Digital Commons@

Loyola Marymount University
LMU Loyola Law School

LMU/LLS Theses and Dissertations
Spring 2023

Implementation of the Downlink Communication System of the
LMU CubeSat

Mohammed Alrabeeah

Follow this and additional works at: https://digitalcommons.Imu.edu/etd

b Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Loyola Marymount University and
Loyola Law School. It has been accepted for inclusion in LMU/LLS Theses and Dissertations by an authorized
administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information,
please contact digitalcommons@Imu.edu.

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/etd
https://digitalcommons.lmu.edu/etd?utm_source=digitalcommons.lmu.edu%2Fetd%2F1241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lmu.edu%2Fetd%2F1241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu

Implementation of the Downlink Communication System of the LMU CubeSat

by

Mohammed Alrabeeah

A thesis presented to the

Faculty of the Department of
Electrical and Computer Engineering
Loyola Marymount University

In partial fulfillment of the
Requirements for the Degree
Master of Science in Electrical Engineering

April 22,2023

DEDICATION

This thesis is dedicated to Dr. Bassam Alfeeli, whose groundbreaking achievement of launching the
first Kuwaiti CubeSat, QMR-KWT, into space has been a significant source of inspiration for me.

Dr. Alfeeli's unwavering commitment to pushing the boundaries of space technology has motivated
me to pursue this field, and his pioneering work has opened up new opportunities for space
exploration and innovation.

[am deeply grateful for the inspiration and guidance that Dr. Alfeeli has provided, and I am honored
to dedicate my thesis to him as a tribute to his remarkable accomplishments and contributions to the
field of space technology.

Thank you, Dr. Alfeeli, for your passion, dedication, and leadership, and for inspiring me to pursue
my own goals and aspirations in the field of space science and technology.

Acknowledgment

I want to show my appreciation to Dr. Gustavo Vejarano, who served as my thesis
advisor, for his exceptional direction, kind assistance, and consistent involvement.
Working with him was very influential and motivating, as he helped me to develop
my research methods and evaluate my findings. Furthermore, I am grateful to all the
individuals at Loyola Marymount University's CubeSat Laboratory.

I would like also to express my sincere gratitude to Professor Hossein Asghari, who
not only taught me Optical Engineering EECE-5160 but also served as a member of
my thesis committee. His vast knowledge, experience, and insightful feedback were
invaluable in helping me shape my research and achieve my academic goals. I would
also like to extend my heartfelt thanks to Professor Robert Johnson, who provided me
with the Agile Proj. Mgmt. CMSI-543 course and served as a member of my thesis
committee. His guidance, support, and encouragement were instrumental in my
academic journey, and his expertise in project management has helped me
tremendously in my research work.

I feel blessed to have had the opportunity to learn from and work with such
accomplished and dedicated professors, and [am grateful for their support and
mentorship. Their contributions have been critical to my academic success, and I will
always remember their valuable teachings and advice. Thank you, Professor Gustavo,
Professor Asghari, and Professor Johnson, for your time, dedication, and commitment
to your student's success.

TABLE OF CONTENTS

ACKNOWICAZGIMENL.........ooiiieieieiiiiecieetese et et e sttt ettt e teesteeste e seesseesaesaesaesseessaenseenseenseensens 3
TABLE OF FIGURES ...ttt sttt sttt ebe st 8
AADSITACE. ...ttt ettt b e bbbttt h e e a et bt bt et et e e b e st et b e bt et e b eheeaeenee 10
Chapter: 1 INtrOAUCLION........ceiiiiieeieeie ettt et ste st e steesteesse e se e seesseessaesseesseesseensaenseensens 11
1.1 Research Background............coeciviiiiiiiiiiiiiie ettt st ees 11
1.2 Problem StatemENL.........couiiiiriiriiiiieieeriee ettt ettt sttt sttt 12
1.2 RESCATCH SCOPE....cuiieiiieiiiiiicte ettt sttt staesteeseeesnsesaaessaessaessaessnesnnennns 12
1.3 RESCAICH ODJECLIVE ..c.uvieiieieciiiciie ettt sttt ettt e sraessaessaesasessaessaessaesnnesnnennns 12
1.4 Thesis BreakdOWTcc.oouiiiiiiiiiiieiee ettt st 13
Chapter: 2 Satellite Tracking and RECEPLION........cccvevieriieriiiieriereerieeeeereere et seeneees 14
2.1 OVETVIEW ..ttt ettt eb ettt b et et s h e e st et e s bt s bt et et e bt e st et e sbeemt e b e nbesbeeneenbeebesaeenee 14
2.1.2 Direct readout transmissions from meteorological satellites...........ccocvveerercrrrcieriirnnnnnns 14
2.1.3 APT (Tri0s Series SatCllite).......ccovrriirrrieriieeiiiieiieeie st eie et eve e e ere e e eenesssesnne e 15
2.1.4 PropoSed WOTKcceiiiieieiieciecte ettt sttt st saaessaesasesnsesnsesnsesnsesnsenns 16
2.1.5 Core Components and SOftware USEd...........cccveveeerirriiencienienienie e eee e 17

2.2 HATAWATE ...ttt b e ettt b et e st sb e e bt et et s bt et e besbeeaeenee 17
2.2.2 RASPDEITY Pl wooueiiiiiiiieiiecieciece sttt sttt s e seaesnaesesesnsesnseensesnsennsenns 18
2.2.13 RECEPLION ANLCIINGeeovieeieeieieieeieeieeieetestesreseesseestesssesssessaesssesssesssesssesssesssesssenns 19
2.2.14 Yagi ANEEINA......ceciereieeierierieieesteeteetestessteseessaesssesssesssesssesssesssesssesssesssesssesssenssenns 19
2.2.15 Circular Polarized Yagi Beam Antenna M2 436CP30cccccoceviiiieneniniieneneneeene 20
2.2.16 Satellite Predicting and Tracking...........ccoecvvviiriiiriieeiienieeie e ste e eve e e 21
2.2.17 ROTOT COMLIOL.....itiiieiieiiitieitetesteet ettt sttt ettt et sbe et sbesae e 22
2.2.18 Antenna Azimuth-elevation rotators & controller...........occevvverviervieecieciiecieeeeieeiens 23
2.2.19 RElay MOAUIEooviieeiieeiieeiecieste ettt st seaessaesenesnbesnseensesnsesnnenns 23
2.2.21 NESDR SMATITEE V2 SDR ...coiiiiiiiiieietieeeeeseeee ettt 24
2.2.22 Specifications Of NESDR SMATTEEcccvvuiiiriiieieeieeieeie et eeesne e ees 24
2.2.23 Low noise AMPLTIer (LINA)cciiiiiiiieieeieeieeee ettt seesnnesnne e 25

2.3 Setup and Configuration (Tracking)..........cceeeeervueriieriieriienieriesee et seeeseee e ees 25
2.3.2 Objective of using Python 3 SOftWarec.cccvvevvreiiriiiecieeeceee e 26
2.3.3 Configuration (TTaCKiNg)........ccceevveriieriieriieniieiesiesieste e sreeaesaesaesaesnresnseensesnsesnsenns 27
2.3.4 Rotor coNtrol CONTIGUIATIONecvirierierieeieeie e eee e eteereeteseneeaessnesnreensesnsesnseenneans 27
2.3.5 Rotor control Service CONfIGUIAtIONcccveriirieiieiieeieeteeieetesee e sae e eneeseresnneenneens 27
2.3.6 GPredict CONTIGUIALION.cccvirieiieeteeie et ete et e eee st esteeaeseesaesnaesssesnseensesnsesnsesnsenns 27

2.4 Setup and Configuration (RECEPLION)......ccverierierierierierieree e ste e seeeseeeseeeseeessaesseeses 29

2.4.1 System REQUITEIMENLScocveririieiieeieeieeieetesteseestestessesesesenessnessnesssesssesssesssesssenns 29

2.4.2 Required Linux Package Installation...........ccoccueveeerieeciiecienienie e 29
Next, the user needs to install these PacKages:cccvevverierieriieiiceee e 29
2.4.3 Retrieving INFOIrMAtiONc.cccvviiiiiierienieeiecte sttt ete e saesae e senessressseensessnesnneans 29
2.4.4 AT PaACKAGE.....cueeivieeieeeiiecieeiecte sttt ettt e s s e s tesnaesebessaesaaesssesnsesnsesnsesssennsenns 29
245 SOX ettt ettt ettt b ettt n bt b et et neeneene e 30
2.4.6 WXEOIITIZ ...eevvveereiiesieeeeeesitesteseteseteseeesetesstesssesseesssesssesssesssesssesssesssesssesssesnsesssesssenssensenns 31
24T PIEAICL: ...ttt ettt ettt b et b ettt sbe et 31
2.4.8 INStallation TStcc.eeuieieiiiieieeree ettt sttt 31
2.4.9Configuration Of PrediCtccveiviiiiiiierieeieeie ettt ee e se e e e b e essesnsesnsesnneens 32
2.4.10 Configuration of WXLOIMEcceevueriiiiiriiiieiie ettt sre e eneesnneenne e 32
2.4.11 Saving the IMage File........c.cccviiiiiiiiiiieieeieeece et ees 33

2.5 EXAMPIE USAZES ..evveeurereieriieiiieiiesieetestesttesetesttesteesstesssesssesseesseessaesseesssesssesseesseesssesseesssenses 35
2.5.1 Satellite traCKing SETVICE......c.ecvvrreveriierieeieeieeteetestesrestessesssesssesssessseesseassesnsesssesssenns 35
2.5.3 RUN the MAIN SCIIPL...ceiiieiirieiieiieiieeieeie et eteseeeee e stesaesbesssessaesssesnsesnsesssesssenssenns 35
2.5.6 StArt GPTEAICT ...coutitiiieiiee ettt sttt s 36

2.6 Satellite Tracking and Reception ReSultccoocveviiriiniiiniiiieiieceeeeese e 38
2.6.1 Picture before LNA implementationcceevverierierienienienie e seeseeseesneseeesenessnesenennns 38
2.6.2 Picture after LNA implamentaionc.cccevevereeeieriienieniesie e sresreseeseeesenessnessaessnessnessns 39
2.6.3 Location of the 1€CeIVed PICTUIEScccverierieiieiie ettt seee e e sraesaaesenees 39
All the files were saved in a file named "new test," as shown in the figure below..........c..coc...... 39
Chapter 3 On-Air Testing with USRP for GMSK Transceiver.........c.coceeverereereeneneneeneneeeene 40
3.1.1 Preliminary CONSIAETatiONsScccevveereereerierieriiereesieeseesseesseesseesseesseessaesseessesssessseensens 40
3.1.2 Hands-0n USRP......co.iiiiie ettt 40
3.1.3 Selection OFf USRP ..ot 41

3. 1A N2920 USRP .ottt sttt ettt 41
3.1.5 USRP N2920 Daughterboard:ccevveriirierienienieniesie e e seee e 42

3.2 System Design in GNU Radiooocveviiriiiiiiiieriecierereeseeseeseeee et eees 42
3.2.1 GNU RAGIO ...ttt sttt sttt et eeeanen 42
3.2.3 Installation of GNU Radio 0n LiNEXccceecieriiriniiiieniiniirieiesesieeee e 43
3.2.4 Interfacing USRP with GNU RadiOccceviirieriinierieieeeeceeceesere e 43
3.2.5 Transmitting File Data..........cccoeviierierieniiiieciecesereree e s srae e ns 45
3.2.60 FIle SOUICE.....c.ueeiiiieiieieieet ettt sttt sttt et sbe et 45
3.2.7 MOAUIALION ...ttt sttt sttt st b 46

3. 2.8 USRP SINK ...ttt sttt st sttt es et st e e eneseeanen 46

3.2.9 Receiving File Datacccevievuierierieiiesiiesite ettt ssee e ssaesnaesneesneenes 46

32,10 USRP SOUICE ...ttt st s e s 46
3.2.11 Demodulationccooiiiiiiiiiiiiicieiesee s 46
3212 FALE SINK.einiiiiiiiiiiicic ettt 47
3.3 Real-Time File Transmission using GMSK Modulation in GNU Radiocccccevvveuennen. 47
3.3.1 GMSK TranSmItterccuevueiiiiiiniiieieiee ittt 47
3.3.2 GMISK .ttt 48
3.3.3 GMSK RECEIVET ...ttt 49
3.3.4 Results of File Transmission using GMSK in GNU Radio........ccceccoveververeerceeniennnnne, 50
3.3.5 File Transmission Using GMSK in Linux between two ends..........cccceveverververrennnenne. 51
3.3.6 Installation of Linux Operating SYStEMcccccververierieriereenienieseesreseeeseeseeessnenes 51
3.3.7 Installation of GNU Radio for LInUXcccccooeviiiiiiiiniiiiiiiiniiccicceeeeeeen 52
3.3.8 Real-Time On-Air File Transmission using GMSK between two ends.c.c........ 55
3.3.9 GMSK TTanSmItterccuevueieiiiiiiiieieieie sttt 56
3.3.10 GMSK RECEIVEToviiiiiniiiiiiitieieiccte ettt 59
3.3.11 Results of File Transmission using GMSK in GNU Radio..........ccceecevevvrcvrrcvercvennnne. 60
3.3.12 FFT Plot after GMSK Modulationcccceueieinininiiiiiiiiiiceieceeseeeeeeee 61
3.3.13 Rec@ived Signal......ccooviiiieiiieiierieriiestest ettt sraesneesnnenes 61
3.3.14 Data stored in the file SINK..........cccoeiiiiiiiiiiiiiie e 62
3.3.15 Transmitting Zeros and Ones using GMSKccccoviiriiriiiniienienere e 62
Chapter: 4 Receiving and Processing CubeSat Signalccoocvevierierienienieniereeseeseeieeieeeees 64
A2 MP LAD .ttt 64
4.3 UHF Transceiver IL..........coooiiiiiiiiiiiiiiccieeet ettt 65
4.4 Transceiver Interface with MP Lab...........cccooiiiiiiiiiiicceeceeee 65
4.0 2GFSK ...ttt 66
4.6 BAUA TAL ...ttt 66
4.7 Modulation INAEXcccceiiiiiiiiiiiiiiiiicec e 66
4.8 Frequency DEVIAtIONc.cccveeiireiiiieiiesie et ete et etestesteseesaesesesneessaessnesnsesnsesnsesnsesssenssenns 66
49 Preamble ..o e 67
410 SYNC WOTA ...eiiiiieiieeieeieee ettt ettt e st e st e s saessbessseensesssesssesssesnsesnsesnsesssenssenns 67
411 TranSMUSSION.....cueiuiiieieiieiiitiitetet ettt ettt ettt ettt be ettt st eae e a s enesaens 67
4.14 Receiver IMpPlementation..........c.occveriercieeieeieeieeieeeesteeteevesseenseseaessresssesnsesnsesnsesssesnsenns 68
4.14.1 FSK Demodulator..........cccoviiiiniiiiiiiiiniieiectee et 68
4.14.2 AX.25 DETAMETceiiiiiiiiiiiiiecc e 68
4.14.3 Setting up @ GNU RaiO.......coviiiiiniiniieieiiece ettt sae e 69

4.14.4 Building and installing GNU Radio from source codeccccevererienenenceneee 69

4.14.5 Building and installing gr-satellites..........ccerieriieriierienienieieeereese e 70
4.14.6 OOT Module AX.25 Deframercccccuevirininiinieiiiiieiieeeeeee e 71

4.15 ReceivVer FLOWETaPN.......ccoiiiiiiiiiiecieee ettt st e st e s enseenseense e 72
416 Testing the RECEIVETeciiiiiiieiiecie ettt s sae st e e sns e snsesnnesnneens 72
4.16.1 Received Signal OULPUL........ceevieriierierieeieeteseeeteste e sresreseaesnaessnesnresnsesnsesnsesnsenns 73
Chapter: 5 Conclusion and Future WorK............ccovcverierieniinienienieeeeeeeeese e 75
5.1 FULUIE WOTK ..ot 75
RETEIEICES ...ttt 77
ADPPETIAIX A <.t h bbbt bt e bt bt e a et e bt bt et e b b eatenee 80
F N 030153 T Ul 3 2RO PUUUSPRRR 81
N 070153 T U < PV PUUURSPRURR 82
ADPPETIAIX D ottt bttt b e bttt e be st nee &3
W 070153 T U PP PTURRPRRR 85
ADPPEIIAIX F .ottt bttt s b e st b e bt 89
ADPPETIAIX G ettt b e ettt b et et e bt a et e b bt et e b b et enee 91
ADPPENAIX H ..ttt b e st be st 93

