUTETOHOST;

10 NS_LOG_LOGIC("No vbp interfaces");
11 return route;
12 }
13
14 sockerr = Socket::ERROR_NOTERROR;
15 VbpRoutingHeader routingHeader;
16 RoutingTableEntry rt;
17 Ipv4Address dst = header.GetDestination();
18 Ipv4Address src = header.GetSource();
19 Ipv4InterfaceAddress iface = m_socketAddresses.begin()->second;
20 Ipv4Address origin = iface.GetAddress();
21 Ptr<NetDevice> dev = m_ipv4->GetNetDevice(m_ipv4->GetInterfaceForAddress(iface.

GetLocal()));
22 routingHeader.SetData(m_dataPacketType, origin, m_broadcastArea[0], m_broadcastArea

[1], m_broadcastArea[2], m_broadcastArea[3], m_BroadcastTime);
23 p->AddHeader(routingHeader);
24 Ipv4Address nextHopAhead;
25 Ipv4Address nextHopBehind;
26 NS_LOG_LOGIC("Route Output Packet Type: " << routingHeader.GetPacketType());
27
28 if (FindFirstHop(&nextHopAhead, &nextHopBehind)) // find next hop
29 {
30 NS_LOG_LOGIC("Sender FindFirstHop: " << iface.GetAddress());
31 NS_LOG_LOGIC("Send First Hop - Ahead " << nextHopAhead << " Behind " <<

nextHopBehind);
32 SetSendFirstHop(&nextHopAhead, &nextHopBehind, p, dev, iface, src, dst);
33 }
34 else
35 {
36 NS_LOG_LOGIC("Else Case: Send First Hop - Ahead " << nextHopAhead << " Behind "

<< nextHopBehind);
37 // Valid route not found, return loopback
38 uint32_t iif = (oif ? m_ipv4->GetInterfaceForDevice(oif) : -1);
39 DeferredRouteOutputTag tag(iif);
40 NS_LOG_DEBUG("Valid Route not found");
41 if (!p->PeekPacketTag(tag))
42 {

33

43 p->AddPacketTag(tag);
44 }
45 route = LoopbackRoute(header, oif);
46 }
47 return route;
48 }

B. FindFirstHop()
FindFirstHop() returns true when a valid IP address is found within transmission

range of the source node. We first calculate and check if a vehicle is moving towards
the TBA (Listing 13 Line 12 - Line 13). If an IP address that belongs to a node is
returned our algorithm knows there is an available hop downstream (ahead) (Line 15).
Next, we look for vehicular IP addresses upstream (behind) the source (Line 17). If a
node is found either upstream or downstream of the source node, a valid IP address
is within transmission range and FindFirstHop() returns true (Line 22) . If no
nodes are found in either direction, signified by invalid IP addresses of 102.102.102.102
(Line 18), then no first hop is available and the function returns false (Line 20).

Listing 13. FindFirstHop()
1 bool
2 RoutingProtocol::FindFirstHop(Ipv4Address *nextHopAheadPtr, Ipv4Address *nextHopBehindPtr

)
3 {
4 Vector vehiclePos = m_thisNode->GetObject<MobilityModel>()->GetPosition();
5 Vector vehicleVel = m_thisNode->GetObject<MobilityModel>()->GetVelocity();
6 float upperLeftBA_x = m_broadcastArea[0];
7 float upperLeftBA_y = m_broadcastArea[1];
8 float lowerRightBA_x = m_broadcastArea[2];
9 float lowerRightBA_y = m_broadcastArea[3];

10 Vector centerBA = Vector3D((upperLeftBA_x + lowerRightBA_x) / 2, (upperLeftBA_y +
lowerRightBA_y) / 2, 0);

11 Vector vehicleToBA = centerBA - vehiclePos;
12 bool movingToBA = (vehicleVel.x * vehicleToBA.x + vehicleVel.y * vehicleToBA.y) >=

