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Abstract

Self-assessment of food intake is important for preventing and treating obesity. The

current self-assessment methods of food intake are inaccurate and hard to use. In this

thesis, we explore ways to improve machine learning (ML) food classification methods

which are the core technical problem of food intake self-assessment. We present a food

detection system that utilizes a state-of-the art multi-modal architecture called Vision

and Language Transformer (ViLT). This architecture combines both food appearance

via the image modality, and description via the textual modality to improve the

accuracy of food classification. To further enhance the performance, we incorporate

other improvements such as curating a branded food item dataset. We apply transfer

learning, an ML method that allows reusing a pre-trained model from a related high-

resource task as the starting point for a low-resource task such as ours. This approach

reduces the cost and time required compared to building a model from scratch. In

addition, we compare our approaches with that of Visual Chat GPT, a combination

of vision foundation model and a large language model, and find that our approach

for food intake assessment is both accurate and cost-effective.

1



Acknowledgments

I express my gratitude to my thesis advisor, Dr. Mandy Korpusik of the Frank

R. Seaver College of Science and Engineering at Loyola Marymount University, for

providing me with the opportunity to explore a multimodal food detection system as

a continuation of her diet tracking system. Dr. Korpusik consistently guided me in

the right direction. I am also grateful to my thesis committee members, Dr. Huang

and Dr. Lin, for their insightful ideas and support throughout my thesis work.

I’d like to extend my thanks to the graduate advisor, Dr. Johnson, for his encour-

agement and support in excelling in my thesis project.

I am grateful to my family for their unwavering support and motivation. My

husband, Dr. Thamme Gowda, deserves special recognition for constantly challenging

me to improve and strive for excellence. I also want to express my appreciation to

Yifan Yu for helping me understand the datasets and base model code.

2



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 10

2.1 Background: Machine Learning Classification . . . . . . . . . . . . . 10

2.2 Models for Diet-Tracking System . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Image Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Text Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Vision-and-Language Models . . . . . . . . . . . . . . . . . . . 14

2.2.4 Background: Evaluations . . . . . . . . . . . . . . . . . . . . . 14

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Food Database 17

3.1 Data Collection I: Multi-Label Text and Single Label Images . . . . . 17

3.1.1 Text-to-Image Data . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Image-to-Text Data . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Data collection II: Multi-Label Images . . . . . . . . . . . . . . . . . 19

3.3 Data Collection III: Branded Dataset . . . . . . . . . . . . . . . . . . 19

3.3.1 Learning From Both Text and Image . . . . . . . . . . . . . . 20

3.3.2 Learning From Image Only . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Learning From Text Only . . . . . . . . . . . . . . . . . . . . 22

3



4 Experiments 23

4.1 Model-I: Baseline Vision-and-Language Model without Pre-Trained

Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Model-II: Vision-and-Language Transformer (ViLT) with Pre-Trained

Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Experiment-I: Multi-Label Food With Singel-Label Images . 25

4.3.2 Experiment-II: Multi-Label Food, Multi-Label Images With

696 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Experiment-III: Multi-label food, Multi-label images with

3589 categories . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.4 Adding The Branded dataset . . . . . . . . . . . . . . . 28

4.3.5 Experiment-V: Visual ChatGPT vs ViLT . . . . . . . . . . 29

5 Ablation Study 30

5.0.1 Ablation study I: Vision-and-Language Transformer (ViLT)

with Pre-Trained Weights . . . . . . . . . . . . . . . . . . . . 31

5.0.2 Ablation study II: Vision-and-Language Transformer (ViLT)

with Pre-Trained Weights . . . . . . . . . . . . . . . . . . . . 31

5.0.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion and Future Work 33

4



List of Figures

2-1 Transformer Encoder architecture. Image credit: Vaswani et al. [2017]. 12

2-2 Food category distribution. The vertical axis is in log scale. Categories

in our dataset are imbalanced as in the real-world scenario. . . . . . . 15

3-1 Examples of Text-to-Image data . . . . . . . . . . . . . . . . . . . . . 18

3-2 Examples of Image-to-Text data. Image credit: Food-101 and Flickr

(Rosetta’s research put together the initial multi-modal dataset) . . . 18

3-3 Multi-label and single-label images . . . . . . . . . . . . . . . . . . . 20

3-4 Branded data with text and images . . . . . . . . . . . . . . . . . . . 21

3-5 Templates for branded dataset . . . . . . . . . . . . . . . . . . . . . . 21

3-6 Templates for branded dataset . . . . . . . . . . . . . . . . . . . . . . 21

3-7 The labels marked red are branded labels and blue are not branded ones 22

3-8 Prompt for GPT-3.5 Turbo . . . . . . . . . . . . . . . . . . . . . . . 22

4-1 CNN+LSTM network (image credit: Dr. Korpusik and Rosetta) . . . 24

4-2 ViLT Model overview; image credit: [Kim et al., 2021]. . . . . . . . . 25

4-3 Majority baseline classifier . . . . . . . . . . . . . . . . . . . . . . . . 27