TABLE OF FIGURES

Figure 1 View of the Earth........ccooovoiiiiiii e e e 16
Figure 2 Hardware connection for tracking and r€CeIVINGcevvvrvererrireenineeneeeneese e 18
Figure 3 Yagi ANTENNGcoviiiieiiiriieieieere ettt sttt et s st s re e n e smeesreemeesre e 20
Figure 4 Typical orbital path of an NOAA-POES satellitec.ccocerervireeniininieeneeeeeeeeene 21
Figure 5 ROtOr CONIOL AEVICE...c.uiiuiiiiiriieirieiisieeiere sttt s 22
Figure 6 Relay MOAUIC.ooiiiiiieiieeeee et 23
Figure 7 Block diagram of SDR RECEIVET........ccciriiriiiiiriicieriieieeeerieee e 24
FIGUIE 8 LINA L. oottt e st r st h e s b e r e e st e bt e e e s n e e nesmeenreemeenreenes 25
Figure O GPredict INTETTACEeoviieeeiiiieeeee e e 25
Figure 10 Software files installed in theraspberry pi Flow chart..........ccccooeeiirininiinieeeee 26
Figure 11 The example of satellite tracking configuration..........cecceveevereeneneeneeneneeseseese e 27
Figure 12 Open preference INtEITacevecuireeririerieeneecreese e e 28
Figure 13: Rotator tab on the interface panelcoceeeereeiiiieniniee e 28
Figure 14 ROtator fOIMT «...eouveirieiiiieecieeesie ettt et 28
Figure 15 Rotator Tab on Interface Panelcccovvevinieiiiienineec e 28
Figure 16 Predict’s USET INETTACE.c.viuiirieiisieeiieeerte et 31
Figure 17: The ground station details 0f Predictcecvreeiirieninieieiesceceeeeeee e 32
Figure 18: Information Reception DIT€CtOTYevverrirrierieniirieniieee et 34
Figure 19 Example of schedule-all.shcccoviiiiiiiniiiiecee e 34
Figure 20 Satellite tracking dir@Ctoryc.eevuireeririerieerecc et 35
Figure 21: The satellite service WithOUt GPrediC........uuuviieiiiiii e 36
Figure 22: GPredict right tOP OPHIONSeeviiiiieeiireerieee et 36
Figure 23: Rotator Control Modal..........cceeiiiieiineerieeneeeneese et 37
Figure 24 Gpredict engaged with the satellite tracking SErVICe.......ccevevvereeiirieinienireereeseee e 37
Figure 25 Full function of the satellite tracking SEIVICEcecuerirvvererieneenieeree e 37
Figure 26: Picture before LNA implementationcccooeeririeninieniee e 38
Figure 27: Picture after LNA implamentaionccooeeeereenineenieeeneee et 39
Figure 28 Location of the received PIiCtUresoccviierienineeneree e 39
Figure 29 Implementation and programming of the USRPs Communication System flow chart........ 40
Figure 30 USRP N2920ooiiieiiiieieeesie ettt sttt s st n e s sr e emeesne e 41
Figure 31 WBX Daughterboard (2920 USRP Daughterboard)ccecvvreerereenienineenenieneeieneeenn 42
Figure 32 GNU Radio Companion Command Promptc.ccccovreeriniineeniinenieeeeeseee e 43
Figure 33 TP Address SETNEc.eveerrireenrieiireeiesese sttt 44
Figure 34 Connection Status CheCKINgcovevireeririiniecneesieee et 45
Figure 35 Flow Chart of Transmission of any Datacccceeveeririininiineciecceeeeee e 45
Figure 36 Flow Chart of Reception of any Data..........cccoeciiiiiiiiiiiie ettt e e e aree e 46
Figure 37 Flow Chart of GIMSK TransSmittercccvveeuereeniereenieieesieese et seesre e 47
Figure 38 Transmission Modulation flow chartcccoeevirieiiniinncee e 48
Figure 39 GMSK Signal Power Vs Frequency Graph........cc.ccoccevirieririinecniineniceeneeeseese e 48
Figure 40 Flow Chart for Reception of GMSK Signal........ccccoceiiriininiinciineneeeeeeeeeee e 49
Figure 41 Reception using GMSK Technique in GNU Radiococcevvervireeiiinienicieeeneeneeeeene 49
Figure 42 NI USRP-2920 PIUgi. SIOtS....cc.eeciiteriirieriieienreecseene et 50
Figure 43 Transmitter Datacccvevirieiiiiiieiresee e 50
Figure 44 FFT Plot of GMSK Signalccciiieiiiiiiieenceeeereee e e 50
Figure 45 Received Data using GMSK Technique in GNU Radiocccceeeevieinienineenineeceen 51
Figure 46 Thegeneral diagram of the GMSK transmitter..........ccooveevererrereeninienieeeneee e 56

Figure 47 USRP CONMECTIONcoviirieiiiiieireeiisit ettt sttt s reemeesne e 57

Figure 48 Antenna attached USRP.........ccooviiiiiiice e e 57
Figure 49 Transmission of Data using GMSK Modulation in GNU Radio........cccccevevreervreniennnnenn 58
Figure 50 GMSK Demodulation in GNU Radioc.ceecereeririeniniereeeneee e 59
Figure 51 Running the gre Fileooiiiiiiiiiieieeee e e 59
Figure 52 Data to be transSmittedcccueveeriirierireereeeseee et e 61
Figure 53 Both Antennas Attached with both USRPS........ccccooieiiriininiiceeeeee e 61
Figure 54 Plot after GMSK ModUulation..........ccccvreerirninieicieeneeeeseee et 61
Figure 55 Signal T@CEIVEd.....ccuieiiirieiiiiieieeese et st re s 61
Figure 56 ReceivVed Datal........ccciiieiiiiiiieeiisieeirese ettt s s 62
Figure 57 Data to be Transmitted.........cceveeriireeriinienieeneee ettt 62
Figure 58 The Transmission top BIOCK........ccoveeririiriiiiniee e 63
Figure 59 The Resciption top BIOCKccveiiiieiiiiiricccee e e 63
Figure 60 The 1eCeived data........cccveviirieiiieiinieiireseee et st s 63
Figure 61 The block diagram of Receiving and Processing CubeSat Signalccccovvvevvreeninnennennn. 64
Figure 62 The MP lab SOftware Wizardcceovreeririinieneeeeeee e 65
Figure 63 The spectrum analyzer connected to the antenna............cccoeevereenireeneeneneeneneese e 67
Figure 64 The receiver implementation................ooiiiiiiiiiiiiiiiiiiiiieeeeaene 68

Figure 65 Demodulation flow graph using AX.25 Deframer.................c.oooviiiiin 72

Figure 66 The received signal spectrum................c.cooiiiiiiiiiiii 73

Figure 67 The received signal OUtPUL.ooviiviinii i 73

Figure 68 Converting from Hex to ASCIL......... ... 74

Abstract

In this thesis, we present the design and implementation of a CubeSat receiver system using the
Universal Software Radio Peripheral (USRP) and GNU Radio. The goal of this project is to develop a
low-cost and flexible ground station capable of receiving telemetry and payload data from CubeSats
in real time. The CubeSat receiver operates in the UHF frequency range with a center frequency of
435 MHz and uses a software-defined radio (SDR) approach to provide wideband signal processing
and demodulation capabilities. The satellite transceiver transmits an Ax.25 Transciever packet every 1
second using the Pumpkin CubeSat kit programmed in MPLab.

To achieve this goal, we discuss the design considerations for the receiver system, including the
selection of suitable hardware components and the development of custom software blocks in GNU
Radio. We also developed the GFSK-based transmitter and receiver in GNU Radio, as well as a
tracking system for the satellite. To decode the Ax.25 radio packet transmitted by the Pumpkin
CubeSat kit, we developed an Ax.25 deframer in GNU Radio to decode the received signal.

Our results demonstrate that the CubeSat receiver is capable of receiving and demodulating AX.25
formatted radio signals from Transciever. Additionally, we show that the receiver system is scalable
and can be easily adapted for use with other CubeSat missions. Overall, our work provides a practical
solution for CubeSat communication and lays the groundwork for future developments in low-cost
CubeSat ground station technology.

Keywords: Satellite communication, Universal Software Radio Peripheral Devices (USRPs), GNU
Radio, CubeSat, AX.25.

10

Chapter: 1 Introduction

1.1 Research Background

CubeSats are small and lightweight satellites designed for a wide range of scientific, commercial, and
educational missions in space. They are built using a modular design and standard dimensions, with a
maximum mass of 1.33 kg and a volume of 10 cm x 10 cm x 10 cm. CubeSats can be deployed
individually or in clusters and are usually launched as secondary payloads alongside larger satellites.
The concept of CubeSats was first proposed in 1999 by professors Bob Twiggs and Jordi Puig-Suari
at California Polytechnic State University (Cal Poly) and Stanford University, respectively [1]. The
idea was to create a low-cost, standardized platform for space research and experimentation that could
be easily replicated and adapted by universities, research institutions, and private companies. Since
then, CubeSats have become an increasingly popular choice for a wide range of applications,
including Earth observation, meteorology, communications, astronomy, and education. The low cost
and rapid development time of CubeSats has also made them an attractive option for technology
demonstration and validation, as well as for testing new components and subsystems.

One of the key challenges in CubeSat development is communication with ground stations.
Traditional communication systems can be expensive and inflexible, which has led to the use of
software-defined radios (SDRs) in CubeSats. SDRs allow for the processing of a wide range of
frequencies and modulation types, making them ideal for CubeSats that operate in different frequency
bands. SDRs have also made it possible to implement more advanced communication protocols and
modulation schemes in CubeSats. For example, the Global System for Mobile Communications
(GSM) protocol has been used to transmit images and other data from CubeSats to ground stations,
while the Digital Video Broadcasting-Satellite (DVB-S) standard has been used for video
transmission [2]. Another advantage of SDRs is their flexibility in adapting to changing mission
requirements. With the ability to reprogram and reconfigure the radio hardware and software,
CubeSat developers can adjust their communication systems to meet the specific needs of their
mission.

One popular tool for building SDR systems for CubeSats is GNU Radio. GNU Radio is an open-
source software toolkit that provides a range of signal-processing blocks that can be used to create
custom SDR applications. It is a popular choice for CubeSat developers due to its flexibility,
scalability, and cost-effectiveness. The use of SDRs and GNU Radio has also led to the development
of new CubeSat communication protocols and standards. One example is the AX.25 radio packet,
which is designed to transmit and receive data from CubeSats using an SDR approach. The system
includes a GMSK-based transmitter and receiver, as well as an Ax.25 deframer in GNU Radio to
decode the received signal. The AX.25 Transciver radio packet is being used in a range of CubeSat
missions, including Earth observation, space weather monitoring, and technology demonstration [3].

Despite their many advantages, CubeSats still face some challenges. One of the biggest is their
limited power and communication capabilities, which can restrict their ability to perform certain
missions. CubeSats also have a relatively short lifespan in orbit, typically lasting between 1 and 5
years before they deorbit and burn up in the Earth's atmosphere. Overall, CubeSats are an exciting and
rapidly developing field that offers a range of opportunities for space research and exploration. With
the continued development of new technologies and communication protocols, CubeSats are likely to
become even more versatile and capable in the years to come.

11

1.2 Problem Statement

CubeSats are rapidly gaining popularity as a low-cost and flexible platform for space missions,
including remote sensing, earth observation, and technology demonstration. One key aspect of
CubeSat missions is the ability to communicate with the satellite in real-time, which requires the
development of ground station equipment capable of receiving and decoding the telemetry and
payload data transmitted by the satellite. Current CubeSat ground station systems can be complex,
expensive, and difficult to set up and operate [4]. Moreover, these systems may not be suitable for all
CubeSat missions due to their size, power consumption, and frequency range limitations. Therefore,
there is a need for low-cost and flexible CubeSat ground station solutions that can be easily
customized and adapted for different missions.

Software-defined radio (SDR) technology offers a potential solution to these challenges, as it allows
for flexible and wideband signal processing and modulation/demodulation capabilities. The Universal
Software Radio Peripheral (USRP) is a popular SDR platform that is widely used in research and
industry for various applications, including wireless communication, radar, and satellite
communication.

1.2 Research Scope

The scope of this research is to develop a CubeSat receiver. The receiver should be capable of
decoding the AX.25 Transciver radio packets transmitted by the pumpkin CubeSat kit. To develop the
receiver, the USRP is utilized as an RF end and the decoder blocks are implemented in the GNU
Radio.

1.3 Research Objective

e The goal of this thesis is to design and implement a low-cost and flexible CubeSat receiver
system using USRP and GNU Radio.

e The system is designed to operate in the UHF frequency range at center frequency 435 MHz
and can receive and decode Ax.25 radio-formatted telemetry and payload data from CubeSats
in real time.

e USRP and GNU Radio provide a highly flexible and customizable platform for signal
processing and demodulation, allowing the system to be easily adapted for different CubeSat
missions.

e This research project will contribute to the development of low-cost and flexible CubeSat
ground station technology, making CubeSat missions more accessible to a wider range of
organizations and researchers.

e This research will also provide valuable insights into the design and implementation of SDR-
based CubeSat communication systems, which could lead to new developments in the field of
small satellite technology. Overall, this work represents an important step towards
democratizing access to space and advancing the capabilities of CubeSats for a wide range of
applications.

12

1.4 Thesis Breakdown

This thesis is based on the work that was carried out during the final year. The goal of this project is
divided into five chapters with Chapter 1 giving the introductory details and explaining the aims and
objectives of this project. An outline of the other chapters is given below:

e Chapter 2, Satellite Tracking and Reception: This chapter discusses the methodology for
tracking a satellite.

e Chapter 3, On-Air Testing with USRP for GMSK Transceiver: The chapter presents the
development of the transmitter and receiver using GFSK. The system is tested over the air in
real-time.

e Chapter 4, Receiving and Processing a CubeSat Signal: This chapter discusses the
development of the CubeSat receiver. The designed receiver is capable of decoding the

AX.25 received radio packets.

e Chapter 5, Conclusion and Future Work: This Chapter concludes the work and also gives
directions for future work which can be done further in this domain.

13

Chapter: 2 Satellite Tracking and Reception

2.1 Overview

Satellites provide a unique perspective on the Earth from space, enabling us to
measure the different forces that impact our planet and contribute to the
intricate systems that make up our home. Mankind has the opportunity to
observe the global environment in its entirety. Through these satellites, we can
now get a deeper understanding of the various factors that affect our planet.
They can also provide us with information about the weather conditions and
vegetation on our planet. In addition, they can monitor the movement of water
and air pollutants, as well as the activities of volcanoes and vegetation. Aside
from providing us with hard data, these satellites also help shape our
perceptions of the planet's environment. This is very important as it can help us
make informed decisions regarding the planet's health [5].

The information gathered by these satellites is transmitted to ground stations
where it can be displayed and analyzed. This service, known as direct readout,
was initially developed over four decades ago by the first set of weather
satellites and has since been expanded and operated by the National
Oceanographic and Atmospheric Administration in the US [7]. Ground stations
typically offer automatic transmission of satellite images, which is among the
most commonly used services. Other commonly utilized services include high-
resolution picture transmission and low-rate information transmission..

Numerous ground stations have been established or acquired to receive direct
transmissions from the satellites. Some of these include military and
government agencies, private enterprises, and amateur radio operators. The
increasing number of teachers using real-time data from satellites has been
attributed to the growing popularity of this technology in the educational
community. This data allows them to teach various subjects such as
engineering, science, and social studies. Through this technology, students can
develop a deeper understanding of the world around them, which can help
them pursue their higher education goals and career opportunities. This thesis
aims to provide a comprehensive overview of the various steps involved in
establishing and operating a ground station that can receive and interpret data
from satellites.

2.1.2 Direct readout transmissions from meteorological satellites

During the 1960s, the US Weather Bureau's meteorologists took advantage of
the data collected by the satellites to analyze the clouds and provide detailed
observations. These observations were then transmitted to the agency's major
forecasting centers. Unfortunately, these charts, which were hand-drawn and
sent by radio or landline, were not very useful in forecasting the weather.
Eventually, a system was developed that allowed the weather satellites to deliver
real-time weather data to the agency's ground stations and forecasting centers.
This method, which is called a direct broadcasting service, allows weather
satellites to deliver the data in real-time [7]. The data gathered by the satellites

14

was designed in a format that could be replicated using inexpensive ground
station equipment[41]. This data, provided free of charge, is subsequently
distributed to the public.

Direct Readout Services are employed by both the Geostationary Operational
Environmental Satellites (GOES) and the Polar Operational Environmental
Satellites (POES) systems to provide accurate and timely information to both
the ground and the satellites. These platforms can offer a variety of image data
products, ranging from high-resolution to lower-resolution images. Direct
Readout Services commonly employ Automatic Picture Transmission (APT),
High-Resolution Picture Transmission (HRT), Direct Sounder Broadcasts
(DSB), and Low-Rate Information Transmission (LRIT) services[41]. The data
collected by satellites is processed and transmitted to the ground using the
GOES Variable Format (GVAR). Since their inception, most users of weather
satellite imagery have relied on Direct Readout Services. The data collected by
these platforms is utilized by over 120 countries and thousands of ground
stations.

The first automatic transmission system was established utilizing the
Television Infrared Observational Satellite (TIROS-VIII) satellite, launched in
December 1963[41]. This satellite was one of the first weather satellites to
orbit the Earth in a polar orbit [8]. It offered reliable transmissions to weather
offices in the US, and plans for low-cost ground stations were widely
distributed to other countries. In 1965, amateur radio operators began
designing stations for home reception and publishing their designs in electronic
magazines. This activity was partially influenced by H.R. Crane's publications,
who had written numerous articles on direct-readiness transmissions in the
Physics Teacher Journal [49].

The US launched several polar-orbiting satellites in the past couple of years.
These have been joined by Chinese satellites. These have allowed the country
to receive images of the Earth from other countries' spacecraft. Because of the
transmission systems operated by these satellites, a ground station in the US can
also receive images from other satellites.

2.1.3 APT (Trios Series Satellite)

APT services and subsystems were originally designed to provide low-cost ground
stations with direct access to images captured by the satellites. In 1990, over 5,000
ground stations were able to receive data from Russian and U.S. satellites. These
facilities are usually equipped with a VHF receiver, a low-cost directional antenna, and
a display device. Data about the position and operation of NOAA's satellites can be
acquired whenever they pass within a certain range of a ground station [9]. The
number of passes depends on the station's latitude. High-latitude stations can receive
several passes a day, while low-latitude stations can only get one or two overpasses a
week.

The POES Advanced-TIROS-N series of satellites uses the Advanced Very High
Resolution Radiometer (AVHRR) to capture images of the Earth's surface. AVHRR is

15

a high-resolution radiometer that can detect radiant energy across multiple
wavelengths, including infrared, visible, and near-infrared. These images are
transmitted in digital format using High-Resolution Picture Transmission (HRT)
technology.

After the satellites collect data, it is converted into an analog signal that
undergoes multiplexing to select only two channels in the APT format. The
process relies on HRPT data that is produced at a rate of 360 lines per minute.
The signal's scan rate is then converted into the APT format, which is at a rate
of 120 lines per minute. During the day, the images in the channel comprise
one infrared channel and one visual channel. At night, the two images are
usually two infrared images. These two images represent the same view of the
Earth and are combined to produce the final product. (Figure 1)[41].

Figure I View of the Earth

The satellites continuously send the APT signal. The APT signal, however, can
only be received by radio when the polar orbiting satellite is above the horizon of
a user's ground station, since, radio reception is restricted to "line of sight" from
the ground station. The satellite's altitude and the way it crosses the path of the
ground station affect the signal reception's range. For instance, polar-orbiting
satellites used by China and the US are normally positioned at altitudes of 810 to
1,200 kilometers, and the signal can be picked up for up to 16 minutes during an
overhead pass. A ground station may take an image strip that spans the satellite's
journey in this amount of time, or roughly 5,800 kilometers[41].

2.1.4 Proposed Work

The aim of this work was to create a satellite tracking system by integrating a
microcontroller (Raspberry Pi) with Gpredict and Python software. A Yagi
antenna was designed for reception, but for successful satellite tracking, the

16

antenna needs to be adjusted in line with the satellite's movement. This chapter
provides comprehensive instructions and insights on how to align the antenna with
the satellite's movement and how to receive data from the NOAA-20 weather
satellite.