0; // true if moving towards TBA
13 if (movingToBA)
14 {
15 nextHopAheadPtr->Set(FindNextHopDownstream(centerBA, movingToBA).Get());
16 }
17 nextHopBehindPtr->Set(FindNextHopUpstream(centerBA, movingToBA).Get());
18 if (*nextHopAheadPtr == Ipv4Address("102.102.102.102") && *nextHopBehindPtr ==

Ipv4Address("102.102.102.102"))
19 {
20 return false;
21 }
22 return true;
23 }

C. SetSendFirstHop()
SetSendFirstHop() sets the route and sends the packet from RouteOutput().

A module from ns-3 called ns3::Ipv4L3Protocol() is used to send the data packet
via the routing layer. VBP splits the potential routes of the packet send into three cases:

34

• Case 1: Both downstream and upstream
• Case 2: Downstream only
• Case 3: Upstream Only
We consider case 1 when a next hop is found both ahead and behind of the source

vehicle (Listing 14 Line 8 - Line 21). Since a packet can only hop in one-direction,
we copy the packet (Line 16) and set it on the opposing route. This allows us to set
the route and send the original packet downstream (Line 11 - Line 14) and the copied
packet upstream (Line 17 - Line 20).

Case 2 occurs when a hop is found only ahead of the source node. A downstream
route is set and one packet is sent (Line 24 - Line 27). Case 3 happens when a hop is
found only behind of the source node. An upstream route is set and one packet is sent
(Line 31 - Line 34).

Listing 14. SetSendFirstHop()
1 void
2 RoutingProtocol::SetSendFirstHop(Ipv4Address *nextHopAheadPtr, Ipv4Address *

nextHopBehindPtr, Ptr<Packet> p, Ptr<NetDevice> dev, Ipv4InterfaceAddress iface,
Ipv4Address src, Ipv4Address dst)

3 {
4 RoutingTableEntry rt;
5 rt.SetOutputDevice(dev);
6 rt.SetInterface(iface);
7 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol>();
8 if (*nextHopAheadPtr != Ipv4Address("102.102.102.102") && *nextHopBehindPtr !=

Ipv4Address("102.102.102.102")) // case: hops both ahead and behind
9 {

10 // next hop ahead
11 Ptr<Ipv4Route> routeDownstream;
12 rt.SetNextHop(*nextHopAheadPtr);
13 routeDownstream = rt.GetRoute();
14 l3->Send(p, src, dst, PROT_NUMBER, routeDownstream);
15 // next hop behind
16 Ptr<Packet> q = p->Copy();
17 Ptr<Ipv4Route> routeUpstream;
18 rt.SetNextHop(*nextHopBehindPtr);
19 routeUpstream = rt.GetRoute();
20 l3->Send(q, src, dst, PROT_NUMBER, routeUpstream);
21 }
22 else if (*nextHopAheadPtr != Ipv4Address("102.102.102.102"))
23 {
24 Ptr<Ipv4Route> routeDownstream;
25 rt.SetNextHop(*nextHopAheadPtr);
26 routeDownstream = rt.GetRoute();
27 l3->Send(p, src, dst, PROT_NUMBER, routeDownstream);
28 }
29 else
30 {
31 Ptr<Ipv4Route> routeUpstream;
32 rt.SetNextHop(*nextHopBehindPtr);
33 routeUpstream = rt.GetRoute();
34 l3->Send(p, src, dst, PROT_NUMBER, routeUpstream);
35 }
36 }

35

D. RouteInput()
RoutingProtocol::RouteInput() is called when a node receives a packet.

This function decides if a packet should be forwarded to the next hop node or locally
delivered to the current node, and returns true in both scenarios. The input parameters
are:

• Ptr<const Packet> p, received packet
• const Ipv4Header &header, input parameter used to form a search key for a route
• Ptr<const NetDevice> idev, pointer to ingress network device
• UnicastForwardCallback ucb, callback for the case in which the packet is to be

forwarded as unicast
• MulticastForwardCallback mcb, callback for the case in which the packet is to be

forwarded as multicast
• LocalDeliverCallback lcb, callback for the case in which the packet is to be locally

delivered
• ErrorCallback ecb, callback to call if there is an error in forwarding
We first check for available sockets, IP addresses and packets (Listing 15 Line 6 -

Line 13. A loopback device is used to defer routes and queue the packet until a route
is found (Line 18 - Line 26). VBP is unicast routing and will not forward or deliver a
packet if the destination is multicast (Line 28 - Line 31). We then determine whether the
address and interface of a received packet can be accepted for local delivery (Line 34).
Upon this confirmation we check for an available local callback (Line 36) and determine
a node can accept packets for delivery if an available callback is found. Data packets
are local delivered (Line 61) when RoutePacket() returns true (Line 43) while all
control packets are local delivered (Line 65).