4-4 Random baseline classifier . . . . . . . . . . . . . . . . . . . . . . . . 28

5



List of Tables

3.1 A summary of branded data . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Macro-f1 and Micro-f1 Scores for Multi-Modal Models with single-label

images and multi-label text . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 A summary of model with Macro-f1 and Micro-f1 scores described in

this work for multi-label images and text with 696 categories . . . . . 26

4.3 A summary of model with Macro-f1 and Micro-f1 scores described in

this work with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 A summary of model with Macro-f1 and Micro-f1 scores described in

this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 A summary of model with Macro-f1 and Micro-f1 scores described in

this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 A summary of model architectures, labels, and Macro-f1 and Micro-f1

scores described in this work . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 A summary of model with Macro-f1 and Micro-f1 scores described in

this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6



Chapter 1

Introduction

Nutrition is a crucial aspect of our daily lives. It is essential to know the nutrient

values of the food we consume to maintain a healthy diet. However, it can be chal-

lenging to accurately determine the nutrient content of food. This is where the use

of technology can be beneficial. In this thesis, we present a multi-modal model which

is based on transformer architecture [Vaswani et al., 2017] that uses both text and

image data for food classification.

The use of a multi-modal approach has several advantages. Text data can provide

detailed information about the ingredients and preparation methods used in a dish,

while image data can provide visual cues about the food’s appearance and compo-

sition. By combining these two sources of information, our model can make more

informed predictions about the food. In the following chapters, we will describe the

design and implementation of our multi-modal model in detail. We will also present

the results of our experiments and discuss their implications.

We believe that our work has the potential to make a significant contribution to the

field of nutrition by providing a new and innovative method for food classification.

We hope that our research will inspire further developments in this area and help

people make more informed decisions about their diet.
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1.1 Motivation

This thesis proposes a multi-modal food detection system with transfer learning 1

that would possibly merge with an existing nutrition application, Coco Nutritionist

which is available on the Apple App Store 2. Coco is a personal AI-based digital

assistant who can guide you on the path to healthy eating by making diet tracking easy

with a conversational calorie counter. Coco nutritionist was developed by members

of the Spoken Language Systems Group at MIT’s Computer Science and Artificial

Intelligence Laboratory (CSAIL), with the idea of a spoken-language application that

would make meal logging even easier. The mobile application provides smart features

3 such as:

• Logging multiple foods at once, by speaking or typing

• Easy barcode scanning

• Timeline of meals

• Comprehensive, personalized list of nutrients

• Daily calorie goal and the streak of consecutive days logged

• Timestamps and setting the time with natural language

The aim of this thesis is to create a food detection system that uses multiple modes

of data to track food details easily.

1.2 Scope

This thesis presents a Transformer-based multi-modal diet tracking system for food.

The scope of the thesis is limited to demonstrating the feasibility of a transfer learning

1Multi-modal Food Classification in a Diet Tracking System with Spoken and Visual Inputs Shiv-
ani Gowda, Yifan (Rosetta) Hu, Mandy Korpusik 2023 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2023), June 2023.

2https://apps.apple.com/us/app/coco-nutritionist/id1173015957
3https://korpusik.wixsite.com/coco-nutritionist
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approach for developing a food detection system. We begin by describing the meth-

ods used for data collection and annotation. In Chapter 3, we discuss the process of

data collection. Chapter 4 covers the design and experimentation of our system. In

Chapter 5, we present an ablation study to evaluate the impact of different compo-

nents of our system. Finally, in Chapter 6, we conclude our work and discuss future

directions.
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Chapter 2

Literature Review

In this chapter, we review some of the background information and relevant ap-

proaches for. In Section 2.1, we provide an overview of machine learning (ML) meth-

ods applicable to our work, and in Section 2.2, we focus on reviewing diet tracking

models.