2.1.5 Core Components and Software Used
The following software is used for the tracking of the satellite.

e Gpredict
e Python3

The following software is used for the resaving from the satellite.

AT Package
Predict
SOX
Wxtomig

The following hardware components are used in this project.

Yagi Antenna
Rotor Control
Relay Board
Raspberry pi
Power supply
LCD Display
SDR

LNA

2.2 Hardware

The hardware required consists of a raspberry pi, Yagi antenna, and rotor
control and relay module as depicted in the following Figure 2. For controlling
the antenna movement and for receiving the signal from the satellite a
software-defined radio (SDR) connected with another raspberry pi is required.
Moreover, the SDR is further connected with a low-noise amplifier to
overcome the noise while receiving the signal via the antenna.

17

N
Rotor Control

Yag Antenna \

§ Low Norse
- Amplifier 1+ ==t

Raspberry pi Relay module

SOR with
Raspberry pi

Figure 2 Hardware connection for tracking and receiving

2.2.2 Raspberry Pi

To use a Raspberry Pi computer, you'll need a few accessories. These include a
display such as a television or computer monitor, which can be connected to
the computer using an HDMI adapter. Most displays will work, but some may
require specific resolutions or refresh rates. Additionally, you will need a
power supply with a micro USB connector, an SD card for storage, a keyboard
and mouse for input, and potentially a case to protect the computer. It is
important to ensure that all accessories are compatible with the Raspberry Pi
model being used, as different models may have different requirements. [43].

e A good quality power supply is essential for your Raspberry Pi to work
properly. The recommended power supply for the Raspberry Pi 4 is a 5V
USB-C power supply capable of supplying at least 3A of current.

e For older models like the Raspberry Pi 3 or earlier, a 5V micro-USB power
supply capable of supplying at least 2.5A of current is recommended.

e [t is important to use a power supply that is rated to supply the correct
voltage and current to avoid damaging your Raspberry Pi.

18

Using the official power supply for the Raspberry Pi is recommended to
ensure stability and prevent damage to the device. It's designed to provide a
consistent voltage and current output, even when the demand for power
increases. Other power supplies may not be able to handle the current demands
of the Raspberry Pi, which can cause instability or damage to the device.

As for the SD card, it's recommended to use an 8GB or larger micro SD card
to store the operating system and any files you may need. The Raspberry Pi
Imager software can be used to install the operating system onto the SD card,

2.2.13 Reception Antenna

The antenna is a critical part of a system used for transmitting and receiving
signals. The weather satellite's antenna system includes the antenna and the
transmission system. The design factors that impact the quality of the images
captured by the satellite must be considered to ensure the system works effectively.
Three key factors to consider include the physical size of the antenna components,
which is determined by the frequency of the intended transmissions, the antenna
design matching the type of RF signal polarization it is to receive, and the size and
shape of the antenna components to provide a noise-free reception when used with
a radio receiver [41]. Understanding the components of an antenna system,
including gain, polarization, and beam width, is crucial to ensuring it functions
correctly.

2.2.14 Yagi Antenna

Compared to omnidirectional antennas, directional antennas offer better signal-
to-noise ratios and gain[46]. They also require precise tracking of the satellites
to maximize their gain. To track satellites and receive their signals, a receiving
station needs to constantly adjust the position of the antenna as the satellite
moves across the sky. This requires the use of a directional antenna that can be
mounted on a TV-type rotor or a home-built/commercially available antenna
positioner. The antenna needs to be configured with both azimuth and
elevation settings so that it can track the satellite's movement accurately. Using
these tools, the receiving station can ensure that the antenna is always pointing
in the direction of the satellite and receive its signals with maximum
efficiency.

19

Figure 3 Yagi Antenna

2.2.15 Circular Polarized Yagi Beam Antenna M2 436CP30

We have used the circular polarized Yagi beam antenna for the reception. We used
the M2 436CP30 antenna [11]. The M2 Antennas 436CP30 70cm circularly polarized
beam is a practical and high-performance antenna that can be used for various
applications. Its clean pattern ensures that it can match the noise temperature of the
antenna with modern low-noise amplifiers. It's ideal for satellite work and is also
good for terrestrial uses,such as repeater operation and long-haul telecom.

The M2 Antennas 436CP30 feature a CNC machined element module that's
weather-tight and O-ring sealed for long-term performance and low maintenance. Its
internal connections are also enclosed in a space-age silicone gel to keep them cool
and prevent moisture buildup. Aluminum rod elements are also designed to maintain
good ellipticity and minimize interaction[13].

Following are the specifications of the 436CP30 antenna.

Model 436CP30
Frequency Range 432 To 440 MHz
Gain 15.50 dBic
Beamwidth 30° Circular
Feed type Folded Dipole
Feed Impedance 50 Ohms Unbalanced
Power Handling 600 Watts
Table 1

20

2.2.16 Satellite Predicting and Tracking

To obtain APT video, it is important for the satellite to have precise information
about its location, timing, and movements since the signals can only be received
when the satellite is above the ground station's horizon [12]. The polar-orbiting
satellites have their own unique orbital characteristics, and it is important to have
accurate data on their location and tracking. The National Oceanographic and
Atmospheric Administration (NOAA) provides easy access to this data, including
daily TBUS reports for each satellite, which can be used to obtain accurate
information about the satellites' movements and positions.[41].

TBUS reports provide essential information for automatic tracking of a spacecraft
using a narrow dish antenna. These reports contain data about the latitude,
longitude, and altitude of the satellite for a single orbit, which can help predict data
acquisition times for an APT user. Using a directional antenna, the elevation and
azimuth of a satellite can be determined as it passes over a ground station, and this
information can be used to verify the satellite's position in space. By analyzing a
single orbit, future satellite trajectories can be determined. While there are many
software programs available to perform these functions, it's possible to achieve the
same results using basic mechanical and mathematical tools.[41].

The image in Figure 4 depicts the typical path that a NOAA-POES satellite takes while in
orbit. This type of orbit is called a polar orbit because it passes over the Earth's poles.
Polar orbits usually have an inclination angle of around 90 degrees and are often within 10
degrees of the poles. The NOAA-POES satellites use this type of orbit to provide full
coverage of the Earth's surface every 24 hours. Additionally, these satellites are placed in
a sun-synchronous orbit, meaning that they maintain a constant relationship with the sun.
This keeps the midpoint of the equator, known as the ascending node, aligned with the
solar time, which is crucial for timely transmission of meteorological data via direct
broadcast.[41].

N N
80+ a0°
(o]
\ 0
80+
s 5

Figure 4 Typical orbital path of an NOAA-POES satellite

One orbit is required to complete by calculating the NODAL PERIOD, which
is the time ittakes for a satellite to cross the equator. For polar satellites, this is
measured from the time that the satellite crosses the equator until the next
crossing. The DESCENDING NODE is the time that the satellite passes the
Southbound equator.

The Earth's rotation is at a constant rate of 0.25 degrees per minute during the
period of one (NODAL PERIOD). This causes the next crossing of the
equator to be further west than the previous one. This is referred to as the
satellite INCREMENT, and it occurs between two equator crossings.

INCREMENT = NODAL PERIOD (in minutes) x 0.25 degrees

If a satellite's NODAL PERIOD and the time and longitude of its equator
crossing are known, it is easy to predict the future orbits of the vehicle for days
or even months in advance. This can be done by adding the times and
increments of the satellite's orbits to the equator crossing's time and date. If
you want to calculate the orbit of a satellite, this can be done by hand. A more
convenient method is to use a computer, which can then perform the
calculations automatically. This can be done by creating a program that will
accurately predict the orbital paths of various satellites. These programs can
also take various approaches to provide the necessary information about the
satellite, such as its position and velocity. For instance, they can show the time
and longitude of the equator crossing, as well as its local station[41].

2.2.17 Rotor Control
The rotor control is designed and implemented to align the antenna with the

movement of the satellite. The rotor is controlled by the software Gpredict
which will be discussed in the next section. Figure 5 shows the rotor control.

/

Figure 5 Rotor control device

22

2.2.18 Antenna Azimuth-elevation rotators & controller

We have used the Antenna Azimuth-elevation rotators & controller G-5500
(YAESU The radio) [13]. The Yaesu G-5500 is a dual-sided azimuth and
elevation control unit that can be used for large and medium-sized satellite
antenna arrays. It features factory-built aluminum construction and is designed
to operate under harsh environmental conditions. The two units can be
mounted on a mast or independently with the azimuth and elevation control
unit inside a tower. The specifications of the G-5500 rotator controller are

given in Table 2.

Voltage requirement:

Motor voltage:

Rotation time (approx., @60Hz):

Maximum continuous operation:

Rotation torque:
Braking torque:

Vertical load:

Pointing accuracy:
Wind surface area:

Control cables:
Mast diameter:
Boom diameter:
Weight:

2.2.19 Relay Module

The relay module is used to operate the rotor control from the raspberry pi 5 Volts
output signal. The relay module is used to enhance the current and voltage required
for the rotor to operate. Since the rotor is controlled by the raspberry pi via Gpredict
software. However, the 5 volts output signal from the raspberry pi is not sufficient to
enable the rotor. Therefore, the relay module is used to convert the Svolts signal into

Table 2

SPECIFICATIONS

110-120 or 200-240 VAC

24 VAC

Elevation (180°): 67 sec.
Azimuth (360°): 58 sec.

5 minutes

Elevation: 14 kg-m (101 ft-1bs)
Azimuth: 6 kg-m (44 ft-1bs)
Elevation: 40 kg-m (289 ft-1bs)
Azimuth: 40 kg-m (289 fi-1bs)
200 kg (440 lbs)

+4 percent

1 m?

2 x 6 conductors - #20 AWG or larger

38-63 mm (1-1/2 to 2-1/2 inches)
32-43mm (1-1/4 to 1-5/8 inches)
Rotators: 9 kg (20 lbs)
Controller: 3 kg (6.6 Ibs)

220 volts. Figure 6 shows the relay module used.

Figure 6 Relay Module

23

2.2.20 SDR

Software-defined radio (SDR) is a type of radio that uses a software-defined
algorithm to process signals. This type of radio doesn't require a lot of hardware
components, such as amplifiers, mixers, and filters. It can perform various
signal processing tasks, such as converting digital to analog signals, without
requiring additional hardware.

Because of this, SDR can be used on various platforms, such as embedded
systems and personal computers. It allows users to fix issues without having to
go to the hardware. Most of the processing is done in the software, which
makes it easier to maintain. Figure 7 shows the block diagram of the SDR
receiver[48].

Digital Sample Digital Sample
Antenna at Intermediate Frequency at baseband
Analogic Signal
Y at Intermediate Frequencies DDC
igi Low-Pass
RF Tuner |—| ADC |~ Digitall i 1. psp
Mixer Filter
Analogic Signal ?

at RadioFrequencies [J Analogic .
Components Digital

Osc

Digital
o Components

Figure 7 Block diagram of SDR Receiver

2.2.21 NESDR SMArTee v2 SDR

We have used the NESDR SMArTee [19,20]. This SDR supports ultra-low phase
noise up to 0.5 PPM. The power consumption of the SMArTee has been reduced by
around 10mA, which means that it's less heat generated. This result improves board-
level stability and provides better sensitivity. The NESDR SMArTee is designed to
minimize the annoyance of USB port obstruction. This feature allows them to be used
in devices that comply with the USB standard. They can also be run side by side
without removing the enclosure.

2.2.22 Specifications of NESDR SMArTee

Following are the specifications of NESDR that we have used [14].

e RTL2832U Demodulator/USB interface IC
e R820T2 tuner IC

e 4.5V 250mA always-on bias tee

e (0.5PPM, ultra-low phase noise TCXO

e RF-suitable voltage regulator

e Shielded primary inductor

e Integrated custom heatsink

24

e Female SMA antenna input
e High-quality black brushed aluminum enclosure
e Through-hole direct sampling pads on PCB

2.2.23 Low noise Amplifier (LNA)

LNA provides RF amplification with very low dB noise figures with high
performance. Figure 8 shows the LNA.

Figure 8 LNA

2.3 Setup and Configuration (Tracking)

Gpredict is an application that can track and predict the position and movement
of satellites. It can display various data in charts, tables, and maps. It can also
predict the time of a satellite's pass through the sky. Unlike other programs that
focus on tracking satellites, Gpredict allows users to group them into
visualization modules. This allows them to customize the look and feel of the
modules. It also allows you to track the satellites at the same time, which is very
useful if you want to monitor them at different locations. Figure 9 shows the
Gpredict software screenshot.

o IRRE 1] o o x|
Bl B

Figure 9 Gpredict Interface

Gpredict is an open-source software that is available for free and licensed under
the GNU General Public License[47]. The software is customizable, and users can
modify it to meet their requirements. It is compatible with any type of software
and is provided with a source package as well as pre-built binaries

25

2.3.2 Objective of using Python 3 Software

The objective of using Python 3 software is to predict the satellite location and
send the command from raspberry pi based on the angle of elevation and
azimuthal received from the software to align the antenna via enabling the rotor
control. To move the antenna, Raspberry Pi only needs to either send 1 (ON) or
(0) OFF to the relay board for each pin in four pins. Those four pins are for:

. Moving elevation up

. Moving elevation down
. Moving azimuth up

. Moving azimuth down

Figure. 10 shows the software files installed in theraspberry pi.

satellite-tracking src

+— config.py

server.py
rotor-control.py

files

L config.yml

main.py

Figure 10 Software files installed in theraspberry pi Flow chart

Begin with the config.yml, all the configuration is done in this file. When the
service gets started, config.py will parse all configurations in config.yml into
the config object for later use.

Next, this service connects to Gpredict through server.py. This file creates a
server waiting for aconnection from Gpredict for sending and receiving later
commands.

For controlling the antenna, rotor-control.py has an important role here. This
file enables reading gain from the antenna rotor and parsing into human-
friendly readable azimuth and elevation. When a specific azimuth or elevation

is set, it will move the target into a specific value by sending 1 or 0 to the relay
board.

Lastly, the main.py holds all files mentioned above into a single call. Users,
after finishing the configuration, can run this service by calling only this file.

26

2.3.3 Configuration (Tracking)

This section will guide you through all the setup and configurations. These
are divided into two mainsections: rotor control and information reception.

2.3.4 Rotor control configuration

Users will be guided to configure the main service and GPredict. The main
service requires only onefile configuration, while GPredict requires none of
that.

2.3.5 Rotor control service configuration

Users can configure this service by editing satellite-tracking/files/config.yml :

rotor_control_config:
AZ_CONVERSION: 3.7
AZ_INTERCEPT: 2.857
AZ_NEAR_ZERO_INTERCEPT: ©
AZ_NEAR_ZERO_CONVERSION: 30.7
AZ_CHANNEL: ©
AZ_NORTH: ©
AZ_ANTENNA_CONVERSION: ©
EL_CONVERSION: 22.35
EL_INTERCEPT: -68.51
EL_NEAR_ZERO_CONVERSION:
EL_NEAR_ZERO_INTERCEPT:
EL_ANTENNA_CONVERSION: ©
EL_CHANNEL: 1
EL_HORIZON: 90
ROOF_SLANT: 1.3
MAX_AZ: 450

171
154

MIN_AZ:
MAX_EL:
MIN_EL:

0
180
0

EL_TIME: ©.26666666
AZ_TIME: 0.15555555
UP: 4

DOWN: 22

LEFT: 26

RIGHT: 6

GAIN: 1.0

MOE: 0.1
NUMBER_OF_CHANNELS: 2

Figure 11 The example of satellite tracking configuration

In this file, the user can see the description and set the value for Azumith and
Elevation starting.

2.3.6 Gpredict configuration

The user must select a satellite first. Please do the following steps carefully:

First, open an interface configuration by clicking edit on the left top and click
preference.

27

File Edit Help
202 Update TLE data from network
Update TLE data from local files g
=

Update transponder data

Preferences

Figure 12 Open preference interface

Then click Interfaces on the left and then select the Rotators tab.

% Radios | Rotators
test localhost 45:

General

=

Modules

Interfaces

Predict

Add New Edit Delete

Figure 13. Rotator tab on the interface panel

Click on Add New on the left bottom and then fill out the form and name it.

Edit rotator configuration v oA X
Name
Host | localhost

Port| 4533 [F=NlEE

Az type 0°-» 180° - 360° -

MinAz 0 = + | MaxAz| 360 | = <+
MinEl| O = 4+ | MaxEl | 90 - |+
Azimuth end stop position 0 = g

Clear Cancel

Figure 14 Rotator form

After finishing adding the rotator, the user can find it like this.

Figure 15 Rotator Tab on Interface Panel

28

2.4 Setup and Configuration (Reception)

In this section, a user will be guided to install the software for predicting the
satellite orbiting.Software is installed on the raspberry pi.

2.4.1 System Requirements
. Raspberry Pi 3 Model B Plus Rev 1.3

. Raspbian GNU/Linux 10 (Buster)
. SDR Dongle
. Antenna

. Python 3.7

2.4.2 Required Linux Package Installation

Before going any further, the user must update all packages to the latest
version. After that, a reboot mustbe done.

See the following commands :

$ sudo apt update ; sudo apt upgrade

$ sudo reboot

Next, the user needs to install these packages:

. USB drivers (driver for RTL dongle)

. cmake (for building the latest version of the RTL dongle)

. rtl-sdr

. sox (to manipulate received audio stream)

. at (for scheduling tasks)

. predict (to predict passing time for each satellite overhead)
. wxtoimg (to convert audio into image)

2.4.3 Retrieving Information
After receiving the data from the satellite, the data is interpreted and transformed
into an image. The following packages are needed to transform the received data

into an image.

2.4.4 AT Package

AT read commands from standard input or a specified file are executed using

29

/bin/sh.

edit the file /etc/modprobe.d/no-rtl.conf and put this content into the file:

blacklist dvbusbrt] 128 xxu

blacklist rt]12832

blacklist rtl12830blacklist rtl2832Ublacklistr820T2
blacklist rt]12838

Install the most recent build of rtl-sdr:

cd ~
git clone https://github.com/keenerd/rtl-sdr.git
cd rtl-sdr/
mkdir build
cd build
cmake ../ -DINSTALL_UDEV_RULES=ON
make
sudo make install
sudo ldconfig
cd ~
sudo cp ./rtl-sdr/rtl-sdr.rules /etc/udev/rules.d/
sudo reboot
We need a way to schedule the captures to happen as the satellites pass overhead.