Listing 15. RouteInput()
1 bool
2 RoutingProtocol::RouteInput(Ptr<const Packet> p, const Ipv4Header &header,
3 Ptr<const NetDevice> idev, UnicastForwardCallback ucb,
4 MulticastForwardCallback mcb, LocalDeliverCallback lcb,

ErrorCallback ecb)
5 {
6 if (m_socketAddresses.empty())
7 {
8 return false;
9 }

10 NS_ASSERT(m_ipv4 != 0);
11 NS_ASSERT(p != 0);
12 // Check if input device supports IP
13 NS_ASSERT(m_ipv4->GetInterfaceForDevice(idev) >= 0);
14 int32_t iif = m_ipv4->GetInterfaceForDevice(idev);
15 Ipv4Address dst = header.GetDestination();
16 Ipv4Address src = header.GetSource();
17 // Deferred route request
18 if (idev == m_lo)
19 {
20 DeferredRouteOutputTag tag;
21 if (p->PeekPacketTag(tag))
22 {
23 DeferredRouteOutput(p, header, ucb, ecb);

36

24 return false;
25 }
26 }
27 // VBP is not a multicast routing protocol
28 if (dst.IsMulticast())
29 {
30 return false;
31 }
32 Ipv4InterfaceAddress iface = m_socketAddresses.begin()->second;
33 // Unicast local delivery
34 if (m_ipv4->IsDestinationAddress(dst, iif))
35 {
36 if (lcb.IsNull() == false)
37 {
38 uint8_t protocol_numb = header.GetProtocol();
39 if (protocol_numb == PROT_NUMBER)
40 {
41 bool packetSentIndicator = false;
42 Ptr<Packet> q = p->Copy();
43 bool lcbIndicator = RoutePacket(q, dst, src, &packetSentIndicator); // true

lcb. false no lcb
44 if (lcbIndicator)
45 {
46 UdpHeader udpHead;
47 udpHead.SetDestinationPort(VBP_DATA_PORT); //8081
48 udpHead.SetSourcePort(VBP_DATA_PORT); //8081
49 udpHead.InitializeChecksum(header.GetSource(), header.GetDestination(),

PROT_NUMBER);
50 q->AddHeader(udpHead);
51 Ipv4Header headerCopy;
52 headerCopy.SetDestination(header.GetDestination());
53 headerCopy.SetDscp(header.GetDscp());
54 headerCopy.SetEcn(header.GetEcn());
55 headerCopy.SetIdentification(header.GetIdentification());
56 headerCopy.SetPayloadSize(header.GetPayloadSize());
57 headerCopy.SetProtocol(UDP_PROT_NUMBER); //17
58 headerCopy.SetSource(header.GetSource());
59 headerCopy.SetTos(header.GetTos());
60 headerCopy.SetTtl(header.GetTtl());
61 lcb(q, headerCopy, iif);
62 }
63 return true;
64 }
65 lcb(p, header, iif);
66 }
67 else
68 {
69 NS_LOG_ERROR("Unable to deliver packet locally due to null callback " << p->

GetUid() << " from " << src);
70 ecb(p, header, Socket::ERROR_NOROUTETOHOST);
71 }
72 return true;
73 }
74 NS_LOG_ERROR("Unable to forward packet due to not being a VANET Broadcast Protocol

data packet " << p->GetUid() << " from " << src);
75 ecb(p, header, Socket::ERROR_NOROUTETOHOST);
76 return false;
77 }