2.1 Background: Machine Learning Classification

Machine learning (ML), a sub-area of artificial intelligence and computer science, is

concerned with the study of methods for the creation of autonomous agents. ML

methods learn to perform a chosen task from a given set of examples, with the aim

of performing the chosen task reasonably well on unseen data, without explicitly pro-

gramming the instructions. The score of ML is broad: it varies from automatically

classifying emails as spam-or-ham, to automatically driving a car. This thesis focuses

on diet-tracking task, which involves both text and image modalities. ML methods

has evolved and improved over the time; currently deeplearning based approaches

are popular which use artificial neural networks to accomplish the task. While there

are several sub areas, we focus on supervised classification, which is relevant to the

diet-tracking when modeled as food item classification problem. In this classification

modeling, given an input x, say a textual description or a photograph of food con-

sumed, the task is to map x to y ∈ Y , a set of labels such as smoothies, salad, muffin,

10



burger, etc.

At a high-level, this has a two steps: firstly, given x ∈ Rm where m is the input

dimension, we learn a representation, z ∈ Rd where d is the hidden dimension, and

lastly, we map representation to P (Y = y|z), to discrete probability distribution.

Both steps are accomplished and learned end-to-end using artificial neural network,

modeled as P (Y = y|x) = f(Y = y|x; θ), where θ is parameters of model estimated

from a set of examples. During the inference time, a class y that has highest proba-

bility (single-label) or a set of classes which exceeds a given threshold multi-label are

chosen as label.

A key part of this model is learning a meaningful representation z ∈ Rd for the

given input x ∈ Rm, such that the representation help accomplish the end task (in

our case, identifying of a food item in the given input). There are many approaches to

learn representations using deeplearning, and historically, the approach varied based

on modality of input. For text modality, where input is a sequence of words i.e, a

time series, recurrent neural networks such as Long Short Term Memory (LSTM) and

Gated Recurrent Unit (GRU) networks were popular. For image modality where the

input is two or more dimensional i.e. a grid of pixels, convolutional neural networks

(CNN) were used. However, in the recent years, Transformers [Vaswani et al., 2017]

are the state of the art for representation learning across several modalities.

Transformers: Vaswani et al. [2017] originally proposed Transformers for neural

machine translation i.e. a general sequence to sequence mapping problem. However,

transformers are later adapted to other task types including sequence classification

and image classification. Transformer is a layered architecture, consisting of a stack

of identical layers (typically, 6, 12 or 24 layers), as shown in Figure 2-1.1 Each

Transformer Encoder layer has two sublayers, Multi-Head Attention, and Feed For-

ward sublayers, which are connected through residual connections and Layer Norm

(indicated by Add and Norm in Figure 2-1).

For simplicity, consider meal dairy as input, i.e. a sequence of words that describe

1Transformer model is originally an encoder-decoder network. We focus on encoder only as we
do not have usecase for decoder part of model.
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Figure 2-1: Transformer Encoder architecture. Image credit: Vaswani et al. [2017].

food in take. More concretely, x = x1, x2, ...xm, where m is the length of sequence.

The goal is to assign one or more labels y ∈ Y , the set of food items. Although we

need to learn a representation z ∈ Rd that captures the meaning of whole sequence

x, Transformers, by design, learns contextual representations zi ∈ Rd for each token

{xi|i = 1, 2...m}. Since each hi is learned in the context of sequence, a special token

inserted at the beginning of input as x = [CLS], x1, x2...xm and its corresponding

representation z0 captures the representation for the whole sequence.

Each zi is learned using self-attention mechanism, which is described as follows:

zi =
m∑
j=1

αij(xjW
V )

Each weight co-efficient, αij is computed using softmax:

αij =
exp(eij)∑m
k=1 exp(eik)

Finally, eij is computed as following:

eij =
(xiW

Q)(xjW
K)T√

d
(2.1)

WQ,WK ,W V ∈ Rd×d are parameters of attention sub layer. In practice, attention

12



is computed in parallel using batch matrix operations. Transformer employs multiple

of such attention mechanism called multi-head attention, which are concatenated.

The feedforward layer is implemented as two layer feedforward network as:

FFN(xi) = max(0, xW1 + b1)W2 + b2 (2.2)

Where W1,W2 are parameter matrices and b1, b2 are parameter bias vectors.

2.2 Models for Diet-Tracking System

2.2.1 Image Models

The rapid development of neural networks [Bengio, 2009] prompted advancement

in the domain of food image classification Coco Nutritionist [Korpusik et al., 2016,

2017a, Korpusik and Glass, 2018, Korpusik et al., 2017b, 2014, 2019]. After the release

of the benchmark ImageNet dataset for image classification [Krizhevsky et al., 2012,

Zeiler and Fergus, 2014, Simonyan and Zisserman, 2014, Szegedy et al., 2015, He

et al., 2016], food image classification models are generally pre-trained on generic

ImageNet and fine-tuned on food image datasets (e.g., UEC-Food100, UEC-Food256,

or Food-101). One of the earliest works in classifying food images with deep learning

was in 2014 with a deep convolutional neural network (CNN)[Kawano and Yanai,

2014]. Later, the authors enhanced their model through transfer learning [Yanai

and Kawano, 2015]. Several other CNN-based methods have been explored by other

studies concerning food image recognition [Ciocca et al., 2018, Kaur et al., 2019,

Farinella et al., 2016, Hnoohom and Yuenyong, 2018], but none multi-modal.