Install the scheduler:

sudo apt-get install at

2.4.5 SOX

SOX saves received audio into a file. SoX is a type of software that translates
sound files into different formats. It can also add various sound effects to the
resulting audio. Simply, SOX is a Python package that we have installed in the
next section, it is used to receive the file from the satellite and saves the file into
the Wav format which is further processed by the wxtoimg software. See the
following commands:

sudo apt-get install sox

30

2.4.6 Wxtoimg

Wxtoimg turns the saved audio into images which ease the user in term of
visualization. 3.3.4 Predict User will be guided to configure the main service and
its dependencies. The main service has no configuration file, but it the in the script
itself. Other than that, the dependencies are required to have their configuration

file. See the following commands:

cd ~

wget http://www.wxtoimg.com/beta/wxtoimg-armhf-2.11.2-beta.deb

sudo dpkg -i wxtoimg-armhf-2.11.2-beta.deb

2.4.7 Predict:

sudo apt-get install predict

2.4.8 Installation Test

Run the following commands to check whether the software is installed correctly

and it can find the device:
$sudortlitest

If you receive any error messages, please do not continue and troubleshoot them
before going any further. Run the following commands to check whether the

“predict” is installed correctly:
$predlct
Now, Predict will be launched as shown in Figure 16

[P
[v]:
[SHE
L5
[0]:
[T1:
[M]:

Press ”Q” here to exit the program. The program will be not ready until the
configuration has beendone. User must input their location first.

Run the following commands to check whether the “wxtoimg” is installed

--== PREDICT v2.2.3 ==--
Released by John A. Magliacane, KD2BD

May 2006

--==[Main Menu]

Predict Satellite Passes [Cidlg
Predict Visible Passes [G]:
Solar Illumination Predictions [D]:
Lunar Predictions [ul:
Solar Predictions iE
Single Satellite Tracking Mode [B]:
Multi-Satellite Tracking Mode [Ql:

Program Information

Edit Ground Station Information
Display Satellite Orbital Data
Update Sat Elements From File
Manually Edit Orbital Elements
Edit Transponder Database

Exit PREDICT

Figure 16 Predict’s user interface

31

correctly:
$ wxtoimg

For the first time, the user must accept the terms and conditions. Moreover,
the user must configure the locationwhere the ground station.

2.4.9Configuration of predict

Replace this file /.predict/predict.qth with this content:
W6LMU

33.9697

118.414

10

By running the following command, the user can check whether the
configuration has been done correctly or not.

$predlct

ile Edit Tabs Help

9697 [DegN]
-414 [DegW]

Enter the callsign or identifier of your ground station

Figure 17 The ground station details of Predict

2.4.10 Configuration of WXtoImg

WXtolmg is a fully automated weather satellite decoder that can be used on
various platforms, such as Windows, macOS, and Linux. It can also record,
edit, and view images on different types of devices. It supports real-time
decoding and various other features, such as map overlays, multi-pass images,
and animations. It can additionally create web pages, temperature displays, and
GPS interfaces for multipleweather satellite receivers.

WXtolmg uses soundcards with 16-bit sampling capabilities makes them ideal
for providing better decoding than expensive hardware decoders. The basic
version of WXtolmg offers a wide range of features. Some of these include
enhanced automation, new capabilities, and a wider variety of options. One can

32

register for the software to get started with the latest features.

Let's continue the WXtoImg configuration to receive the images i.e, decoding
the Wav files format to receive the image files.

We need to run this software once for accepting the terms to use this software.
Therefore, enter the following command in the terminal. This step we already
did before, if not we can check and repeatit.

wxtoimg

Now after this, we need to configure the /wxtoimgrc file to tell WXtolmg the
position of our ground base station. Therefore, replace this file /wxtoimgrc
with this content:

Latitude: 33
9697028
Longitude:
—118.4145569

Altitude: 10

Now all the configurations have been done. In the next chapter, we will see
the example case forreceiving the signal from the satellite.

First, we'll create a couple of directories to hold our files:
cd ~

mkdir weather
cd weather
mkdir predict

cd predict

2.4.11 Saving the Image File
Edit the main script

There are only two things the user must do: edit the script and set a CRON job.

33

information-reception

— predict
receive-and-process-satellite.sh
schedule-satellite.sh

schedule—-all.sh

— audio-and-images-will-be-here
Figure 18: Information Reception Directory

The user must edit schedule-all.sh in Figure. 19. First, the user must
ensure that the user has already added thesatellite’s name correctly.

After you've got a working radio frequency dongle, it's time to start
receiving weather maps. Before you start working, make sure that your
antenna is connected properly.

To start scheduling, we'll create two. The first one is called "schedule all.sh."
It downloads the data and generates a file that can be used to predict the future
schedule. The second one is called schedule satellite.sh."

To create a new file, go to your text editor and create a new file named
schedule all.sh. Type the code provided in Appendix A.

Here is an example:

Figure 19 Example of schedule-all.sh

34

The "schedule satellite.sh" script is designed to run daily and iterate through
the passes of a specific satellite. It checks the elevation of the satellite and
determines whether it is greater than 20 degrees. If the elevation is greater than
20 degrees, the script schedules the processing and recording of the pass.
However, if the elevation is less than 20 degrees, it is ignored because the
image produced would not be of good quality.

Please refer to the section "Appendix B" for instructions on how to implement
the script.

The "receive and process_satellite.sh" script is used to record and process the
audio from the satellite pass. The audio is first sent to Sox for processing. Once
the pass is complete, the wxmap tool is used to generate an overlay map of the
image. Finally, wxtoimg is used to combine the overlay map with the image.
This script essentially automates the process of receiving and processing the
satellite data, making it easier and more efficient.

e Please refer to the section "Appendix C" for instructions on how to
implement the script for saving an image file after processing a WAV
file.

o Finally, the satellite image will be saved.

2.5 Example Usages

This chapter will guide, you on how to start a satellite tracking service.
2.5.1 Satellite tracking service

Please ensure all steps mentioned prior have been done before doing this step.

2.5.3 Run the main script

Run the file mian.py.
satellite-tracking
- SIC
config.py

SErver.py

rotor-control.py

| files
L config.yml
main.py

Figure 20 Satellite tracking directory

35

As you can see from Figure 20, you can start the service by running the following
command in thedirectory.

$cd/path/to/satelllte—track Ing
$ python3 main . py

The result will be as follows:

pi@raspberrypi
NOT SENT

Figure 21: The satellite service without GPredic

From Figure 21, it been shown that GPredict hasn’t been started. After starting
this service, a user must open GPredict afterward.

2.5.6 Start GPredict

The user must open GPredict and then open antenna control as follows.

- (¥ x
)etach module

rull screen

Time Controller
Radio Contro
Antenna Contro
Configure
Clone

Delete

Figure 22. GPredict right top options

From Figure 22, after opening the options by clicking on the triangle icon, the
user can click Antenna Control to open Rotator Control Modal.

On the modal window, the user must pick the target first which is the aimed
satellite in the Target panel. In the Settings panel, the user can choose the
device (rotor control) that will receive the commands from GPredict.

36

a A a A A A A a a
— N 1 8 0.0 O0° 4 5.0 O0°

i v v) 2 v » v v h 2 v v

Read: — Read: -
Target Settings
JPSS-1 ~ Track Device: testl ~ Engage
Monitor
o Cycle:| 1000 + msec
olerance: | 5.00 - + deg

Qlant Ranne - RA77 km

Figure 23. Rotator Control Modal

Users may click on Engage button that will link the shown Azimuth and
Elevation to the main service. Then the main service will move the antenna
accordingly.

The result will be as follows:

ack Device Engage

Figure 24 Gpredict engaged with the satellite tracking service

As you can see from Figure 24, the remaining one is to automatically track the
satellite. Users can do it by simply clicking on the Track button on the target
panel.

Azimuth Elevation

1
wmy [
ha 3R
Read Read: 0.00
|| | [Target Settings
JPSS-1+ | Track Device Engage
EH UL Cycle:| 1000 + | msec
AT: 0519
Tolerance: | 5.00 = + deg

Figure 25 F ullfuncton of the satellite tracking service

37

From Figure 25, it has been shown that GPredict and the satellite tracking
service have been started already. They are linked and functional. If the user
wants to control the antenna manually by pressing the, please make sure the
Track button is not on. Then the user can change Azimuth and Elevation
manually.

2.6 Satellite Tracking and Reception Result

After successfully tracking the NOAA-20 satellite using antenna
tracking, we were able to receive high-quality images, as demonstrated
in the video demo available at

The
antenna tracking was achieved by utilizing the gpredict software, which
provided updated directions for elevation and azimuth. This allowed for
the antenna to be positioned exactly towards the NOAA-20 satellite,
resulting in optimal signal strength and data reception. The high-quality
images received as a result of the successful antenna tracking were a
testament to the effectiveness of the system in enabling efficient and
accurate satellite communication.

2.6.1 Picture before LNA implementation

The figure below shows the first image we received, which has a
significant amount of noise.

Figure 26. Picture before LNA implementation

38

2.6.2 Picture after LNA implamentaion

After a few minutes, we were able to receive a high-resolution image without any
noticeable noise, Because Low-Noise Amplifier (LNA) filtering and amplification, led to a
clear, high-resolution image with reduced noise and distortion.

Figure 27. Picture after LNA implamentaion

2.6.3 Location of the received pictures

All the files were saved in a file named "new test," as shown in the figure below.

Figure 28 Location of the received pictures

39

Chapter 3 On-Air Testing with USRP for GMSK Transceiver

To create a reliable and flexible Cubesat Communication System, appropriate
platforms and hardware components were carefully chosen. These choices
were made with the goal of ensuring easy implementation, operation, and
adaptability. The specifics of the chosen platforms, hardware components, and
mode of operation were deliberately selected for the project.

3.1.1 Preliminary Considerations

Prior to the actual project design, careful consideration was given to the
selection of implementation platforms and hardware components. This phase
involved a significant amount of research to determine the most suitable
operating system, software platform, modulation technique, and hardware
components for the project.

The flow chart shown in Figure 29 shows the preceding done in the
implementation and programming of the USRPs Communication System.

Hands-on USRPs

i

Interfacing with GNU Radio on
Linux

Figure 29 Implementation and programming of the USRPs Communication System flow chart

3.1.2 Hands-on USRP

Universal Software Peripheral devices are a range of software-defined radios,
which allow transmitting and receiving at a particular selected frequency from
the given range it supported. USRP is a box-packed device, where inside the
box is an RF module placed also known as the motherboard. The range of
frequencies USRP support depends on the motherboard. USRP generally
requires 6-12 volts with a 3A current to power on. There is an adaptor with
USRP which provides it the required power and some of the USRPS can be
powered on via a USB cable plug inn. USRPs are supported by many
communication software such as Matlab, GNU Radio, and Lab-view.

40

3.1.3 Selection of USRP

The selection of the USRP depends on the flexibility of the project. Select a
USRP which provides a high data rate; requires low power to switch on and is
compatible with all the communication software such as Matlab, GNU Radio,
and Lab-View. USRPs made by National Instruments (NI) are compatible with
all communication software. USRPs made by National Instruments (NI) are
compatible with all communication software. USRP made by National
Instruments (NI) comes up in three series, N-series, B-series, and X-series. The
general difference between ‘N’, ‘B’, and ‘X’ series is that N-series provides an
Ethernet interface and provides a high data rate in Gigabits, and requires 6
volts with 3A current. B-Series USRP requires a USB interface to power on
but the data rate it provides is low, X-Series provides a high data rate and have
both USB and Ethernet interface options. The software program can also be
embedded in FPGAs placed inside the X-Series but the cost of X-series USRP
is much higher than N and B series[46].

The USRP we selected is N-Series N2920 as it provides a high data rate for the
transmission of data and its cost is comparably lower than X-Series.

3.1.4 N2920 USRP

The USRP N2920 provides a high data rate and processing capability with high
bandwidth [15]. The USRP operates at 50 MHz up to 2.2 GHz depending on
the motherboard. This USRP N2920 provides 20 MHz bandwidth processing
capability. There is also an optional GPSDO module which is used for
synchronization via the internal clock. A USRP N2920 is shown below in
Figure 30.

TR DUTPUIT SR 420 i, R BT MAK T8 dilen, ALL RS FORTS 58 0

R o e

Figure 30 USRP N2920

41

3.1.5 USRP N2920 Daughterboard:

The daughter board “WBX” is installed in a USRP 2920 that provides a
frequency range from 68 MHz to 2200 MHz [16]. The local oscillators for the
receive and transmit chains operate independently, which allows dual-band
operation. The WBX is MIMO capable and provides 20 MHz of bandwidth.
This daughter board is used for receiving FM or if you want to work on the
frequency range at which it supports [17]. Figure 31 shows the WBX
daughterboard.

W =F = Simply #3.0 -
o N L1t: Reseorch UUC,
L) Meoprignt 200 &)
-

18 -
L J

Figure 31 WBX Daughterboard (2920 USRP Daughterboard)

3.2 System Design in GNU Radio

In this section, we will discuss the USRP Compatibility with GNU Radio as a
software platform and implement the GMSK Modulation/Demodulation
technique to transmit and receive the data in GNU Radio.

3.2.1 GNU Radio

GNU Radio is free open-source communication development toolkit software
that provides the user flexibility to design the blocks in Python and C++ [18].
GNU Radio offers signal-processing modules that enable the creation of
software-defined radios and signal-processing systems. These modules can be
utilized to construct simulation environments, without the need for any
hardware.

42

3.2.3 Installation of GNU Radio on Linex

Installation of GNU radio is quite easier:

Just open the Firefox web browser and type the latest version of GNU
Radio for downloading.

From there select the latest version for Linex as 3.7.10.

Now let it download.

After the download is complete then click on it for installation.

After the installation, launch the GNU Radio Companion.

The following prompt will open as shown in Figure 32.

GNURadio Companion - 0o X

setting gnuradio environment

Figure 32 GNU Radio Companion Command Prompt

® Now the GNU Radio Installation is complete.

3.2.4 Interfacing USRP with GNU Radio

The following steps were performed to make the USRP interface with GNU Radio.

® [nsert the Ethernet in your PC Ethernet port connected with USRP.

43

* Then go to the control panel

* From the Control panel select Network and Internet.

* From there go to the Local Area Network Connection. (select
the correct ethernet)

* Then select Ethernet IPv4 then use the following IP

address and subnet mask asshown in Figure 33.

Cancel

Details Identity IPv4 | IPv6 Security

IPv4 Method Automatic (DHCP) Link-Local Only
© Manual Disable
Addresses
Address Metmask Cateway

| 192.168.10.1 255.255.255.0

©
)

DNs Automatic [0

Separate IP addresses with commas

Routes Automatic m:]
Address Netmask Gateway Metric

Figure 33 IP Address Setting

44

= Now open the GNU Radio Command prompt and here type”
uhd find devices”. If theconnection is established it will be

shown as follows in Figure 34.

intemnets@intemnets: ~

File Edit View Search Terminal Help

fintemnets@intemnets:~$ uhd_find_devices

INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.14.0.HEAD-8-g6875
HO61

No UHD Devices Found

fintemnets@intemnets:~%

Figure 34 Connection Status Checking

® [f GNU Radio detects the Device, then the interface is successfully
established between USRP and GNU Radio.

3.2.5 Transmitting File Data
Now using USRP in real time we transmit the file data in GNU Radio by modulating the file

at the transmitter end and then broadcasting it via USRP. Figure 35 shows the general
scenario of transmitting any data source.

File Source/Data Modulation USRP Sink

Figure 35 Flow Chart of Transmission of any Data

3.2.6 File Source

The File Source block in GNU Radio is a powerful tool used to read data from a file
and input it into a signal processing flowgraph. The block diagram of the File Source
block involves two main components: a file handler and a buffer. The file handler is
responsible for opening the file and reading data from it, while the buffer temporarily
stores the data before it is passed on to the next block in the flowgraph. The File
Source block can read a variety of file formats, including binary, text, and even
compressed formats like gzip. It also allows users to specify the data type of the file
being read, as well as the sample rate and other parameters. Overall, the File Source
block is a valuable tool for reading pre-recorded data into a signal-processing flow
graph for further analysis [39].

45

3.2.7 Modulation

Modulation is done to make the data acceptable for the Channel. Modulation is the process to
vary the properties of the carrier wave with those of modulating waves in which the source of
data to be transmitted is embedded.

3.2.8 USRP SINK

The USRP Sink block in GNU Radio is a software-defined radio (SDR) sink block that
allows users to interface with Universal Software Radio Peripheral (USRP) devices. The
block diagram of the USRP Sink block includes a connection to the USRP hardware and a
buffer for temporary data storage. The block provides access to various parameters, such as
the center frequency, sample rate, gain, and antenna selection, which can be configured
through the block's properties. The USRP Sink block allows for real-time data transmission
and reception, making it a valuable tool for a wide range of applications, including wireless
communication and software-defined radio experimentation [40].

3.2.9 Receiving File Data
Now using USRP in real time we receive the file data via USRP Source in GNU Radio. After

receiving the file, we demodulate the file at the receiver end and store the file. Figure 36
shows the general scenario of receiving any data.

USRP Source Demodulation File Sink

Figure 36 Flow Chart of Reception of any Data
3.2.10 USRP Source

The USRP Source block in GNU Radio is a software-defined radio (SDR) source block that
allows users to interface with Universal Software Radio Peripheral (USRP) devices. The
block diagram of the USRP Source block includes a connection to the USRP hardware and a
buffer for temporary data storage. The block provides access to various parameters, such as
the center frequency, sample rate, gain, and antenna selection, which can be configured
through the block's properties. The USRP Source block allows for real-time data acquisition
and processing, making it a valuable tool for a wide range of applications, including wireless
communication and radio astronomy [37].

3.2.11 Demodulation

Demodulation refers to the procedure of retrieving the initial message signal from a
modulated carrier wave that has been transmitted through a channel.

46

3.2.12 File Sink

The File Sink block in GNU Radio is an important tool used to write the output of a signal
processing flowgraph to a file. The block diagram of the File Sink block involves two main
components: a buffer and a file handler. The buffer is used to temporarily store data before
writing it to the file, and its size can be configured to optimize performance. The file handler
is responsible for opening and closing the file, as well as writing data to it. The output file can
be saved in a variety of formats, including binary, text, or even compressed formats like gzip.
Overall, the File Sink block is an essential component in many signal processing applications,
allowing users to easily save and analyze the results of their processing [38].

3.3 Real-Time File Transmission using GMSK Modulation in GNU Radio

We conducted a test to transmit file data in real-time which is GMSK modulated and received
it using the same hardware on the same computer. Performing communication utilizing the
same hardware on the same computer does not require synchronization [19]. In this chapter,
we first have shown the file transmission On-Air test utilizing the one USRP attached to the
computer and with two USRPs attached to two computers respectively. We first performed
the On-Air test utilizing the same hardware and then we used the two different hardware to
enable communication over a certain distance between two ends.