E. RoutePacket()
RoutingProtocol::RoutePacket() is used in RouteInput() as an indi-

cator for local callback. Two cases trigger local delivery of the data packet:

37

• Case 1: the vehicle that contains the packet is already in the TBA area (Listing 16
Line 6 - Line 16)

• Case 2: the vehicle that contains the packet is currently not in the TBA and is
expected to reach the TBA before expiration (Line 18 - Line 34)

The first case occurs when a vehicle is already in the TBA so this function returns true,
indicating a node takes local delivery of a packet at the application layer of the TCP/IP
model (Line 14). For the second case, calculations that consider a vehicle’s velocity
(Line 32) and position compared to the TBA center (Line 33) are used to determine
if a vehicle will reach the TBA before expiration time. If true a packet local delivers
to the application layer. When Case 2 occurs, the packet is forwarded to the next hop
(Line 35 - Line 74). The packet is sent using ns3::Ipv4L3Protocol() to the next
hop based on VBP’s routing algorithm, giving our framework multi-hop functionality.
Packets are queued if our algorithm indicates there is no first or next hop available
(Line 68 - Line 73).

Listing 16. RoutePacket()
1 bool
2 RoutingProtocol::RoutePacket(Ptr<Packet> p, Ipv4Address dst, Ipv4Address src, bool *

packetSentIndicator){
3 *packetSentIndicator = false;
4 Vector vehiclePos = m_thisNode->GetObject<MobilityModel>()->GetPosition();
5 Ptr<VbpNeighbors> neighborsList = m_neighborsListPointer->GetObject<VbpNeighbors>();
6 // case 1: vehicle already in targeted broadcast area
7 VbpRoutingHeader routingHeader;
8 p->PeekHeader(routingHeader);
9 if ((routingHeader.GetPosition1X() <= vehiclePos.x) && (vehiclePos.x <=

routingHeader.GetPosition2X()))
10 {
11 if ((routingHeader.GetPosition1Y() <= vehiclePos.y) && (vehiclePos.y <=

routingHeader.GetPosition2Y()))
12 {
13 p->RemoveHeader(routingHeader);
14 return true; // true = lcb
15 }
16 }
17 // case 2: vehicle not in TBA and may reach TBA before expiration
18 Vector BA1 = Vector3D(routingHeader.GetPosition1X(), routingHeader.GetPosition1Y(),

0); // for targeted broadcast area point one
19 Vector BA2 = Vector3D(routingHeader.GetPosition2X(), routingHeader.GetPosition2Y(),

0); // for targeted broadcast area point two
20 Vector centerBA = Vector3D((BA1.x + BA2.x) / 2, (BA1.y + BA2.y) / 2, 0);
21 float neighborhoodSpeed = Vector3D(neighborsList->GetNeighborHoodSpeedMeanX(),

neighborsList->GetNeighborHoodSpeedMeanY(), 0).GetLength();
22 float currentMDT = CalculateDistance(vehiclePos, centerBA) / neighborhoodSpeed;
23 bool closeToBA = false;
24 Ptr<Packet> q = p->Copy();
25 if ((Simulator::Now() / 1e9 + Seconds(currentMDT)) <= Seconds(m_BroadcastTime))
26 {
27 p->RemoveHeader(routingHeader);
28 closeToBA = true; // will need to return closeToBA after forwarding. return true
29 }
30 bool enqueuePacketIndicator = false;
31 Ipv4Address prevHopIP = routingHeader.GetPrevHopIP();
32 Vector vehicleVel = m_thisNode->GetObject<MobilityModel>()->GetVelocity();
33 Vector vehicleToBA = centerBA - vehiclePos;
34 bool movingToBA = (vehicleVel.x * vehicleToBA.x + vehicleVel.y * vehicleToBA.y) >=

0; // true if moving towards TBA
35 Ipv4Address nextHopAhead;

38

36 Ipv4Address nextHopBehind;
37 // forward packet for case 2
38 if (FindNextHop(&nextHopAhead, &nextHopBehind, centerBA, movingToBA, closeToBA, &

enqueuePacketIndicator, prevHopIP))
39 {
40 Ipv4InterfaceAddress iface = m_socketAddresses.begin()->second;
41 Ptr<NetDevice> dev = m_ipv4->GetNetDevice(m_ipv4->GetInterfaceForAddress(iface.