2.2.2 Text Models

For natural language processing (NLP), Transformer-based contextual embedding

models such as bidirectional encoder representations from Transformers (BERT)[Devlin

et al., 2018] are state-of-the-art. Comprehensive studies have been conducted to an-
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alyze the rise of deep learning in text classification[Young et al., 2018, Minaee et al.,

2021].

2.2.3 Vision-and-Language Models

Recent Vision-and-Language (V+L) research has been oriented towards pre-training

on extensive image-text datasets, observing significant improvements in learning joint

modality relationships. Experiments indicate that they achieve notable results in

tasks such as visual question answering and text-image generation[Mei et al., 2020].

Starting with ViLBERT [Lu et al., 2019], there is a surge in using Transformers as

the main architecture, shifting away from recurrent neural networks (RNNs). Both

ViLBERT and LXMERT [Tan and Bansal, 2019] fuse two separate Transformers, one

for images and one for text. Later, researchers [Li et al., 2019, Su et al., 2019, Chen

et al., 2020] introduced a single-stream Transformer model to better understand joint

representations.

2.2.4 Background: Evaluations

Our dataset has many imbalanced classes and is skewed. Most classes fall on the

long tail, with only a few food categories having more than 100 examples and the

majority having 10 or fewer. To account for this class imbalance as shown in Figure

2-2, reporting accuracy would capture head and ignore long tail hence we report both

Macro-f1 and Micro-f1 scores [Gowda et al., 2021]. Micro-f1 assigns equal weight to

each instance while Macro-f1 assigns equal weight to each class. Macro-f1 is useful in

imbalanced data scenarios like ours.

Consider a test corpus, T = {(x(i), y(i)) | i = 1, 2, 3...m}

where x(i) and y(i) are source and system output respectively.2

Let Lx, Ly and Lx∩y where Lx is the label of x, Ly is the label of y, Lx∩Ly comman

labels in x and y, for each class c ∈ L,

2Equation credit [Gowda et al., 2021]
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Figure 2-2: Food category distribution. The vertical axis is in log scale. Categories
in our dataset are imbalanced as in the real-world scenario.

PREDS(c) =
m∑
i=1

C(c, x(i))

REFS(c) =
m∑
i=1

C(c, y(i))

MATCH(c) =
m∑
i=1

min{C(c, x(i)), C(c, y(i))}

where C(c,a) counts the number of tokens of type c in a For each class c ∈ Lx∩y,

precision ( Pc), recall (Rc), and Fβ measure (Fβ;c) are computed as follows:

Pc =
MATCH(c)

PREDS(c)
; Rc =

MATCH(c)

REFS(c)
Fβ;c =

(1 + β2)Pc ×Rc

β2 × Pc + Rc

The macro-average consolidates individual performance by averaging by type, while the

micro-average averages by token:

15



MACRO-Fβ =

∑
c∈L Fβ;c

|L|

MICRO-Fβ =

∑
c∈L f(c) × Fβ;c∑

c′∈L f(c′)

where f(c) = REFS(c)+k for smoothing factor k.

2.3 Summary

Even though the aforementioned deep learning architectures are crucial for achieving

breakthrough achievements, there is still a lack of real-world deployment of these

models. This issue is largely due to the fact that downstream tasks require specific

domain expertise. Thus, in our thesis, we collected a food-specific multi-modal dataset

and developed a novel architecture to accomplish multi-modality in the real world.

16



Chapter 3

Food Database

Gathering high-quality training data is a crucial step in the supervised machine learn-

ing process, as it directly impacts the performance. In the past, we were able to utilize

or build upon existing open-source data sets. However, with the advent of multi-modal

learning, the data collection process became more complex, as it requires two modal-

ities of data and thus doubles the time and effort needed. To address this challenge,

we have created a new multi-modal dataset by combining text-to-image and image-

to-text data sets, as detailed in the next section. The dataset described in 3.1 was

obtained from the research of Dr. Korpusik. Originally, it consisted of multi-label

text and single-label images.