3.3.1 GMSK Transmitter

File Source GMSK USRP Sink
> Modulation ;

Figure 37 Flow Chart of GMSK Transmitter

Figure 37 shows the general block diagram of file transmission using the GMSK modulation
technique.

Now for the implementation of the GMSK-based transmitter following steps are
performed.

e Now open GNU radio in your windows as we have installed above.
e Check the connectivity of USRPs
¢ Go to the Command prompt of GNU radio and type >uhd find devices.exe

e A block diagram was created according to the model presented in Figure 35, after
verifying the connectivity of the USRPs.

e The data that we want to transmit is written in the transmitter.txt file. The

transmitter.txtfile is stored on the Desktop.

47

e To transmit the transmitter.txt file, from the GNU radio as shown in Figure 35,
double-click the File Source Block and browse the destination where the
transmitter.txt file is stored.

Options
1D: top_block
‘Generate Options: WX GUI

Packet Encoder
Sampl 12

1Symb
y
File Source Bits/Symbol: 1 GMSK Mod
File: ...ktop|transmitter.bdt I Praamble: I— — Samples/Symbol: 2 ———
Variable Repeat: Yes Access Code: BT: 350m L
—

1ID: samp_rate :aﬂ‘fm:i L:SRP: :50
e e WX GUI FFT Sink

== Title: FFT Plet
Sample Rate: 500k
Baseband Freq: 0
¥ per Div: 10 d2
I ¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k

Refresh Rate: 15

Freq Set Varname: None

UHD: USRP Sink
Samp Rate (Sps): 5tk
ChO: Center Freq (Hz): L3
ChO: Gain Value: 30
ChO: Antenna: TH/RY
TSE tag name:

Figure 38 Transmission Modulation flow chart

e The data which we want to modulate is given is extracted using file source block
as discussed in the last step and then before transmission via USRP sink it is
modulated and then transmitted at 1.9 GHz center frequency.

3.3.2 GMSK

Gaussian Minimum Shift Keying (GMSK) is a modulation technique that is based on
frequency shift keying with no phase discontinuities. GMSK is commonly used in 2G
GSM mobile communication systems and is obtained from RF high-frequency
amplifiers. GMSK modulation uses continuous phase scheme similar to MSK, where
frequency changes occur at the carrier zero crossing points [20].

However, unlike MSK, the frequency difference between logical one and logical zero
states is always equal to half of the data rate. To reduce the sidebands extending
beyond the bandwidth equal to the data rate in MSK signal, GMSK converts the MSK

signal into a low pass filtered signal using a Gaussian filter. Figure 39 shows the
difference between MSK and GMSK sign

10 4
20 4

ampliude

of signal

30 - MSK

=40

-50 GMSK

T T T
0.5 1 1.5

Offset from carrier

Figure 39 GMSK Signal Power Vs Frequency Graph

48

As the frequency changes at the carrier at zero crossing points, the frequency difference
between the logical ones and zeros is always equal to the half of data rate, so the modulation
index, is always equal to 0.5. The above figure shows that after passing the MSK signal to the
Low pass Gaussian filter the side lobes of MSK suppress resulting in a GMSK signal.

3.3.3 GMSK Receiver
Following model shown in Figure 41 is built in GNU radio.

To receive, we built a receiver using another USRP as a source. The general block diagram of
the receiver is shown below in Figure 40.

USRP Source GMSK D dulati ile si
emodulation File sink

Figure 40 Flow Chart for Reception of GMSK Signal

File Sink
File: .. ktop\raceiverbd.be
Unbuffered: Off

Append file: Append

Multiply Const
Constant: 1
GMSK Demod
‘ Samples/Symbol: 2
Gain Mu: 175m
I Muz 500m I_

Omega Relative Limit: 5m

UHD: USRP Source
Samp Rate (Sps): 500k
ChO: Center Freq (Hz): 1.5G
Cho: Gain Value: 30

Cho: Antenna: TX/RX Freq Error: 0 WX GUI FFT Sink
G Title: FFT Plct
Sample Rate: 500k
_______________ i ——— Baseband Freg: 0
Low Pass Filter ! ! Y per Div: 10 dB
Decimation: 1 : A +I Y Divs: 10
Gain: 1 I I Ref Level (dB): 0
Sample Rate: 500k | i Ref Scale (p2p): 2
impl : :

I Cutoff Freq: 200 I— ' Packet Decoder FFT Size: 1.024k
Transition Width: 200 W[} Access Code: S Refrash Rate: 15
Window: Hamming = Freq Set Varname: None
Beta: .76

Figure 41 Reception using GMSK Technique in GNU Radio

e Since we are performing the test utilizing one USRP, we are using
this USRP both as the transmitter and the receiver attached to a
computer.

e In this computer, we are running both the Tx flow graph as given in
Figure 38, and the RX flow graph as given in Figure. 41. Since we are
using one USRP, no clock synchronization is required, and the data is
successfully transmitted using the RF end Tx1 and received successfully
using the RF end RX2 as shown in following Figure 42.

49

Figure 42 NI USRP-2920 Plugi. Slots

3.3.4 Results of File Transmission using GMSK in GNU Radio

This file shown in Figure 40 is transmitted.

mj tx - Motepad

File Edit Feormat View Help
Hi. My name is Mahammad.|

Figure 43 Transmitter Data

Then it is modulated using GMSK. The FFT is shown in below Figure 44.

E¥ Top Block - O X
Trace Options
FFT Plot
0 -] Peak Hold
[Average
-10 fug Alpha: 01333
-20
a0 [Persistence
Persist Alpha: 01861
g -40
g -0 OTrace &
3_ &0 (Trace B
Axis Options
70 pt
80 dB/Div: +
_g0 Ref Level: | +
-100 Autoscale
-250 -200 -150 -100 -50 0 50 100 150 200 250
Frequency (kHz) Stop

Figure 44 FFT Plot of GMSK Signal

This shows the FFT of the GMSK modulated file with the signal strength as shown is -20
dB.

50

e After demodulating it the file data is successfully received as shown in Figure. 45

1 e - Notepad - | b4

File Edit Format View Help
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is P
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My r
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is b

Figure 45 Received Data using GMSK Technique in GNU Radio

So, the file data is successfully transmitted using the GMSK modulation
technique in GNU Radio on Windows as an operating system. As the data is
continuously received so it appends in the receiver text file.

3.3.5 File Transmission Using GMSK in Linux between two ends
As we have discussed the file transmission using GMSK modulation in GNU
radio on Windowsas an operating system. When we performed the test using two
pieces of hardware i.e., USRPs one for the Transmitter end and the other for the
Receiver end on Windows we got no results and the file data is not successfully
received because of the synchronization issue. Therefore, we moved to the

Linux operating system because we have to write the code for the custom block
to enable synchronization.

3.3.6 Installation of Linux Operating System

» Just open the Mozilla FairFox and type the latest version of Linux for
downloading.

e From there select Ubuntu version 16.04 LTS.

* Now let it download on a portable device(USB).
» After the download is complete then convert it into a bootable file.

* Now install it on your pc.

51

3.3.7 Installation of GNU Radio for Linux

The following steps were performed to completely install the GNU radio for Linux.

» After the Linux is completely installed.
e Update and Install dependencies

sudo apt-get update

Once the system has been updated, then install the required dependencies for
UHD and GNU Radio the code was provided in reference [43].
Refer to “Appendix D” for to install the dependencies.

e After installing the dependencies, you should reboot the system.

e If the installation of the dependencies completes without any
errors, then you can proceed to build and install UHD and
GNU Radio.

¢ Building and installing UHD from source code

e First, make a folder to hold the repository.

cd $HOME
mkdir workarea
cd workarea

e Next, clone the repository and change into the cloned directory, the
instruction was provided by reference [43].

git clone https://github.com/EttusResearch/uhd
cd uhd

e Next, check out the desired UHD version. You can get a full
listing of tagged releasesby running the command:

git tag -1

52

e The following could be the output of the command.

% git tag -1
release_@83 289 804

release_@83_289_88a5
release_ @83 012 00e_208

e After identifying the version and corresponding release tag you need,
check it out:

Example: For UHD 3.9.5:
git checkout release 083 889 985

e Next, create a build folder within the repository.

cd host
mkdir build
cd build

e Next, invoke CMake.

cmake

e Once the cmake command succeeds without errors, build UHD.

make

e Next, you can optionally run some basic tests to verify that
the build process is completed.

make test

e Next, update the system's shared library cache.

sudo ldconfig

e At this point, UHD should be installed and ready to use. You
can quickly test this, with no USRP device attached, by
running:

e Uuhd find devices

53

o Downloading the UHD field programmable gate array (FPGA) Images
o Every USRP device must be loaded with special firmware and
FPGA images. FPGA is a type of semiconductor device that is
designed to be used in various applications. It is commonly
referred to as a type of integrated circuit (IC) that is designed for
specific design tasks. Unlike other types of integrated circuits,
which are typically custom manufactured for specific
requirements, FPGAs can be reprogrammed after the
manufacturing process.
o Despite the availability of one-time programmable (OTP) devices,
the majority of the time, the design is composed of SRAM-based
components. Different devices have different methods of loading
images. For instance:
o USRPI: The host code will automatically load the firmware
and FPGA atruntime[46].
o USRP2: The user must manually write the images onto the USRP2 SD
card[46].

o USRP-N Series: The user programs an image into onboard
storage, whichthen is automatically loaded at runtime[46].

o USRP-E Series: The host code will automatically load the FPGA at
runtime[46].

o USRP-B Series: The host code will automatically load the FPGA at
runtime[46].

o USRP-X Series: The user programs an image into onboard
storage, whichthen is automatically loaded at runtime[46].

#% Note: In our case, we have the USRP N series, for this purpose as explained
above to execute we first have to download the FPGA images as explained in the
following step. After the download is complete these FPGA images will be
automatically loaded once you run your first program. Now let’s continue to our steps
for installation as follows

e Now download UHD FPGA Images.

$ sudo uhd images downloader

e After the images have been installed.
e Build and install GNU Radio from the source code.
o First, make a folder to hold the repository.

cd $HOME
cd workarea

e Next, clone the repository.

git clone --recursive https://github.com/gnuradio/gnuradio

54

e Next, go to the repository.
e Next, update the submodules:

mkdir build
cd build
cmake ../
make

o To build GNU Radio, you need to create a build directory within
the cloned repository, then run the CMake command to generate
build files. Once the CMake command is successful, you can
proceed to build GNU Radio by running the build command.

o Next, you can optionally run some basic tests to verify that the
build process is completedproperly.

e Next, install GNU Radio, using the default install prefix, which
will install GNU Radio underthe /usr/local/lib folder.

e Finally, update the system's shared library cache.

. At this point, GNU Radio should be installed and ready to use.

3.3.8 Real-Time On-Air File Transmission using GMSK between two ends.

Rx Ar.;lten na

55

The distance between antennas should be up to 5 Meters.

After the GNU radio is successfully installed in the Linux operating system we
conducted a test to transmit file data in real-time using the GMSK modulation
technique.

3.3.9 GMSK Transmitter

We transmitted a file using the GMSK modulation technique and receive it on
another end. The general diagram of the GMSK transmitter is shown in
following Figure 46.

File source GMSK Modulation USRP Sink

e >

Figure 46 Thegeneral diagram of the GMSK transmitter

For synchronization, the GNU radio block is written and built.

To create the sync block go to the Linux terminal and then to the GNU
radio directory where it is installed, the instructions and the code were
provided by this reference [45]
Enter the following command.

gr modtool newmod sync

[]

[]

]

Let's jump straight into the gr-sync module and see what it's made up of:
cd gr-sync

Is

app cmake CMakeLists.txt docs examples grc include libs e python swig

Now writing a block in Python

import sync

Creating the files

The first step is to create empty files for the block and edit the CMakeLists.txt
files. R

Now, refer to the “Appendix E” and enter the commands in the linux terminal.

56

Now, using CMake build, and compile, using the following commands.
gr-sync$ mkdir build

gr-sync$ cd build/

gr-sync/build$ cmake ../

gr-sync/build$ make

1 Then run the following command.

gr-sync/build$ sudo make install
1 Now open GNU radio.

1 Check the USRP connection after connecting with the computer shown in Figure
44,

Figure 47 USRP connection

1 Open Linux terminal and enter the command “uhd find devices”

1 If the connection is successful, you find from the terminal the status of

the USRP that is connected.

1 Then attach the antenna shown in Figure 48 with the USRP.

Figure 48 Antenna attached USRP

57

RAEDD D JH e

After checking the connectivity of USRPs following model shown in

Figure 49 was built.

File Edit View Run Tools Help

]

P | b 3

WX GUI Slider

&P

Options
1D: rfgain
1D: top block
| Default Value: 0
Generate Options: WX GUI | | i o7
Maximum: 100
o Converter: Float GMSK Mod
10z samp_gate Samples/Symbol: 2
Value: 1M BT: 350m
Packet Encoder
Samples/Symbol: 2
1
[preambie:
Access Code:
Pad for USRP: Yes Multiply Const
Payload Length: 0 Constant: 1
WX GUI FFT Sink
Title: Transmitted Signal
Sample Rate: 1M
File Source Vector Source e
File: . uDesktopiGRC/my.txt Vector: 255, 255, 255 Mokt
Repeat: fes Tage: RefLevel (d8): 0
Repeat: Yes)
- RefScale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Freq Set Varname: None
| —

UHD: USRP Sink
[[| sam Rate (sps): 14

==
Stream ID: gfsk
Cho: Center Freq (Hz): 400M
Cho: Gain Value: 20
J—" Cho: Antenna: TX/RX
TSB tag name:

WX GUI FFT Sink
Title: Transmitted Signal
Sample Rate: 1M
Baseband Freq: 0

¥ per Div: 10 B

¥ Divs: 10

RefLevel (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k
Refresh Rate: 15

Freq Set Varname: None

) 4

Figure 49 Transmission of Data using GMSK Modulation in GNU Radio

In Linux, we have written a block for synchronization purposes, which
runs by default at the backend when we run the GNU-radio top block.
The block is written as we have shown above along with code step-by-
step that how to build the module.
Next, the top block is shown in the Figure. 46 In the packet encoder
block we have set the synchronization with the preambles with the
variable “sync” in the preamble field. The rest top block works the same
as we have explained in the GNU radio Linex setup.

Mohammed pc.grc - fhome /intemnets/Desktop - GNU Radio Companion

>>> Done

UHD: USRP Source
Samp Rate (Sps): 1M
[[| eno: center Freq (ha): <oom

Loading: "/homefintemnets/Desktop/Mohammed pc.grc”

Multiply Const
constanti1 |

GMSK Demod
Samples/Symbol: 2

 Gain Mu: 175m
Mu: 500m

| Omega Relative Limit: 5m
Freq Error: 0

WX GUI FFT Sink

<<< Welcome to GNU Radio Companion 3.7.11 5> 1d

Title: Received signal
Sample Rate: 1M
Baseband Freq: 0
¥ per Div: 1058

=] ¥ Divs: 10

Ref Level (4B): 0
Ref Scale (p2p): 2
FFT Size: 1028
Refresh Rate: 15

Value
Block paths: Imports
Jusr/share/gnuradio/grc/blocks ¥ Variables
rfgain <Open Properties>

samp_rate 1000000

Freq Set Varname: None

| Qc

File Sink
Flle: ..tsDesktopftest2 txt
A unbufterea: oft

| Rppend fle: Overnrite

¥ Core

=

* Audio

* Boolean Operators
+ Byte Operators

* channelizers

* Channel Models

* Coding

* Control Port

* Debug Tools

+ Deprecated

* Digital Television
* Equalizers

* Error Coding

* FCD

* File Operators

* Filters

* Fourier Analysis

* GUI Widgets

* Impairment Models
* Instrumentation

¥ Level Controllers
* Math Operators

* Measurement Tools
* Message Tools

* Misc

* Modulators

* Networking Tools
* NOAA

* OFDM

* Packet Operators

* Now, Run the grc file to transmit the data.

58

3.3.10 GMSK Receiver

To receive data this was transmitted at 400 MHz center frequency. The GMSK
receiver was built on another Laptop and the data is received at 400 MHz. The
following blocks were built inGNU radio as shown in Figure 50.

Samp Rate (Sps): 1M

ChO: Gain Value: 15
ChO: Antenna: RX2

UHD: USRP Source

ChO: Center Freq (Hz): 400M

| GMSK Demod

| sampies/Symbol: 2
Multiply Const { Gain Mu: 175m

| Omega Relative Limit: 5m

i Freq Error: 0

Low Pass Filter
Decimation: 1
Gain: 1
| Sample Rate: 1M

Cutoff Freq: 350k

| Transition Width: 50k
| Window: Hamming
Beta: 6.76

WX GUI FFT Sink
Title: Received signal
Sample Rate: 1M
Baseband Freq: 0

Y per Div: 10 d8

¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Freq Set Varname: None

Figure 50 GMSK Demodulation in GNU Radio

File Sink

File: ..ts/Desktopftest2.txt
I Unbuffered: Off
Append file: Overwrite

For testing, the steps were repeated as we make the USPR
connection at thetransmitter side.
Check the USRP connection after connecting with the computer.

Open Linux terminal and enter the command “uhd_find devices”

0
0

If the connection is successful, you find from the terminal

the status of the USRP that is connected.
Then attach the antenna with the USRP.

Then in the GNU radio click the run button for reception shown in Figure

51.

*Mohammed pc.grc - /home/intemnets/Desktop - GNU Radig

10: top_block
Generate Options: WX GUI

UHD: USRP Sink
Samp Rate (Sps): 14

ChO: Center Freq (Hz): 200M
Cho: Gain Value: 20

Cho: Antenna: TXRX

S8 tag name:

Packet Encoder
Samples/Symbol: 2
Bits/Symbok: 1
Preamble: sync
Access Code:

Pad for USRP: Yes

Payload Length: 0

Samples/Symbol: 2
BT: 350m

WX GUI FFT Sink
Thle: Transmitted Signal
Sample Rate: 1M
Baseband Freq: 0

Wultiply Const
Constant: 1

¥ per Div: 1006
¥oha: 10

" Fite Source RefLevel (dB):0
Fie:
Repeat: es

Ret Scale (p2p): 2
FFT Size: 1024k
Refresh Rate: 15
Freq Set Varname: licre

Figure 51 Running the grc File

59

As the received data was GMSK modulated it was received and demodulated
using the signal processing block “USRP source” and “GMSK Demod”
respectively and then stored in a file using the file sink block.