GetLocal()));
42 RoutingTableEntry rt;
43 rt.SetOutputDevice(dev);
44 rt.SetInterface(iface);
45 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol>();
46 Ipv4Address thisVehicleIP = iface.GetAddress();
47 q->RemoveHeader(routingHeader);
48 routingHeader.SetData(m_dataPacketType, thisVehicleIP, routingHeader.GetPosition1X

(), routingHeader.GetPosition1Y(), routingHeader.GetPosition2X(), routingHeader.
GetPosition2Y(), routingHeader.GetBroadcastingTime());

49 q->AddHeader(routingHeader);
50 if (nextHopAhead != Ipv4Address("102.102.102.102"))
51 {
52 Ptr<Ipv4Route> routeDownstream;
53 rt.SetNextHop(nextHopAhead);
54 routeDownstream = rt.GetRoute();
55 l3->Send(q, src, dst, PROT_NUMBER, routeDownstream);
56 *packetSentIndicator = true;
57 }
58 else
59 {
60 Ptr<Ipv4Route> routeUpstream;
61 rt.SetNextHop(nextHopBehind);
62 routeUpstream = rt.GetRoute();
63 l3->Send(q, src, dst, PROT_NUMBER, routeUpstream);
64 *packetSentIndicator = true;
65 }
66 }
67 Ipv4InterfaceAddress iface = m_socketAddresses.begin()->second;
68 if (enqueuePacketIndicator)
69 {
70 m_queuePointer->GetObject<VbpQueue>()->AppendPacket(q);
71 Ipv4Header header;
72 m_queuePointer->GetObject<VbpQueue>()->AppendHeader(header);
73 }
74 return closeToBA;
75 }

39

VII. TESTS & RESULTS

We use multiple traffic levels across four simulations to verify VBP operates the
following ways:

• Data packets hop towards the direction of the TBA
• Data packets queue on a vehicle when no next hop is available

Each test simulates a caravan of 21 vehicles, where vehicles are placed every 50m starting
at the origin and set to move at the same constant velocity. An IP address is assigned to
each vehicle. The caravan vehicle closest to the origin has IP address 10.1.1.1 and the
caravan vehicle farthest from the origin has IP address 10.1.1.21. Vehicles in between
have their own IP address. For example, the sixth caravan vehicle from the origin has
IP address 10.1.1.6. Dependent on the simulation, the targeted broadcast area is placed
10,000m either to the left or right of the caravan. The TBA has a long enough expiration
time to ensure all vehicles will reach the center of it. In total we run 18 simulations and
each passes our tests.

A. Experiment 1: Caravan Moving Towards Targeted Broadcast Area
This simulation tests which node on our VANET is chosen as a first or intermediate

hop, and which node of the caravan is the last to be the recipient of a forwarded data
packet. The TBA is to the right of the caravan that is moving towards the right. Within
this experiment we run two tests across three traffic levels each. One test places the source
application on the left most vehicle of the caravan (vehicle with IP address 10.1.1.1)
and the second test places the source application on the middle vehicle of the caravan
(vehicle with IP address 10.1.1.11). All tests results are successful and show that the
packet is forwarded towards the TBA using multi-hop routing. The last recipient of a
forwarded data packet is the right most vehicle of the caravan (vehicle with IP address
10.1.1.21). The packet queue grows on this vehicle only.