3.1 Data Collection I: Multi-Label Text and Single

Label Images

This part of the dataset includes pairs of food images and user-provided meal de-

scriptions across 696 food categories.

3.1.1 Text-to-Image Data

In the prior work [Korpusik and Glass, 2017, 2019], meal diaries were crowd-sourced

from Amazon Mechanical Turk [Korpusik et al., 2014]. Workers were prompted to

17



write down in natural language a description of a particular food item with a property

token and a food token. The property token ranges from brands (e.g., McDonald’s,

Cheerios) to quantity (e.g., half a dozen, a cup). The food token represents a partic-

ular food item (e.g., apples, pancakes).

Images were collected for 66 of the 89 most common food classes1 from Flickr and

mapped to the natural language sentences. For the remaining 23 food classes, 100

images per category were used from the Food-101 dataset [Bossard et al., 2014].

Figure 3-1: Examples of Text-to-Image data

Figure 3-2: Examples of Image-to-Text data. Image credit: Food-101 and Flickr
(Rosetta’s research put together the initial multi-modal dataset)

1We use the term ‘category’ interchangeably with terms ‘label’ and ‘class.’
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3.1.2 Image-to-Text Data

For the second part of the dataset, 100 images were selected from each of the remaining

78 food categories in the Food-101 dataset. To complete the multi-modal dataset,

natural sentences were generated using state-of-the-art automated image captioning

with visual attention. However, this approach had two issues: the generated text did

not follow the format of nutritional diaries and was not specific enough to be useful.

To solve this problem, a custom text template was created based on common phrases

found in the natural language dataset.

3.1.3 Merge

In the end, we collected food-specific image-text pairs with images from Flickr or

Food-101 and text from our previously collected natural language dataset or a tar-

geted text template. The text may consist of multiple food categories, but the images

consisted of only one food. As a result, we used 167 classes for the image modality

and 696 total classes for the natural language modality.

3.2 Data collection II: Multi-Label Images

To handle images with multiple labels, we employed the DALL-E 2 API 2. For sen-

tences that mentioned only a single food label, we retained images from Flickr and

Food-101. However, for sentences that mentioned multiple food labels, we generated

images using DALL-E 2, as illustrated in Figure 3-3.

3.3 Data Collection III: Branded Dataset

The reason for creating a branded dataset was to solve the problem of our model not

being able to accurately identify branded foods due to the lack of branded data in

our original dataset. By adding branded items to our dataset, we aimed to enhance

the model’s ability to recognize and classify branded foods.

2https://openai.com/product/dall-e-2
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Figure 3-3: Multi-label and single-label images

We gathered images of branded pizza, smoothies, and dairy products from a vari-

ety of websites. These images were obtained through web scraping. Different scenarios

were considered of how the user would describe the branded data, such as

• The user can share an image and text that features a brand name as shown in

Figure (3-4: a).

• The user can share an image featuring a brand name while the text does not

contain the branded dataset as shown in Figure (3-4: b).

• In the text, the user can refer to consuming a smoothie from a particular brand,

even if the accompanying image does not display the brand name as shown in

Figure (3-4: c).

3.3.1 Learning From Both Text and Image

Text generation templates were created as shown in Figure 3-5. Each template was

given a single label corresponding to the branded data in the respective image. For

instance, in Figure 3-4: a both the image and text contain branded data.
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Figure 3-4: Branded data with text and images

Template 1: I drank kroger fat free skim milk today for breakfast.

Template 2: I ate RED BARON Classic Crust Four Cheese Pizza today for lunch.

Template 3: I drank Bolthouse Farms after workout

Figure 3-5: Templates for branded dataset

3.3.2 Learning From Image Only

For text generation templates as shown in Figure 3-6 were created, were the templates

were given generalized information of the data, whereas the image contained the

branded data information. For example, see Figure 3-4: a where the image alone

contains branded data.

Template 1: I drank milk today for breakfast.

Template : I ate pizza today for lunch.

Template 3: I drank smoothie after workout

Figure 3-6: Templates for branded dataset
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3.3.3 Learning From Text Only

The DALL·E 2 API does not preform well on the branded dataset, it provides a

very generalized image with not much information. To learn from text-only data, the

images were generated from the DALL·E 2 API Figure 3-4: c. To make the data much

more interesting, for creating text data, we combined branded dataset with other food

categories, example: for one branded dataset we added upto 2 (refer to Figure 3-7)

other food categories from our dataset. To obtain the best possible combination and

more human like we generated the text with the help of GPT-3.5-Turbo refer to

Figure 3-8 from OpenAI 3.