Table 3 shows the parameters of the blocks used.

Sample rate IM
Center frequency 400 MHz
Modulation GMSK (BPSK)
Cut off frequency 350K
Transition width 50K
Window Hamming
Beta 6.76

Table 3 Parameters

3.3.11 Results of File Transmission using GMSK in GNU Radio

Now, we have set up the USRPs with both systems and the antennas are
attached to both USRPs.

60

So, the data is transmitted from a file as shown in Figure 52.

mj tx - Motepad

File Edit
Hi. My name is Hahammad.|

Format View Help

Figure 52 Data to be transmitted

3.3.12 FFT Plot after GMSK Modulation
Figure 53 Both Antennas Attached with both USRPs

The GMSK plot is shown in Figure 54 after GMSK modulation.

sun 330AMe

Top Block
, Transmitted Signal [e ostions
e .AVEHQE
= o A ke i 1 p ersistence
30 i] f"'u An wﬁh ’l(\ﬂ‘u\ri‘“:/{‘y h(It ﬂ'n N\,‘ \‘\q V Mif m".; f\j ‘P“\IW} \«IL}I\' ‘FU\\‘ o Opersistence
g ,”\wrwn_fmv —\‘ﬂ‘ {‘ [W ! “ \V vy [A M'I\N ‘1'”’\11\‘] f‘“#
e - ; il ; | ' \ " & TraceA |stort
§ :: il \"‘W ‘.\{J‘U\"J' oy rr Ay-ph fih M \‘rk Y S A ﬂf ff \)‘ jﬂ\ L‘ M ‘J\‘\ TraceB ::an
- ! '/ i " \’f \r\‘('.;“ Il ()‘ W\\ P i) f / I/ i [ey Axis Options
|) dB/oiv:
-80
-90 Ref Level:
.W'USQG 400 -300 200 100 [100 200 300 400 500 Auoscale
Frequency (kiHz) stop
rrgain: [0.0

Figure 54 Plot after GMSK Modulation
3.3.13 Received Signal

The signal received is shown below in Figure. 55.

Actlvities Sun 3:33AMe

Top_block.py ~

Top Block

E : Received signal] m;ﬁr}::ﬁgs
f— Average
0) (
E 20
Persistence
4 20 :
=‘i‘ 2: 4 W"\ - 1(\ “W,H‘{ ’\/Uﬂf !J'Jf“{\r‘/rm‘l .‘JV ‘w‘"‘;{‘.‘u “l\\["‘"‘V“:‘If\\r“r"\w‘f ‘w fo i y TraceA | Store
AT LA R il L R AR LY M
@ § 0 . Ly ‘m" l‘ J‘«‘ﬂlﬂl ‘v l } \ {\ {} “ J : \‘ ‘r“ L\\‘a“r-‘[”/‘w &) i Trace | store
o " ,\‘[f‘ Jrfw J‘H | w 11 [ﬁ" i ‘v\[‘\f W Axis IOpnonsi'
« ”.'\‘ Y | I .\N“' dB/Div: 3] -
5 Wﬂw‘ » /\a‘ RefLeve: |4 -
100 : A Autoscale
-500 -400 -300 200 -100 0 100 200 300 400 500
.> Frequency (kHz) Stop
Ifgain: | 0.0
-

Figure 55 Signal received

61

3.3.14 Data stored in the file sink

After receiving the signal, the demodulation is performed. As shown in Figure.
48 the demodulation is performed. After receiving the signal from the USRP
source, it is passed to low pass filter with a cut-off frequency of 350K. After the
low pass filter, it passes to the GMSK demodulation block and then to the packet
decoder. Finally, the received file is stored in the system using the File sink block.
The received data is shown in Figure 56.

) r - Notepad - ul
P

File Edit Format View Help

name is Mohammad.Hi. My name is Mchammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohamm:
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mchammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohamm:
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohamm:
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mchammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammi
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mchammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammi
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammi
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. M
d.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohamm:
Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name is Mohammad.Hi. My name i:
name ic Mohammad_Hi. Mv name ic Mohammad. Hi. Mv name ic Mohammad_Hi. Mv name ic Mohammad Hi. Mv name i< Mohammad Hi. Mv name ic Mohammad Hi. Mv name ic Mohammad Hi. M

Figure 56 Received Data

Figure 53 shows the repetition because the data is being appended to it.

3.3.15 Transmitting Zeros and Ones using GMSK

e Similarly, to transmit zeros and ones we transmitted we modulated the following
file figure 57.

mj tx - Motepad

File Edit Format View Help

1e111ee1el11e1el1110e1e118|
Figure 57 Data to be Transmitted

e This file path is fed to the File source block in the GNU radio.

| File Source
| File: . mneto/Desktopitx txt
| Repeat: Ve

e After this, the file is modulated using the GMSK as we have discussed in the
above section. The top block is shown below in Figure 58 for the transmission.

62

UHD: USRP Sink
Samp Rate [Sps): 1M
Chi: Center Freq (Hz): 200M

GMSK Mod Chid: Gain Value: 20
Fiio Sesirce :;n;l;:’!vmbnt 2 ::::t.:nt::"n:lﬁ.ﬂx
Flle: .. mnets/Desktop/tx.txt [. - 2
Repeat: Yes

WX GUI FFT Sink
Tithe: Transmitted Signal
Sample Rate: 1M
Baseband Freq: 0
Y per Div: 10 dB
¥ Divs: 10
RefLevel (dB): 0
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Freq Sat Varname: None

Packet Encoder
Samples/Symbol: 2
Bits/Symbol: 1

Preamble:
Access Code:
Pad for USRP: Yes
Payload Length: 0

Multiply Const
Constant: 1

Figure 58 The Transmission top block

e This all processing is done with the USRP attached to the
computer with the antennaattached to USRP.

e For the receiving purpose, we used the second USRP attached to
the laptop at a certaindistance for the On-air test.

e The receiver Top-block for receiving the signal is built in GNU radio
as shown in following figure 59.

Multiply Const
Constant: 1

i GMSK Demod
| samples/Symbel: 2
| Gain Mu: 175m

Mu: 500m

Low Pass Filter
Decimation: 1
Gain: 1
Sampie Rate: 1M
Cutoff Freq: 350k
Transition Width: 50«
Windaw: Hamming
Beta: 6.76

UHD: USRP Source
Samp Rate (Sps): 1M
ChO: Center Freq (Hz): 200M
‘Cho: Gain Value: 15
Cho: Antenna: RX2

WX GUI FFT Sink
Title: Received signal
Sample Rate: 1M
Baseband Freq: 0

¥ per Div: 10 08

¥ Divs: 10

Ref Level (dB): O
RefScale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Freq Set Varname: None

File Sink
File: .. ts/Desktopftest2 txt
Unbuffered: O
Append file: Overwrite

Figure 59 The Resciption top block

e The USRP source receives the signal at 400 MHz. After receiving the
signal, it demodulates the signal using GMSK demodulation and then
stores the received data using the File sink.

e The received data is shown in following figure 60.

) m - Notepad - o X
File Edit Format View Help
efle111001011010111@0@1011081011108010116161110010110101110@010110810811108081011081611100810118
1811@81@01110@6101101@1110010811081081116681011081011100101101@111p01081108108111680810811810111001
116610811010111001@011010111008101101011160810811010111001011010111680810110108111681081101011
gl1e111001011@010111@0@10110810111001011616111001011010111@01011081081110808101108161110010118
1811@81@01110@6101101@1110010811081081110681011081011100101101@111001081108108111680810811810111001
116610811010111001@011010111008101101011160810811010111001011010111680810110108111681081101011
gl1e111001011@010111@0@10110810111001011616111001011010111@01011081081110808101108161110010118
1811@81@01110@6101101@1110010811081081110681011081011100101101@111001081108108111680810811810111001
116@10811010111001@110101110601011010111608101101011100101101011160610811010811108010118@

Figure 60 The received data

63

Chapter: 4 Receiving and Processing CubeSat Signal

This chapter is a guide to receiving the CubeSat signal and lists steps to demonstrate how to
decode the received signal. For the transmitter side, The Transceiver is connected to the
COM port by the i2c bus[21]. The software allows the flexibility to program the
microcontroller in a way that it can transmit customized data. The receiver is implemented by
a software defend radio and what we are using is Universal Software Peripheral Device
(USRP) N2920 USRP is programmed with the Gnu-radio to receive the signal [22]. After the
reception, the signal is decoded to receive the transmitted data. The following Figure. 61
shows the block diagram of the AX.25 transceiver that is used to transmit the CubeSat signal.

((@o oj)D @@orDD

CubeSat > ™ s USRP
parsing ansceiver

parameters

Decoded
Message

MPLAB

Y

GNU Radio

Y

Figure 61 The block diagram of Receiving and Processing CubeSat Signal

The following sections explain the transceiver and receiver separately.

4.2 MP Lab

MPLAB is a popular software development tool for Microchip Technology's microcontrollers
[23]. It is a comprehensive integrated development environment (IDE) that enables
developers to write, compile, and debug firmware for a variety of Microchip microcontrollers.

64

Figure. 62 shows the MP lab software wizard.

B8 MPLAE X IDE v185 - pwm test: default —
Fila Edit View Mavigste Source Refactor Rum Debug Team Tooks Window Help
ﬁ'ﬂg% BR) i defoult jc‘J 'E‘j'i-lﬁj‘ -%E)— PC: Dx0 novedoc ;Wilxd - bark O Q| Search (ClT]
i : Projects @ & |: Files | mainc & 1] [=][=)
2 [5-5 pom =t BE-E-la%yEee e oo d| o i@
&) \;-ﬁHcadtn-I:s 18 - a
i manc : . N
e[Importznt Fies :) R
6 [Linker Files a .
[Source Fies .
-l Loraries p
(il [Loadables 2
. —
10 TI ¥2
1 fig WDT=OFF,0SC=HS, LVP=OFF, IESO=OFF, FCMEN=OK, XINST=OFF
12
13 wvoid main()
SENC N
15 ADCONL - 0x0£;
: main{)-Mavigator i pwm_test. @1 || 16
8 [Fa pom et —1| 27 wnile (1) :]
;’_ @ Device 18 return (0]
L] P PIC IS 18-
= - 8 Checkaum: 028354 20
" =1 compier Tookhan FI
B €18 (v3.35) [C:Wrogram Fles
' CLE (v3.35) [B :
@ | & ey 5| |2 Output % & :Tasks
= LA 1555 (0613) byles [Project Loeding Waning = | Corfiguraton Loadng Error %
%
info: Configuration "default” will build with toolchein "CLE™ at "C:\Progrem Files\MicrochiphMCE1Z\bin®.

D R Uised: O (0od) Free:
99 R Fleservmc: Procuckion
=~ Flash 32763 (OnE000) bytes
0%
8 Fash Usedh O [0x0) Free:
{588 Flash Reserved: Produ
=- 3l Debug Resources =

4 T T

17114 IS

Figure 62 The MP lab software wizard

The CubeSat Microcontroller is connected to the MP lab by In-Circuit Debugger ICD3 . The
procedure to connect the transceiver with the MP lab is provided in [24]. The following
section explains the AX.25 transceiver.

4.3 UHF Transceiver 11

The UHF Transceiver II is an advanced communication device, a leading manufacturer of
satellite communication equipment. This transceiver operates in the ultra-high frequency
(UHF) band, which provides reliable and high-quality communication over long distances.
It's compact design and low power consumption make it suitable for a wide range of
applications, including military, maritime, and aviation communications. The UHF
Transceiver II is equipped with advanced features such as frequency hopping, encryption, and
noise reduction, ensuring secure and uninterrupted communication. has a strong reputation
for delivering high-performance communication equipment [25].

4.4 Transceiver Interface with MP Lab

The transceiver is connected to the microcontroller by an I2C bus, details of these
connections and the configuration of the transceiver are in [26].

65

4.6 2GFSK

Gaussian frequency-shift keying is a type of digital modulation technique used in wireless
communication systems [26]. In 2GFSK, the frequency of the carrier signal is shifted
between two values to represent binary data, where a shift to a higher frequency represents a
binary 1, and a shift to a lower frequency represents a binary 0.

The "Gaussian" in the name refers to the use of a Gaussian filter to shape the frequency-
modulated signal, which helps to reduce interference and increase the signal-to-noise ratio.

4.6 Baud rate

Baud rate refers to the number of symbols or signal changes transmitted per second over a
communication channel. It is a measure of the rate at which information is transmitted and is
often used interchangeably with "symbol rate" [27].

A symbol can be defined as a discrete value that represents a piece of data, such as a binary 0
or 1, or a group of bits. The baud rate is therefore a measure of how many symbols or bits can
be transmitted per second, and it is typically expressed in units of bits per second (bps) or
symbols per second (baud)[27].

4.7 Modulation Index

The modulation index is a measure of the degree of modulation in a modulated signal [28].

For frequency modulation (FM), the modulation index (m) is defined as the ratio of the
frequency deviation (Af) of the carrier signal to the frequency of the modulating signal (f m):

m=Af/f m

where Af is the maximum deviation of the instantaneous frequency of the carrier signal from
its center frequency, and f m is the frequency of the modulating signal. The modulation
index determines the degree of frequency variation in the carrier signal.

4.8 Frequency Deviation

Frequency deviation is a measure of the extent to which the frequency of a modulated signal
varies from its unmodulated or carrier frequency. It is a characteristic of frequency
modulation (FM) and phase modulation (PM) systems, which use variations in frequency or
phase, respectively, to represent information [29].

In FM systems, frequency deviation is the maximum instantaneous change in frequency of
the carrier signal, caused by the modulation signal. It is usually expressed in units of hertz
(Hz) or kilohertz (kHz) and can be determined by subtracting the carrier frequency from the
highest and lowest frequencies of the modulated signal.

66

4.9 Preamble

The preamble is a specific pattern of bits or symbols that is added at the beginning of a
transmitted data frame or packet. The preamble is used to aid in the synchronization of the
receiver and transmitter, as well as to provide the receiver with information about the start of
the data frame [30].

The preamble is typically a fixed-length sequence of bits or symbols that is known to both the
transmitter and receiver. It serves as a synchronization marker, allowing the receiver to
identify the start of the data frame and synchronize its clock with the transmitter's clock. This
is important because the transmission and reception clocks may be subject to drift or other
types of error, which can cause the data to be misinterpreted if not properly synchronized.

4.10 Sync Word

Sync word (short for synchronization word) is a specific sequence of bits or symbols that is
added to the beginning of a data frame or packet to aid in the synchronization of the receiver
and transmitter. The sync word is usually chosen to have a unique and distinguishable pattern,
which helps the receiver to differentiate it from the rest of the data in the packet. It may also
be designed to have certain error-correcting or error-detecting properties, which can improve
the reliability of the transmission [31].

4.11 Transmission

The transmitted message is “Hello, World!” in ASCII. the message is modulated and
transmitted over the air at 435 MHz frequency. Figure 63 shows the spectrum analyzer
connected to the antenna to detect the transmitted signal.

Figure 63 The spectrum analyzer connected to the antenna

67

4.14 Receiver Implementation
Figure. 64 shows the block diagram for the receiver implementation.

>

USRP ——>» GNU Radio —>

Decoded
Message

Figure 64 The receiver implementation

Since the default installation of Gnu radio does not have specific blocks for the demodulation
of the received signal. To process the received signal in the GNU Radio, specific blocks need
to be built for the demodulation. Those specific blocks are as follows.

e FSK Demodulator
e Ax.25 Deframer

4.14.1 FSK Demodulator

FSK stands for Frequency-Shift Keying. To implement an FSK demodulator, you can set the
input of the FSK demodulator block to the modulated signal that was transmitted with FSK
modulation. The output of the FSK Demod block will be the baseband signal.

To extract the original digital signal from the baseband signal, you have to use the AX.25
deframer, since the transmitted signal is encapsulated in the Ax.25 Transciever format.

4.14.2 Ax.25 Deframer

AX.25 is a communication protocol used in amateur radio and satellite communication
systems for transmitting data over a radio link. AX.25 uses a specific format for framing and
encapsulating data, which includes a flag, address, and control fields, a data field, and a frame
check sequence (FCS) field [34]. The AX.25 deframer is a block in GNU Radio that is used
to extract the payload data from an AX.25 frame.

The AX.25 deframer block in GNU Radio takes an input signal that contains an AX.25 frame
and outputs the payload data contained in the data field of the AX.25 frame. The block
performs the following steps:

1. Searches for the flag sequence of the AX.25 frame, which is a special bit sequence
(01111110) that indicates the beginning and end of an AX.25 frame.

2. Extracts the address and control fields to ensure that the AX.25 frame is valid and
intended for the receiver.

68

3. Extracts the payload data from the data field of the AX.25 frame.
4. Computes and verifies the FCS of the payload data to ensure the integrity of the data.

To set up an AX.25 deframer in GNU Radio, you can follow these steps:

Create a new flowgraph in GNU Radio Companion.

Add a Source block to input the AX.25 frame.

Add an AX.25 Deframer block to extract the payload data from the AX.25 frame.
Add a Sink block to visualize or output the extracted payload data.

Once you have set up the AX.25 deframer, you can run the flowgraph and observe the
output signal in the Sink block. The output signal will be the payload data extracted
from the AX.25 frame.

M.

In amateur radio and satellite communication systems, AX.25 deframing is used to extract the
transmitted data from the AX.25 frames. It is used in various communication systems, such
as in packet radio networks, satellite telemetry, and remote control systems.

4.14.3 Setting up a GNU Radio

This section explains the GNU radio installation and gr-uhd setup for the USRP configuration
in GNU radio. Please follow the steps from “Appendix F” for the complete installation of
customized GNU radio from the source.

4.14.4 Building and installing GNU Radio from source code

Building GNU Radio from source code is a beneficial approach for development and
prototyping, similar to the process of constructing UHD. It entails cloning the appropriate
GitHub repository and creating a build folder within the repository. The build process
involves using CMake to generate the Makefiles, followed by executing the Make
command to compile the GNU Radio software. Once the build process is successful, the
software is installed and ready to use.

1. Go to the following folder to hold the repository.
cd SHOME

cd workarea

2. Open terminal.

3. In the terminal window, check which version of Python is installed by typing the
following command.
python —version

4. Python 2.7.15+ (this indicates the default version of Python, which must be changed
to Python3 by following the steps.