TABLE V
EXPERIMENT 1 RESULTS

Test Parameters

Source Caravan Movement TBA Location Intermediate Hops Destination
(IP Address) Relative to TBA Relative to Caravan (IP Address) (IP Address)

10.1.1.6
10.1.1.1 Towards Right 10.1.1.11 10.1.1.21

10.1.1.16

10.1.1.11 Towards Right 10.1.1.16 10.1.1.21

40

B. Experiment 2: Caravan Moving Away from Targeted Broadcast Area
This simulation tests which node on our VANET is chosen as a first or intermediate

hop, and which node of the caravan is the last to be the recipient of a forwarded data
packet. The TBA is to the left of the caravan that is moving towards the right. Within this
experiment we run two tests across three traffic levels each. One test places the source
application on the right most vehicle of the caravan (vehicle with IP address 10.1.1.21)
and the second test places the source application on the middle vehicle of the caravan
(vehicle with IP address 10.1.1.11). All tests results are successful and show that the
packet is forwarded towards the TBA using multi-hop routing. The last recipient of a
forwarded data packet is the right most vehicle of the caravan (vehicle with IP address
10.1.1.1). The packet queue grows on this vehicle only.

TABLE VI
EXPERIMENT 2 RESULTS

Test Parameters

Source Caravan Movement TBA Location Intermediate Hops Destination
(IP Address) Relative to TBA Relative to Caravan (IP Address) (IP Address)

10.1.1.16
10.1.1.21 Away Left 10.1.1.11 10.1.1.1

10.1.1.6

10.1.1.11 Away Left 10.1.1.6 10.1.1.1

C. Experiment 3: Queuing When Caravan Moves Towards Targeted Broadcast Area
This simulation introduces an additional node to the VANET (vehicle with IP address

10.1.1.22) that is placed between the caravan and the TBA. The TBA is to the right
of the caravan that is moving towards the right. Node 10.1.1.22 travels slower than the
caravan and comes into contact range of the caravan halfway through the simulation
time. Within the caravan, the packet performs multiple hops as it travels from vehicle
10.1.1.1 to vehicle 10.1.1.21 (shown in Subsection VII-A). The packets are queued on
node 10.1.1.21 until it comes into communication range of vehicle 10.1.1.22. The queue
transfers to node 10.1.1.22, as we expect in a successful test result.

41

TABLE VII
EXPERIMENT 3 RESULTS

Test Parameters

Source Caravan Movement TBA Location Intermediate Hops Destination Empty Queue to
(IP Address) Relative to TBA Relative to Caravan (IP Address) (IP Address) (IP Address)

10.1.1.6
10.1.1.1 Towards Right 10.1.1.11 10.1.1.21 10.1.1.22

10.1.1.16

D. Experiment 4: Queuing When Caravan Moves Away from Targeted Broadcast Area
This simulation introduces an additional node to the VANET (vehicle with IP address

10.1.1.22) that is placed between the caravan and the TBA. The TBA is to the left of the
caravan that is moving towards the right. Node 10.1.1.22 travels faster than the caravan
and comes into contact range of the caravan halfway through the simulation time. Within
the caravan, the packet performs multiple hops as it travels from vehicle 10.1.1.21 to
vehicle 10.1.1.1 (shown in Subsection VII-B). The packets are queued on node 10.1.1.1
until it comes into communication range of vehicle 10.1.1.22. The queue transfers to
node 10.1.1.22, as we expect in a successful test result.

TABLE VIII
EXPERIMENT 4 RESULTS

Test Parameters

Source Caravan Movement TBA Location Intermediate Hops Destination Empty Queue to
(IP Address) Relative to TBA Relative to Caravan (IP Address) (IP Address) (IP Address)

10.1.1.16
10.1.1.21 Away Left 10.1.1.11 10.1.1.21 10.1.1.22

10.1.1.6

42

VIII. CONCLUSIONS

This thesis presents the work done to develop VBP, a routing protocol for ns-3. This
routing protocol has applications for improving driver awareness and road safety. We
extend the capabilities of other simulators by allowing multi-hop capability and dynamic
routing. Algorithms in VBP determine the first and next hop of a packet based on traffic
conditions such as vehicle direction of travel and traffic levels. Future improvements of
VBP include developing more complex algorithms that consider road conditions such
as curves and intersections.