Sentence type 1: Today for breakfast, I had two chicken drumsticks and a glass
of Private Selection Strawberries and Cream Milk to start my day.

Sentence type 2: Today for breakfast, I had an apple cinnamon toasted English
muffin, for lunch I drank cranberry juice, and for dinner, I had a Quest thin crust
uncured pepperoni frozen pizza.

Figure 3-7: The labels marked red are branded labels and blue are not branded ones

Prompt: Given all these categories category names give a sentence how a human
would log their food using all of these categories

Figure 3-8: Prompt for GPT-3.5 Turbo

Table 3.1: A summary of branded data

Modality sentences images
Branded info. in text and image 418

530
Branded info. only in image 509
Branded info. only in text 801 801

Table 3.1 provides a summary of the branded dataset. In the following chap-

ters, we will explore how this dataset was used in our experiments and examine the

performance of our models on it.
3https://platform.openai.com/docs/guides/chat
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Chapter 4

Experiments

Our method employs transfer learning to take advantage of existing resources and

apply knowledge from one domain to another. Instead of training a deep neural

network from scratch, we use pre-trained models and only modified the final layer to

fit our specific dataset.

4.1 Model-I: Baseline Vision-and-Language Model

without Pre-Trained Weights

Our baseline1 model is based on CNN and LSTM (i.e., Long Short-Term Memory

recurrent neural network) architectures. In this model, concatenatenation of a con-

volutional neural network (CNN) [Krizhevsky et al., 2012] with an LSTM [Hochreiter

and Schmidhuber, 1997] for joint visual and textual classification. Due to the differ-

ence in the mixed features of the data, each modality (i.e., image and text) is trained

separately. The image input is handled by a CNN, and the text is processed by an

LSTM, which are described in the following subsections.

The image features are extracted by the CNN model to output a classification

result. The second input is processed by the LSTM model. The classification outputs

of the two branches are concatenated together by a final layer to obtain the global

1This model/approch was developed by Dr. Korpusik and Rosetta Yifan Hu
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Figure 4-1: CNN+LSTM network (image credit: Dr. Korpusik and Rosetta)

output. The model was trained until convergence, using the Adam optimizer with

binary cross-entropy loss and a batch size of eight.

4.2 Model-II: Vision-and-Language Transformer (ViLT)

with Pre-Trained Weights

Although the baseline model supports multi-modality, it consists of two drastically

different architectures, the CNN and LSTM. Moreover, both the CNN and LSTM have

been replaced by Transformers as the state-of-the-art for both text and vision modali-

ties. In this section, we explore Vision-and-Language Transformer (ViLT)[Kim et al.,

2021] (see Fig. 4-2), which uses a unified and efficient architecture for both text and

image modalities. ViLT builds upon BERT [Devlin et al., 2018], which was the cur-

rent best model for the language modality, and Vision Transformer (ViT)[Dosovitskiy

et al., 2020], which is the current best model for the vision modality. The Transformer
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Figure 4-2: ViLT Model overview; image credit: [Kim et al., 2021].

layers in the ViLT model are initialized from ViT, and the language pre-processing

pipeline uses

bert-base-uncased. Since our food classification task is very similar to the visual

question answering task (VQA), we use a ViLT with pre-trained weights, specifically

vilt-b32-mlm.2 We further fine-tune the model on our dataset (Section 3.1) with a

batch size of 32 until convergence. We use the Adam optimizer with a learning rate

of 0.001. During all of our experiments, we kept the sigmoid threshold probabilities

within a range of 0.1 to 0.35.

4.3 Experiments

4.3.1 Experiment-I: Multi-Label Food With Singel-Label Im-

ages

This section describes the experimental results on the data-set described in Section

3.1. 80% of the data comprises the training set, 10% of the data constitutes the

validation set, and the remaining 10% forms the test set. For this experiment we

freezed all the layers. As discussed in 2.2.4, we report macro-f1 and micro-f1 scores,

Our results in Table 4.1 show that ViLT with pre-trained weights outperforms the

CNN+LSTM baseline. In this experiment for ViLT, all the layers were kept fixed and

2https://huggingface.co/dandelin/vilt-b32-mlm-itm
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the pre-existing weights were used.