69

sudo update-alternatives --install /usr/bin/python /usr/bin/python2.7 1
sudo update-alternatives --install /usr/bin/python /usr/bin/python3.6 2

sudo update-alternatives --set python /ust/bin/python3.6

W

Now type, sudo apt install python3-pip
6. Now install a few more tools.

®* pip3 install --wpgrade setuptools

® pip3 install click

7. Clone the repository.

git clone --recursive -b maint-3.7 --single-branch
https://github.com/gnuradio/gnuradio.git

8. cd gnuradio/
9. mkdir build
10. cd build

11. cd build

12. cmake ../output may report gmp, mpir and/or thrift not found. This seems not to
matter.

13. make -j4
14. sudo make install
15. sudo ldconfig

16. Verify the correct version of GNUradio is installed by typing gnuradio-companion

Now the GNU radio 3.7 is installed.

4.14.5 Building and installing gr-satellites

gr-satellites is a GNU Radio out-of-tree module encompassing a collection of telemetry
decoders that supports many different Amateur satellites [35][36]. Follow the following steps.

open a new terminal window

Go to the folder already created cd Workarea/

git clone -b maint-3.7 --single-branch https://github.com/daniestevez/gr-satellites.git
cd gr-satellites

mkdir build

cd build

cmake ../

Ao

70

8. make -j5

. sudo make install

10. sudo ldconfig

11. cd ..

12. ./compile hierarchical.sh

13. close terminal window

Now the gr-satellite is successfully installed with your system.

4.14.6 OOT Module Ax.25 Deframer

OOT in GNU Radio stands for "Out-of-Tree" modules. These are modules that are developed
outside of the main GNU Radio source tree. Out-of-Tree modules can provide additional
functionality to GNU Radio and can be developed by the community or by individuals.

The Out-of-Tree modules can be built and installed separately from the main GNU Radio
source code. This allows for greater flexibility in the development and deployment of GNU
Radio-based systems and makes it easier to maintain and update individual modules.

Following are the steps for the installation of the Ax.25 Deframer block in GNU radio.

1. Go to the folder by typing the following command in your terminal.
cd workarea/gr-satellites

2. Type the following command.
sudo nano gedit ax25.py

3. Write the code in the Python file and then save the file. Rrefer to “Appendix G for
the code.

4. For binding, write the C code. In the terminal type the following command.
sudo nano gedit ax25 python.cc

5. Write the code in the c file given in “Appendix H”.
6. Now go to the build directory by typing the following command.
cd build

7. Once you are inside the build directory, you can configure the build process by
running the following command. This will generate the makefiles needed to build the
module.
cmake..

8. Finally, you can build and install the module using the following commands:

make
sudo make install

71

The 'make' command will build the module, while the 'sudo make install command will
install it on your system.

After the completion of these steps, now, all the necessary modules have been built.

4.15 Receiver Flowgraph

We built the flowgraph as shown in Figure. 65. Since the received signal is encapsulated
using a scrambler and ax.25 frames. To decode the received signal, use the Ax.25 deframer
that we built as an OOT module in our GNU radio. From the following flow graph, the
original signal is successfully recovered. In the FSK block the baud rate is set to 9600 and the
sample rate is adjusted to 1 M samples per sec to receive the signal over the air via USRP. In
Ax.25 deframer, the scrambling is turned ON. The Ax.25 block output is further connected to
the Message Debug block which displays the received message.

Options Variable
Title: Not titled yet Id: samp_rate
Author: intemnets Value: 400k

Output Language: Python
Generate Optlons: QT GU|

QT GUI Sink
Name:
FFT Size: 1.024k
Center Frequency (Hz): 0
Bandwidth (Hz): 400k
Update Rate: 10

UHD: USRP Source
Sync: No Sync
Samp rate (Sps): 400k
C ChoO: Center Freq (Hz): 435M
~| Cho: AGC: Default
ChO: Gain Value: 15
ChO: Gain Type: Absolute (d8)
ChO: Antenna: RX2

FSK Demodulator [| Message Debug

Baudrate: 9.6k .,:
Sample rate: 400k [~
Subaudio: True

- AX.25 Deframer
“| G3RUH scrambling: True

Figure 65 Demodulation flow graph using AX.25 Deframer

4.16 Testing the Receiver

To test the receiver, connect the USRP to your computer. Follow the below steps.

Attach USRP with your computer using the Ethernet.

Open the GNU Radio by typing the command in your terminal: gnuradio-companion
Drag the USRP source block in your flow graph.

Tune the USRP frequency to 435 MHz.

b=

72

UHD: USRP Source
Samp Rate (Sps): 38.4k
ChO: Center Freq (Hz): 435M
ChO: Gain Value: 15
ChO: Antenna: RX2

5. Connect the QT GUI sink to visualize the received signal.

QT GUI Sink
FFT Size: 1.024k
—’I Center Frequency (Hz): 0
Bandwidth (Hz): 38 4k
Update Rate: 10

6. Figure. 65 shows the received signal spectrum.

Activities Top_block.py ~

Waterfall Plot
[.

m Ran,
o PYnRange
s RefLevel

73 Color: [RGB+

e Autoscale

)
Frequency (kHz)

Received signal me

4345 a6 4347 1348 4349 435 4351 4352 4353 4354 435,

Figure 65 The received signal spectrum

Now the signal is being received as shown in Figure. 65. Next goal is to decode the signal.

4.16.1 Received Signal Output

The received signal output is shown in Figure. 65. The Message Debug block is shown in
Figure. 66 displays the received message in hex format.

* MESSAGE DEBUG PRINT PDU VERBOSE *
i)
pdu length = 29

contents =
0000: 86 a2 40 40 40 40 e0 bo bo 60 aa 90 8c el 63 fO
0016: 48 65 6C 6c 6T 2c 20 77 6T 72 6¢C 64 21

hekdkhh bk hh bk khd ok dde ok oh ke dek ok ko

Figure 66 The received signal output

73

The second row shown in Figure 66 is represented as 0010 and the contents (48 65 6¢ 6¢ 6f
2¢ 20 77 6 72 6¢ 64 21) represent the “Hello, World!” in ASCII as shown in Figure 67. This
message is received every 1 sec as the transmitter is transmitting.

From To

Hexadecimal v Text v

[Open File n

Paste hex numbers or drop file

48 65 6c 6Cc 6f 2c 20 77 6 72 6Cc 64 21

Character encoding

ASCII v

Hello, world!

[0 Copy | &, Save

Figure 67 Converting from Hex to ASCII

74

Chapter: 5 Conclusion and Future Work

This research project aimed to design and implement a low-cost and flexible CubeSat
receiver system using USRP and GNU Radio. The system was designed to operate in the
UHF frequency range and was able to receive and decode Ax.25 radio-formatted telemetry
and payload data from CubeSats in real time. The use of USRP and GNU Radio provided a
highly flexible and customizable platform for signal processing and demodulation, allowing
the system to be easily adapted for different CubeSat missions.

Through the development of this CubeSat receiver system, this research project has made
several significant contributions to the field of small satellite technology. Firstly, the system
developed in this research project represents a significant advancement in the field of
CubeSat ground station technology. The low-cost and flexible nature of the CubeSat receiver
system makes it an attractive option for organizations and researchers interested in CubeSat
missions. This could potentially lead to more frequent and diverse CubeSat missions,
enabling a wider range of scientific and technological applications.

Secondly, this research project has provided valuable insights into the design and
implementation of SDR-based CubeSat communication systems. The use of USRP and GNU
Radio for signal processing and demodulation has allowed for the development of a highly
customizable and adaptable system that can be tailored to meet the requirements of different
CubeSat missions. This could lead to new developments in the field of small satellite
technology, enabling more sophisticated and capable CubeSats to be developed.

Overall, this work represents an important step towards democratizing access to space and
advancing the capabilities of CubeSats for a wide range of applications.

5.1 Future work

While this research project has achieved several significant advancements in the field of
CubeSat ground station technology, there are several areas where the system could be further
improved and expanded upon. Some possible areas of future work are:

e Integration of more advanced signal processing techniques: The current CubeSat
receiver system uses a basic signal processing algorithm for demodulating the
received signal. Future work could explore the use of more advanced algorithms, such
as machine learning-based approaches, to improve the accuracy and reliability of the
demodulation process.

e Increased frequency range: The current system is designed to operate in the UHF
frequency range. Future work could explore the development of a receiver system that
can operate at a wider range of frequencies, enabling the reception of data from a
wider range of CubeSats.

e Comprehensive user interface: While the current system provides a basic user
interface, future work could explore the development of a more comprehensive user
interface that enables more advanced control of the receiver system and better
visualization of received data.

75

e Real-world testing: While the CubeSat receiver system developed in this research
project has been tested in a laboratory environment, future work could involve testing
the system in a real-world CubeSat mission. This would enable the validation of the
system's performance and demonstrate its capabilities in a practical setting.

e Collaboration with other CubeSat ground station projects: The development of
CubeSat ground station technology is a rapidly evolving field, with many other
research projects also working on developing similar systems. Future work could
involve collaborating with other projects to share knowledge and expertise, enabling
the development of even more capable CubeSat receiver systems.

Furthermore there are several avenues for research that can enhance the system's
performance and expand its capabilities. Some of the potential future work areas include:

e Future work can focus on evaluating the ground station reception performance
under different conditions, such as varying levels of received power. This will
help in determining the threshold for successful reception and the impact of
reduced power on bit and packet error rates.

e The effect of vibration on the received signal can be studied to develop strategies
for mitigating the impact of antenna movement. Future work can involve
measuring the vibration level and studying its effect on the received signal to
develop a solution for improving signal stability during antenna movement.

e Future work can focus on expanding the system's capabilities to enable the
transmission of telemetry data from LMU CubeSat, rather than just "Hello,
World!" messages. This will require further development of the software and
hardware used in the system.

e Future work can involve the development of techniques for tracking and receiving
signals from satellites that are less powerful than NOAA 20. This will require the
optimization of the hardware and software used in the system to improve its
sensitivity and selectivity.

In conclusion, while this research project has made several significant advancements in the
field of CubeSat ground station technology, there is still significant potential for further
research and development in this area. By continuing to explore the use of SDR-based
CubeSat communication systems, we can enable more sophisticated and capable CubeSats to
be developed, potentially leading to breakthroughs in scientific research and technological
innovation.

76

References

[1] Heidt, Hank, et al. "CubeSat: A new generation of picosatellite for
education and industry low-cost space experimentation." (2000).

[2] Priscoli, F. D., & Muratore, F. (1993, November). Study on the Integration
between the GSM Cellular Network and a Satellite System. In Proceedings of
GLOBECOM'93. IEEE Global Telecommunications Conference (pp. 588-592).
IEEE.

[3] Lofaldli, André, and Roger Birkeland. "Implementation of a software-
defined radio prototype ground station for CubeSats." Proceedings of the ESA
Small Satellites Systems and Services Symposium, Valletta, Malta. Vol. 30.
2016.

[4] Ben-Larbi, Mohamed Khalil, Kattia Flores Pozo, Tom Haylok, Mirue Choi,
Benjamin Grzesik, Andreas Haas, Dominik Krupke, et al. "Towards the
automated operations of large distributed satellite systems. Part 1: Review and
paradigm shifts." Advances in Space Research 67, no. 11 (2021): 3598-3619.
[5] https://www.ft.com/partnercontent/reckitt/why-data-improves-both-public-
and-planetary-health.html

[6] Jia, Ziye, et al. "Towards data collection and transmission in 6G space-air-
ground integrated networks: Cooperative HAP and LEO satellite schemes."
IEEE Internet of Things Journal (2021).

[7] Coronado, Patrick L., and Kelvin W. Brentzel. "NASA direct readout for
its polar-orbiting satellites." Earth Science Satellite Remote Sensing. Springer,
Berlin, Heidelberg, 2006. 52-76.

[8] Zenuk, A. TIROS VIII attitude summary/Orbits 4000-8938/, Volume II
Fourth technical summary report, 22 Sep. 1964-29 Aug. 1965. No. NASA-CR-
71082. 1965.

[9] Draim, John, et al. "Demonstration of the Cobra Teardrop concept using
two smallsats in 8-hour elliptic orbits." (2001).

[10] Jolles, Jolle W. "Broad-scale applications of the Raspberry Pi: A review
and guide for biologists." Methods in Ecology and Evolution 12.9 (2021):
1562-1579.

[I1] Rubio, Antonio J., Abdul-Sattar Kaddour, and Stavros V.
Georgakopolous. "Circularly Polarized Wideband Yagi-Uda Array on a
Kresling Origami Structure." 2020 IEEE International Symposium on
Antennas and Propagation and North American Radio Science Meeting. IEEE,
2020.

[12] Velasco, César, and Christian Tipantuiia. "Meteorological picture
reception system using software defined radio (SDR)." 2017 IEEE Second
Ecuador Technical Chapters Meeting (ETCM). IEEE, 2017.

[13] https://www.dxengineering.com/parts/msq-436¢p30

[14] https://www.nooelec.com/store/nesdr-smartee-sdr.htm

[15] https://www.ni.com/ko-kr/support/model.usrp-2920.html

[16] https://www.ettus.com/all-products/wbx/

[17] Stewart, Robert W., et al. "A low-cost desktop software defined radio
design environment using MATLAB, Simulink, and the RTL-SDR." IEEE
Communications Magazine 53.9 (2015): 64-71.

77

[18] https://www.gnuradio.org/

[19] Gummineni, Madhuri, and Trinatha Rao Polipalli. "Implementation of a
reconfigurable transceiver using GNU Radio and HackRF One." Wireless
Personal Communications 112.2 (2020): 889-905.

[20] Li, Yan, Yuen Sam Kwok, and Sumei Sun. "Fast synchronization
algorithms for GMSK at low SNR in BAN." 2011 IEEE 13th International
Conference on e-Health Networking, Applications, and Services. IEEE, 2011.
[21] Litov, L., et al. "EnduroSat Electronics Radiation Test at the CERN
Gamma Irradiation Facility Result." Bulgarian Journal of Physics 47 (2021):
26-30.

[22] Zugasti, Eduardo Macias. Development of the Payload System and Obc
Microcontroller Coding for a Cubic Satellite Performing an Additive Self-
repair Experiment in Space. Diss. The University of Texas at El Paso, 2020.
[23] COMPILER, C. "MPLAB® C18 C COMPILER GETTING STARTED."
(2005).

[24] Catherine, “Assessing Mission Attainment of LMU Solar Sail CubeSat”,
Loyola Marymount University CubeSat, April 2023.

[25] Thesis, “Linear EOS (LEPS) Module User’s Manual”, Loyola
Marymount University CubeSat Club, 9/07/2022.

[26] Thesis, “UHF-Type II Transceiver Module User’s Manual”, Loyola
Marymount University CubeSat Club, 10/11/2022.

[27] Bostan, Viorel, et al. "TUMnanoSAT Nanosatellite and Kibocube
Program." 2020 13th International Conference on Communications (COMM).
IEEE, 2020.

[28] Hung, Chung-Wen, Wen-Ting Hsu, and Kou-Hsien Hsia. "Multiple
frequency shift keying optimization of adaptive data rate for ultra-low power
wireless sensor network." 2019 12th International Conference on
Developments in eSystems Engineering (DeSE). IEEE, 2019.

[29] Frenzel, Lou. "What’s the difference between bit rate and baud rate."
Electronic Design) Retrieved June 21 (2012): 2018.

[30] Aboadla, Ezzidin Hassan Elmabrouk, et al. "Effect of modulation index of
pulse width modulation inverter on Total Harmonic Distortion for Sinusoidal."
2016 International Conference on Intelligent Systems Engineering (ICISE).
IEEE, 2016.

[31] Li, Meng, et al. "HW-DFT-Based Measurement Method of Frequency-
Coupling Characteristics Considering Fundamental Frequency Deviation for
Stability Analysis." IEEE Transactions on Power Electronics 38.5 (2023):
6613-6626.

[32] Zhang, Junwen, et al. "Efficient preamble design and digital signal
processing in upstream burst-mode detection of 100G TDM coherent-PON."
Journal of Optical Communications and Networking 13.2 (2021): A135-A143.
[33] Bernier, Carolynn, Frangois Dehmas, and Nicolas Deparis. "Low
complexity LoRa frame synchronization for ultra-low power software-defined
radios." IEEE Transactions on Communications 68.5 (2020): 3140-3152.

[34] Kaul, A. K. "Performance of high-level data link control in satellite
communications." COMSAT Technical Review 8 (1978): 41-87.

[35] Piron, Francgois. "Master thesis: Optimization of the AX-25 and D-STAR
telecommunications systems of the OUFTI-2 nanosatellite." (2019).

[36] https://github.com/daniestevez/gr-satellites

78

[377 GNU Radio. (2022). USRP Source. Retrieved
https://wiki.gnuradio.org/index.php/USRP_Source

[38] GNU Radio. (2022). File Sink. Retrieved
https://wiki.gnuradio.org/index.php/File Sink

[39] GNU Radio. (2022). File Source. Retrieved
https://wiki.gnuradio.org/index.php/File_Source

[40] GNU Radio. (2022). USRP Sink. Retrieved
https://wiki.gnuradio.org/index.php/USRP_Sink
[41]https://noaasis.noaa.gov/NOAASIS/pubs/Users Guide-
Building Receive Stations March 2009.pdf

from

from

from

from

[42]https://www.dl2sba.com/index.php/funk/sdr/320-wxtoimg-first-steps-on-

linux

[43]https://github.com/CChassis/RFbusters

44] https://www.cnblogs.com/jsdy/p/12702246.html

45] https://wiki.gnuradio.org/index.php?title=OutOfTreeModules
46] https://behrtech.com/blog/lpwan-antenna-placement/

47] http://gpredict.0z9aec.net/index.php
[48]https://www.researchgate.net/figure/Block-Diagram-of-the-SDR-
Receiver_fig2 303253115

1 ——

[49] Crane, H. R. "Reception of pictures from the weather satellites using

homemade equipment."” The Physics Teacher 7.4 (1969): 209-212.

79

Appendix A

This involves creating a new file with the name "schedule all.sh" in your text
editor and using the provided code for implementation. The code is provided
by the following reference [42].