Simulations were conducted to test our protocol. We ran six simulations across three
different traffic levels, each producing a successful result. Packets showed correct behav-
ior when multi hopping between nodes on our VANET and queuing when no first or next
hop is available. The simulation scripts used to test VBP are included so researchers
can easily run experiments using our protocol. Components of these scripts, such as
mobility, are modifiable so a user can customize starting location, velocity and number
of vehicles. Upon future improvements to the development of VBP, more complicated
simulations can be run that consider real-world road conditions.

Documentation was created to detail the process of creating a custom routing protocol
for ns-3. To the best of our knowledge there are limited resources available that explain
the purpose and code inside the various ns-3 routing components. We diagrammed the
routing architecture (Section III) and explained classes used to send and receive control
(Section V) and data (Section VI) packets. This work should help future researchers in
this area as they create their own custom routing protocol.

43

IX. APPENDIX: CALCULATE TRAFFIC LEVELS

The traffic levels of a simulation are based on a qualitative measurement called the
level of service (LOS). VBP calculates the volume to capacity of a road and compares it
to lookup tables provided by the Transport Research Board[7]. We provide an example
LOS lookup table in Table IX, showing the different categories of traffic.

TABLE IX
LEVEL OF SERVICE

LOS Description Vehicle Spacing [m] Density [pc/mi/ln]
A Free flow and unimpeded maneuverability 167 ≤ 10
B Reasonable free flow restricted maneuverability 100 ≤ 16
C Stable flow 67 ≤ 24
D Approaching unstable flow flow 50 ≤ 32
E Unstable flow 37 ≤ 36.7/39.7
F Breakdown flow (operating at capacity) < 37 variable

44

X. TABLE OF ACRONYMS
Targeted broadcast area TBA
Message delivery time TMD

Distance to neighbor XN

Distance to targeted broadcast area XTBA

Vehicle speed V
Level of service LOS

Vehicular Ad-hoc Network VANET

45

REFERENCES

[1] “Dedicated short range communications (dsrc) service,” Apr 2019. [Online]. Available: https://www.fcc.gov/
wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service

[2] “Veins - vehicles in network simulations.” [Online]. Available: https://veins.car2x.org/documentation/
[3] R. Ventura, “Targeted broadcasting in vehicular ad-hoc networks,” Master’s thesis, Loyola Marymount University,

2022 [Unpublished].
[4] “ns-3 routing overview.” [Online]. Available: https://www.nsnam.org/docs/models/html/routing-overview.html#:

∼:text=ns%2D3%20is%20intended%20to,research%20into%20unorthodox%20routing%20techniques.
[5] “Omnet++ - fully automatic static routing table configuration.” [Online]. Available: https://inet.omnetpp.org/

docs/tutorials/configurator/doc/step4.html
[6] “Propagation - model library.” [Online]. Available: https://www.nsnam.org/docs/models/html/propagation.html
[7] “Traffic level of service calculation methods.”

https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
https://veins.car2x.org/documentation/
https://www.nsnam.org/docs/models/html/routing-overview.html#:~:text=ns%2D3%20is%20intended%20to,research%20into%20unorthodox%20routing%20techniques.
https://www.nsnam.org/docs/models/html/routing-overview.html#:~:text=ns%2D3%20is%20intended%20to,research%20into%20unorthodox%20routing%20techniques.
https://inet.omnetpp.org/docs/tutorials/configurator/doc/step4.html
https://inet.omnetpp.org/docs/tutorials/configurator/doc/step4.html
https://www.nsnam.org/docs/models/html/propagation.html

	VANET Broadcast Protocol: A Multi-Hop Routing Framework for Vehicular Networks in ns-3
	Recommended Citation

	Routing Algorithms
	Routing Architecture
	Routing Protocol

	Simulation Setup
	Create Nodes & Set Mobility

	Tests & Results
	Experiment 1: Caravan Moving Towards Targeted Broadcast Area
	Experiment 2: Caravan Moving Away from Targeted Broadcast Area
	Experiment 3: Queuing When Caravan Moves Towards Targeted Broadcast Area
	Experiment 4: Queuing When Caravan Moves Away from Targeted Broadcast Area

	Conclusions
	Appendix: Calculate Traffic Levels
	Table of Acronyms
	References