Table 4.1: Macro-f1 and Micro-f1 Scores for Multi-Modal Models with single-label
images and multi-label text

Model Macro-f1 Micro-f1
Model-I (CNN+LSTM) 26.3 42.5
Model-II (ViLT with pre-trained weights) 51.4 77.7

4.3.2 Experiment-II: Multi-Label Food, Multi-Label Images

With 696 Categories

Collecting multi-label image data (Section 3.2) was a challenging task due to the lack

of reliable sources. However, with the assistance of OpenAI’s DALL·E 2 API, we were

able to successfully gather the necessary multi-label images. The text data used in

this experiment is same as the previous experiment 3.2. In this experiment for ViLT,

all the layers were kept fixed and the pre-existing weights were used. The results of

our second experiment, which demonstrate the effectiveness of our approach, can be

seen in Table 4.2.

Table 4.2: A summary of model with Macro-f1 and Micro-f1 scores described in this
work for multi-label images and text with 696 categories

Model Macro-f1 Micro-f1
ViLT(multi-label text and image with 696 categories) 67.80 89.5

Compared to the previous experiment 4.2, this experiment has higher macro-f1

and micro-f1 scores. This is expected and we believe it is due to the inclusion of

multi-label images.
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4.3.3 Experiment-III: Multi-label food, Multi-label images

with 3589 categories

In experiment two, the categories were vague. But in this experiment the categories

are made more specific. For example, spinach (exp 2) is further divided into New

Zealand spinach, spinach salad, cooked spinach, raw spinach, defrosted spinach, etc.

In other words, in experiment two, we tried to analyze how the model works on a

food category. In experiment three, we understand how the model performs detecting

food varieties. Table 4.3 shows the results of experiment three.

In this experiment, we aimed to evaluate the performance of our model as the

number of categories increased. To do so, we employed a majority baseline and a

random classifier. The last three layers weight were unfreezed for this experiment.

For the majority baseline classifier as shown in Figure 4-3, we looked at two

scenarios. In the first scenario, the model predicts the most frequent category (salad)

for all sentences. In the second scenario, the model predicts the top five most frequent

categories (salad, sandwich, smoothie, spinach, rice) for all sentences.

sentence one: I ate a smoothie with 1 cup canned mixed fruit, 1 cup canned
pineapple and 1/2 cup orange juice concentrate.

sentence one output for majority baseline one label classifier(salad): [salad]

sentence one output for majority baseline five label classifier (salad, sandwich,
smoothie, spinach, rice): [salad, sandwich, smoothie, spinach, rice]

Figure 4-3: Majority baseline classifier

For the random classifier as shown in Figure 4-4, we looked at the same two

scenarios as above, but this time the labels were chosen randomly. In the first scenario,

five labels were chosen and in the other scenario, only one label was chosen.

This allowed us to thoroughly analyze the effectiveness of our approach in handling

a larger number of categories.
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sentence one: I ate a smoothie with 1 cup canned mixed fruit,1 cup canned
pineapple and 1/2 cup orange juice concentrate.

sentence one output for random baseline one label classifier: [eggs]

sentence one output for random baseline five label classifier : [Muffins, raw
spinach , orange juice, kale, red tomatoes]

Figure 4-4: Random baseline classifier

Table 4.3: A summary of model with Macro-f1 and Micro-f1 scores described in this
work with

Model Macro-f1 Micro-f1
Majority baseline one label classifier(salad) 0.0158 0.436
Majority baseline five label classifier (salad, sand-
wich, smoothie, spinach, rice)

0.0380 0.727

Random classifier one label 0.127 0.050
Random classifier five labels 0.051 0.019
ViLT 38.17 68.27

4.3.4 Adding The Branded dataset

The experiment involved examining how our models will perform with branded dataset

refer to Section 3.3. All the layers of ViLT were kept fixed and the pre-existing weights

were used.

In this section we combined dataset mentioned in Section 3.2, 3.3.2, 3.3.3 and

3.3.3. Where the model can learn from both text and image (Figure 3-4: a), text

(Figure 3-4: c) and image only (Figure 3-4: b).

Table 4.4: A summary of model with Macro-f1 and Micro-f1 scores described in this
work

Model Macro-f1 Micro-f1
ViLT 80.78 84.83
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4.3.5 Experiment-V: Visual ChatGPT vs ViLT

In the next step, we evaluated the performance of the ViLT model from our previous

experiment and the Visual ChatGPT model [Wu et al., 2023]. Due to time constraints,

we randomly selected 335 sentences from the test set. While waiting for access to

GPT-4, Visual ChatGPT was chosen as the next best option. It combines ChatGPT’s

conversational abilities with the image understanding and generation capabilities of

Visual Foundation Models (VFMs). Instead of creating a new multi-modal model

from scratch, Visual ChatGPT uses existing ChatGPT and integrates various VFMs.