#!/bin/bash
Update Satellite Information

wget -qr https://www.celestrak.com/NORAD/elements/weather.txt -O
/home/pi/weather/predict/weather.txt

#grep "NOAA 15" /home/pi/weather/predict/weather.txt -A 2 >>
/home/pi/weather/predict/weather.tle

#grep "NOAA 18" /home/pi/weather/predict/weather.txt -A 2 >>
/home/pi/weather/predict/weather.tle

#grep "NOAA 19" /home/pi/weather/predict/weather.txt -A 2 >>
/home/pi/weather/predict/weather.tle

#grep "METEOR-M 2" /home/pi/weather/predict/weather.txt -A 2 >>
/home/pi/weather/predict/weather.tle

#grep "SUOMI NPP" /home/pi/weather/predict/weather.txt -A 2 >>
/home/pi/weather/predict/weather.tle

grep "NOAA 20" /home/pi/weather/predict/weather.txt -A 2 >
/home/pi/weather/predict/weather.tle

#Remove all AT jobs
foriin ‘atq | awk '{print $1}";do atrm $i;done
#Schedule Satellite Passes:

#/home/pi/weather/predict/schedule satellite.sh "NOAA 19" 137.1000
#/home/pi/weather/predict/schedule satellite.sh "NOAA 18" 137.9125
#/home/pi/weather/predict/schedule satellite.sh "NOAA 15" 137.6200
#/home/pi/weather/predict/schedule satellite.sh "METEOR-M 2" 137.1000
#/home/pi/weather/predict/schedule satellite.sh "SUOMI NPP" 7812.0000
/home/pi/weather/predict/schedule_satellite.sh "NOAA 20" 7812.0000

80

Appendix B

This involves creating a new file with the name "schedule satellite.sh" in your
text editor and using the provided code for implementation. The code is
provided by the following reference [42].

#!/bin/bash

PREDICTION_START="/usr/bin/predict -t /home/pi/weather/predict/weather.tle

-p "${1}" |head -1°

PREDICTION END="/usr/bin/predict -t /home/pi/weather/predict/weather.tle -p "${1}" |
tail

-
var2="echo SPREDICTION _END |cut-d" " -f1°

MAXELEV="/usr/bin/predict -t /home/pi/weather/predict/weather.tle -p "${1}" | awk -v
max=0'{if($5>max) {max=$5} } END {print max}"

while [‘date --date="TZ=\"UTC\" @$ {var2}" +%D" == ‘date +%D"]; do
START TIME="echo

$PREDICTION START |cut-d"" -f3-4°

varl="echo SPREDICTION_START | cut

drt-f

var3="echo $START TIME |cut-d"" -f
2|cut-d"" -£3°

TIMER="expr $var2 - $varl + $var3"
OUTDATE="date --date="TZ=\"UTC\" $START TIME" +%Y%m%d-%H%M%S"
if [SMAXELEV -gt 19]
then
echo ${1//" "}${OUTDATE} $SMAXELEV
echo "/home/pi/weather/predict/receive_and process_satellite.sh \"${1}\" $2

/home/pi/weather/${1//" "}${OUTDATE} /home/pi/weather/predict/weather.tle
$varl STIMER" |at “date --date="TZ=\"UTC\" $START TIME" +"%H:%M %D"

if

nextpredict="expr $var2 + 60

81

PREDICTION_START="/usr/bin/predict -t /home/pi/weather/predict/weather.tle -p
"$ { 1 } n

$nextpredict | head -1°
PREDICTION END="/usr/bin/predict -t /home/pi/weather/predict/weather.tle -p "${1}"
$nextpredict | tail -1°

MAXELEV="/usr/bin/predict -t /home/pi/weather/predict/weather.tle -p "${1}"
$nextpredict jawk -v max=0 '{if($5>max){max=$5} } END {print max}"

var2="echo SPREDICTION _END |cut-d" " -f 1"

Appendix C

This involves instructions on how to implement the script for saving an image
file after processing a WAYV file.

#!/bin/bash

%1 = Satellite Mame
$2 = Frequency

%3 = FileMame base
$4 = TLE File

%5 = EPOC start time

O W W W

$6 = Time to capture

sudo timeout $6 rtl fm -f ${2}M -s 68k -g 45 -p 55 -E wav -E deemp -F 9 - | sox -t wav - $3.wav rate 11825
PassStart="expr $5 + 9@

if [-e $3.wav]

then

fusrflocal/bin/wxmap -T "${1}" -H $4 -p @ -1 @ -o $PassStart ${3}-map.png

fusrf{local/bin/wxtoimg -m ${3}-map.png -e ZA $3.wav $3.png
fi

82

Appendix D

The following is the code to install dependencies.

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

sudo

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

-y install git

install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install

install

swig

cmake

doxygen
build-essential libboost-all-dev
libtool libusb-1.0-0
libusb-1.0-0-dev
libudev-dev
libncurses5-dev
libfftw3-bin
libfftw3-dev
libfftw3-doc
libcppunit-1.13-0v5\
libcppunit-dev
libcppunit-doc
ncurses-bin
cpufrequtils
python-numpy
python-numpy-doc
python—-numpy-dbg
python-scipy
python-docutils
gt4-bin-dbg
gtd-default
gtd-doc
libgt4-dev
libgt4-dev-bin
python-gt4
python-gt4-dbg
python-gtd4-dev
python-gt4-doc
python-gt4-doc
libgwteabil
libfftw3-bin
libfftw3-dev
libfftw3-doc

83

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

doxygen

install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install
install

install

sudo apt-get install

ncurses-bin

libncursesb

libncurses5-dev

libncurses5-dbg

python-dev libfftw3

libfontconfigl-dev

libxrender-dev

libpulse-dev

swig gt+ automake autoconf libtool
python-dev libfftw3-dev

libcppunit-dev

libboost-all-dev

libusb-dev

libusb-1.0-0-dev

fort77 libsdll.2-dev

python-wxgtk3.0 git-core

libgt4-dev

python-numpy ccache python-opengl libgsl-dev
python-cheetah python-mako python-1lxml

gtd4-default gtd4-dev-tools libusb-1.0-0-dev

libgwt5-gt4-dev libgwtplot3d-gtd4-dev pygtd-dev-tools python-qwt5-

gt4

cmake

sudo apt-get install git-core wget libxi-dev gtk2-engines-pixbuf
r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev

python-gtk2 libzmg-dev libzmgl python-requests python-

sphinxlibcomedi-dev python-zmg python-setuptools

84

Appendix E

Write the following commands in linux terminal.

gr-sync$ gr modtool add -t general -1
cpp syncGNU Radio module name
identified: howto Language: C++

Block/code identifier: sync

Enter valid argument list, including default
arguments:Add Python QA code? [Y/n] Y

Add C++ QA code? [y/N] N

Adding file
'lib/sync_impl.h'...
Adding file
'lib/sync_impl.cc'...

Adding file
'include/howto/square ff.h'...
Editing swig/howto swig.i...

Adding file

'python/ga sync.py'...
Editing
python/CMakelLists.txt...
Adding file

'grc/howto _sync.xml'...
Editing
grc/CMakelLists.txt...

Now open python/qa_sync.py
» Write the following code. Then, save it.

#!/usr/bin/python2.7
import socket, argparse, datetime, sys

Purpose: Connect to a TCP port streaming binary data (usually from a GNURadio
decode flow),

and search for a given pattern (sync word) in the bit level. After matching a sync
word,

forwards to the standard output a slice of N bytes (patcket length), in ASCII-coded
format (regular text processing).

Use with -display compact to suppress extra messages and be able to pipe directly
to another module.

85

Usage:

./sync.py -ip localhost -port 7000 -sync word 0x7E8CBO -packet length
10 -display_time

./syncWordStreamFilter.py -ip localhost -port 7000 -sync word 0x7E8CBO0
-packet_length 280 -display _compact > sampleTTC.bin

Optional: -verbose -display time -display compact # use '| more' to control the
verbose output

Simulation environment:

The command below creates and TCP server providing the binary file as content
and restarting the operation after the client disconnects.
while true; do nc -1 127.0.0.1 7000 <
samples/sampleBitstream syncWord 0x5370.bin; done

parser = argparse.ArgumentParser()

parser.add_argument (*-ip', required =True) # [P Address

parser.add_argument ('-port', type=long, required =True) # Port number
parser.add_argument (-syncWord',required=True) #Entry to the sync word
parser.add_argument (-packet length', type=int, required=True) #Payload size
parser.add_argument (-verbose', action='store true') parser.add argument (-
display time', action='store true') parser.add argument ('-display compact',

action='store_true') args = parser.parse_args()

Check if the sync word is in appropriated ASCII hexadecimal representation
if args.syncWord[:2] !="0x":

print "-syncWord should be in the format hexadecimal format. Ex: '0x5B53575D"
print "Exiting..." exit()
if (Ien(args.syncWord)%2) != 0:

print "-syncWord length should be even! Two ascii chars representing each byte. Ex:
'0x5B53575D™

print "Exiting..." exit()

Store the sync word as a decimal value syncWord = int(args.syncWord,16)
syncWord len = (len(args.syncWord)/2)-1 # syncWord_bin = bin(syncWord)
syncWord bin ="{0:#0{1}b}".format(syncWord, 2+syncWord len*8)

if args.verbose: print 'Seeking input stream for sync word:', hex(syncWord)
,'(syncWord length:',syncWord len,'B)’, 'Binary:’, syncWord bin, 'Decimal:',
syncWord

if args.verbose: print 'Connecting to', args.ip, args.port

client_socket = socket.socket(socket. AF INET, socket.SOCK STREAM) #Creates

86

the client socket
client_socket.connect((args.ip, args.port)) #Connects the client to the server

def readNextByte():

inputByte str = client_socket.recv(1) if not inputByte str:

if args.verbose: print 'Connection Lost!' client socket.close()
exit() else:

return ord(inputByte str)

def readByteChunk(length): readBuffer = []

Loop through N single reads instead of socket buffer to avoid network delays/buffer
size mismatches issues

for n in range(length):

inputByte str = client_socket.recv(1) if not inputByte str:

if args.verbose: print 'Connection Lost!' client socket.close()
exit() readBuffer.append(inputByte_str)

return readBuffer

def debugPrintBuffers():

print "\033[94m'+'bit:', (streamBytePosition*8)+localBitPosition, Byte:',
streamBytePosition,
print "033[92m'+'Analyzing:',

"{0:#0{1}x}".format(comparisonBuffer,2+syncWord len*2),
"{0:#0{1}b}".format(comparisonBuffer, 2+syncWord len*8)[2:],

print "033[93m'+'<, bin(nextBit)[2],'<+"033[95m’,

binStr = str(" {0:#0{1}b}".format(inputBuffer, 10))[2:] print
binStr[:localBitPosition]+"\033[7m'+binStr[localBitPosition]+"\033[27m'
+binStr[localBitPosition+1:],

print "{0:#0{1}x}".format(inputBuffer,4), print "\033[91m'+'Matches:',
matchesCount, if now:
print 'Last:’, now.strftime("%H:%M:%S"), print "

fill the comparison buffer with the sync word size matchesCount = 0
now = False comparisonBuffer = 0
for n in range(syncWord_len):

inputBuffer = (readNextByte() & Obl1111111) comparisonBuffer =
(comparisonBuffer<<8) | inputBuffer if args.verbose: print 'inputBuffer:\t', "
{0:#0{1}b}".format(inputBuffer, 2+syncWord len*g),

"{0:#0{1}x}".format(inputBuffer,2+syncWord len*2)
if args.verbose: print 'comparisonBuffer:', "{0:#0{1}b}".format(comparisonBuffer,
2+syncWord len*8), "{0:#0{1}x}".format(comparisonBuffer,2+syncWord len*2)

streamBytePosition = 0
nextBit = 0 while True:
Reads the TCP source byte per byte, but analyzes locally in bit steps,

because the sync word is not necessarily aligned in the incoming byte sequence

comparisonBuffer was already filled in the previous step and is ready for
comparison,

87

but still read one subsequent byte, for the following bitwise insertions in the
comparison buffer
Input Buffer = (readNextByte() & 0b11111111)

for localBitPosition in range(8):

inputBuffer str = "{0:#0{1}b}".format(inputBuffer, 10) nextBit =
int(inputBuffer str[localBitPosition+2], 2) if args.verbose: debugPrintBuffers()

if comparisonBuffer == syncWord: matchesCount = matchesCount + 1
if args.verbose: print "\033[91m'+">>>" hex(syncWord), 'SYNC WORD FOUND

processing byte:',streamBytePosition, - Input bit count:',
(streamBytePosition*8)+localBitPosition

packet = readByteChunk(args.packet length)

if args.display compact:

sys.stdout.write("{:02X}".format(syncWord)) sys.stdout.write("{:02X}".format(
inputBuffer)) sys.stdout.flush()

else:

print "{0:#0{1}x}".format(syncWord ,4),

print "{0:#0{1}x}".format(inputBuffer ,4), # merge with the next byte after
syncWord (inputBuffer), pre-fetched from memory

for i in range(len(packet)): if args.display compact:

sys.stdout.write(" {:02X}".format(ord(packet[i]))) sys.stdout.flush()
else:

print "{0:#0{1}x}".format(ord(packet[i]) ,4),

now = datetime.datetime.now/()

if args.display_time: print "\tReceived at:", now, if not args.display compact: print ""
streamBytePosition = streamBytePosition + syncWord_len + args.packet_length

Moving comparisonBuffer to the next bit: comparisonBuffer = (
(comparisonBuffer<<1) &

int("l'"*8*syncWord _len,2)) | nextBit

streamBytePosition = streamBytePosition + 1 sys.stdout.flush()

if args.verbose: print "syncWordStreamFilter.py end! Closing TCP connection..."
client_socket.close()

88

Appendix F

1. Check the Linux version. Open the terminal and check by typing the command
Isb_release -a

parallels@parallels-Parallels-Virtual-PlatForm: ~

File Edit View Search Terminal Help
parallels@parallels-Parallels-Virtual-Platform:~5 lsb_release -a
No LSB modules are available.

Ristributor TID: Ubuntu

Description: Ubuntu 18.04.1 LTS

Release: 18.04

CGdenanes: plonic
parallels@parallels-Parallels-Virtual-Platform:

Since we have Linux 18.04.1, now we will follow the following steps for GNU Radio.

2. Before building UHD and GNU Radio, you need to make sure that all the dependencies
are first installed.

sudo apt-get update

3. On Ubuntu 18.10 systems, run this code was provided on this reference [44].

sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool libusb-1.0-0
libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev libfftw3-doc libcppunit-
1.14-0 libcppunit-dev libcppunit-doc ncurses-bin cpufrequtils python-numpy python-numpy-doc
python-numpy-dbg python-scipy python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev
libqt4-dev-bin python-qt4 python-qt4-dbg python-qt4-dev python-qt4-doc python-qt4-doc
libqwt6abil libfftw3-bin libfftw3-dev libfftw3-doc ncurses-bin libncurses5 libncursesS-dev
libncurses5-dbg libfontconfigl-dev libxrender-dev libpulse-dev swig g++ automake autoconf
libtool python-dev libfftw3-dev libcppunit-dev libboost-all-dev libusb-dev libusb-1.0-0-dev fort77
libsdl1.2-dev python-wxgtk3.0 git libqt4-dev python-numpy ccache python-opengl libgsl-dev

89

python-cheetah python-mako python-Ixml doxygen qt4-default qt4-dev-tools libusb-1.0-0-dev
libqwtplot3d-qtS-dev pyqt4-dev-tools python-qwt5-qt4 cmake git wget libxi-dev gtk2-engines-
pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev python-gtk2 libzmq3-dev
libzmq5 python-requests python-sphinx libcomedi-dev python-zmq libqwt-dev libqwt6abil
python-six libgps-dev libgps23 gpsd gpsd-clients python-gps python-setuptools

4. Building and installing UHD from source code. First, make a folder to hold the
repository.

cd SHOME
mkdir workarea

cd workarea

5. Next, clone the repository and change into the cloned directory, the instructions and
terminal commands were provided by the reference [43].

git clone https://github.com/EttusResearch/uhd
cdUHDd

6. Next, check out the desired UHD version. You can get a full listing of tagged releases by
running the command:

git tag -1

7. After identifying the version and corresponding release tag you need, check it out:

git checkout v3.14.0.0

8. Next, create a build folder within the repository.

cd host
mkdir build
cd build

9. Next, invoke CMake.

cmake ..

10.0nce the cmake command succeeds without errors, build UHD.

make

90

11. Next, you can optionally run some basic tests to verify that the build process is

completed properly.

make test

12. Next, install UHD, using the default install prefix, which will install UHD under the
/ust/local/lib folder. You need to run this as root due to the permissions on that folder.

sudo make install

13. Next, update the system's shared library cache.

sudo Idconfig
14. At this point, UHD should be installed and ready to use.

Appendix G
The following code is for building Out-of-Tree (OOT) module Ax.25 Deframer in GNU-Radio.

#!/usr/bin/env python3
from construct import *
SSID = BitStruct(
'ch' / Flag, # C/H bit
Default(BitsInteger(2), 3), # reserved bits
'ssid' / BitsInteger(4),
'extension' / Flag # last address bit
)
class CallsignAdapter(Adapter):
def encode(self, obj, context, path=None):
return bytes([x << 1 for x in bytes(
(obj.upper() + ' '*6)[:6], encoding="ascii")])
def decode(self, obj, context, path=None):
return str(bytes([x >> 1 for x in obj]), encoding="ascii'").strip()
Callsign = CallsignAdapter(Bytes(6))
Address = Struct(

91

'callsign' / Callsign,
'ssid' / SSID
)
Control = Hex(Int8ub)
Control16 = Hex(Int16ub)
PID = Hex(Int8ub)
Header = Struct(
'addresses' / RepeatUntil(lambda x, Ist, ctx: x.ssid.extension, Address),
'control' / Control,
'pid' / PID
)
Header16 = Struct(
'addresses' / RepeatUntil(lambda x, Ist, ctx: x.ssid.extension, Address),
'control' / Control16,
'pid' / PID
)
Frame = Struct(
'header' / Header,
'info' / GreedyBytes
)

ax25 = Frame

92

Appendix H

The following code is for binding the Python script written in Appendix G.

#include <pybind11/complex.h>
#include <pybind1 1/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybindl11;
#include <satellites/ax25 decode.h>
// pydoc.h is automatically generated in the build directory
#include <ax25 decode pydoc.h>
void bind ax25 decode(py::module& m)

using ax25_decode = ::gr::satellites::ax100_decode;
py::class <ax25 decode, gr::block, gr::basic block, std::shared ptr<ax25 decode>>(
m, "ax25 decode", D(ax25 decode))

def(py::init(&ax25 decode::make), py::arg("verbose"), D(ax100 decode, make))

b

93

	Implementation of the Downlink Communication System of the LMU CubeSat
	ma