A Prompt Manager is used to connect ChatGPT and VFMs by providing clear in-

structions, converting visual information into language format, and managing histo-

ries, priorities, and conflicts between different VFMs. On the other hand, GPT-4 is

a large multi-modal model that can accept both image and text inputs and produce

text outputs. This means that GPT-4 can analyze an image’s contents and link that

information to a written question.

As indicated in Table 4.5, ViLT demonstrated better performance than visual

ChatGPT.

Table 4.5: A summary of model with Macro-f1 and Micro-f1 scores described in this
work

Model Macro-f1 Micro-f1
ViLT 85.03 86.18
Visual ChatGPT 54.07 56.19

The ViLT model performed better than Visual ChatGPT on our test sentences.

However, it’s worth mentioning that we didn’t give Visual ChatGPT access to our

3870 categories. Instead, we asked it to generate a list of foods from the image and

text. This could have negatively impacted Visual ChatGPT’s score since the way we

describe food can vary.

29



Chapter 5

Ablation Study

In the previous chapter, ViLT architecture performed better than the CNN+LSTM

model. In this section, we conduct an ablation study. We investigate the language

and vision modalities, each in isolation.

Language: To understand the diet tracking ability with language only, we fine-

tune a BERT [Devlin et al., 2018] contextual embedding model on our downstream

sequence classification task of natural language meal diaries. The BERT model is

initialized with pre-trained weights from the bert-base-uncased model.1 We fine-

tune the model using the Adam optimizer [Kingma and Ba, 2015] (similar to [Devlin

et al., 2018]) with weight decay of 0.1 and a learning rate of 0.001. Since our meal

diaries’ annotations are multi-label, we use binary cross-entropy loss (i.e., 0 or 1 per

food).

Vision: To understand the diet tracking ability with images only, we fine-tune

a Vision Transformer (ViT) model[Dosovitskiy et al., 2020] on our downstream food

image classification task. The ViT model is initialized with pre-trained weights from

ViT B 16.2 We fine-tune the model using the stochastic gradient descent (SGD)

optimizer (similar to [Dosovitskiy et al., 2020]), with a learning rate of 0.0001. We

use cross entropy loss.

1https://huggingface.co/bert-base-uncased
2https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.

html
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5.0.1 Ablation study I: Vision-and-Language Transformer (ViLT)

with Pre-Trained Weights

Our first ablation study conducted on dataset with Multi-label sentences and single-

label images. Since images in our dataset were annotated with a single-label only,

we use cross entropy loss. For a fair comparison we also train another version of

ViLT with a single-label objective. Note that our single-label setup has 167 balanced

classes, whereas the multi-label setup has 696 imbalanced classes.

The results in Table 5.1 shows that even with single-label images, ViLT achieves

significantly higher f1 scores than BERT for multi-label classification and than ViT

for single-label classification, demonstrating that both modalities are helpful.

Table 5.1: A summary of model architectures, labels, and Macro-f1 and Micro-f1
scores described in this work

Model
Multi-Label Single-Label

Macro-f1 Micro-f1 Macro-f1 Micro-f1
ViLT 51.4 77.7 84.5 84.0
BERT (Text Only) 31.5 56.1
ViT (Image Only) 76.7 77.5

5.0.2 Ablation study II: Vision-and-Language Transformer

(ViLT) with Pre-Trained Weights

Our second ablation study, which was conducted on our final model 4.3.4. The results

from Table 5.2 shows that our ViLT models outperformed single modality approaches

using either images or text alone.

5.0.3 Conclusion

As shown in Tables 5.1 and 5.2, the ViLT model outperforms both BERT and ViT in

terms of f1 scores for food detection. This indicates that incorporating multi-modal

information can significantly improve the performance of machine learning models in
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Table 5.2: A summary of model with Macro-f1 and Micro-f1 scores described in this
work

Model Macro-f1 Micro-f1
ViLT 80.78 84.83
BERT 23.74 46.32
ViT 9.65 24.57

this task. The superior performance of ViLT demonstrates the potential benefits of

using multi-modal approaches for food detection and other related tasks.
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Chapter 6

Conclusion and Future Work

In our research, we presented a transformer-based method for diet tracking that shows

the benefits of using both image and text information.

In our future work, we plan to address class imbalance 2-2 and bias in our dataset

by expanding it to include more diverse user input and international cuisines. We

added a branded dataset for only 3 categories, and we plan to expand it to other cate-

gories as well. We plan to investigate the use of newer models, such as BEIT-3 [Wang

et al., 2022], which is a general-purpose multimodal foundation model that achieves

state-of-the-art transfer performance on both vision and vision-language tasks. Our

goal is to predict not only the food category but also its quantity.
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