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ABSTRACT 

The objective of this present thesis was to determine whether GEV (Generalized Extreme 

Value) itself can be a more conservative distribution than LP3 (Log Pearson III) associated 

with other methods, such as the B17B weighting procedure with Single Grubbs-Beck (SGB) 

for low outliers, when determining the projected floods in a flood frequency analysis (FFA) 

for Santa Ana and San Gabriel regions and other urbanized stream gages present in 

California. In this work, USGS PeakFQ was utilized. From the results obtained, it was 

possible to state that GEV fitting results were directly affected by the length of the data. 

When the length of the record is short, it is not accurate to use a projection of 100-year return 

period, for example, to represent future projection. Comparing the LP3 and GEV CDFs, for 

the majority of the stream gages analyzed in this project, GEV proves to be the most 

conservative method, with smaller return periods. 



iv 

TABLE OF CONTENTS 

1. INTRODUCTION ............................................................................................................ 1 

1. PURPOSE OF THE PROJECT ......................................................................................2 

2. STATISTICAL METHODS FOR FFA ..........................................................................3 

2.1. Log-Pearson Type 3 (LP3) ..........................................................................................3 

2.2. Generalized Extreme Value Distribution (GEV) ..........................................................6 

2.3. Comparison between the Distributions in the Literature .............................................8 

2.4. Outliers ........................................................................................................................10 

2.4.1. Grubbs-Beck Test ................................................................................................10 

2.5. Trend Analysis ........................................................................................................... 11 

2.5.1. Mann-Kendall Test ............................................................................................. 11 

2.5.2. P-Value ............................................................................................................... 11 

3. PROCEDURE AND TOOLS ........................................................................................ 12 

3.1. Focused Region .......................................................................................................... 12 

3.2. Assembling the Data .................................................................................................. 14 

3.3. PeakFQ ....................................................................................................................... 16 

3.4. MatLab ....................................................................................................................... 19 

4. RESULTS AND DISCUSSIONS ................................................................................... 20 

4.1. Trend Test Results ..................................................................................................... 20 

4.2. The 100-year Expected Floods with 95% CIs for LP3 in PeakFQ ............................ 22 

4.3. Parametrization considering GEV Distribution ......................................................... 23 

4.4. GEV Return Period for the same 100-year Discharge using LP3 ............................. 25 

4.5. GEV Expected Floods for the Return Periods from Table 7 with 95% CIs .............. 26 

4.6. Comparisson between LP3 and GEV CDFs for each Streamgage. ........................... 27 

5. CONCLUSION ............................................................................................................... 34 

6. REFERENCES ............................................................................................................... 35 



v 

LIST OF FIGURES 

Figure 1 - Graph of PDFs of the different types of GEV based on the shape parameter k. .......6 

Figure 2 - Behavior of the distribution considering the three GEV parameters. (Adapted from 

Rohmer et al., 2020). ..................................................................................................................7 

Figure 3 - Comparison of GEV and LP3 Probability Distributions for Flood Frequency 

Analysis. (Stakhiv, 2011). ..........................................................................................................8 

Figure 4 - CDF curves for the distributions of GEV (light blue), LP3 (purple), Gumbel Max 

(dark blue) and Normal (red) and the sample data as a stair graph. ......................................... ..9 

Figure 5 - Example showing the effects of including or censoring potentially influential low 

outliers identified from the multiple Grubbs-Beck test. (Gotvald et al., 2012). ....................... 10 

Figure 6 - Location of San Gabriel and Santa Ana rivers pinpointed in red. (Google Maps, 

2022). .........................................................................................................................................12 

Figure 7 - Streamgages with data collected from USGS website. (Adapted from the map of 

Gotvald et al., 2012). ................................................................................................................ 13 

Figure 8 - Process of gathering the data records and other important information in USGS Water 

Data for USA (2022) website by using the streamgage ID. ..................................................... 14 

Figure 9 - Data record from 114 streamgage for PeakFQ. ....................................................... 14 

Figure 10 - Information about the 8 selected gages in USGS Report 2012-5113 by Gotvald et 

al. (2012). .................................................................................................................................. 16 

Figure 11 - Running data from the streamgage 114 in PeakFQ using station skew and B17B and 

Single Grubbs-Beck as the test option. ..................................................................................... 17 

Figure 12 - Estimated peak using B17B estimation method and its 95% confidence intervals for 

100-year return. ........................................................................................................................ 18 

Figure 13 - Uploading the filtered data records into MatLab. Example of selecting the data from 

streamgage 114. ........................................................................................................................ 19 

Figure 14 - Matlab GEV code lines used for parameterization and peak streamflow projection 

for Gage 113. ............................................................................................................................ 20 

Figure 15 – Graph of the 100-year flood projection with 95% CIs as error bars using LP3 in 

PeakFQ. .................................................................................................................................... 22 

Figure 16 - Comparisson between LP3 (in the left) and GEV (in the right) CIs...................... 27 

Figure 17 - GEV and LP3 CDFs for gage 113. ........................................................................ 28 

Figure 18 - GEV and LP3 CDFs for gage 114. ........................................................................ 28 

Figure 19 - GEV and LP3 CDFs for gage 115. ........................................................................ 29 



vi 

Figure 20 - GEV and LP3 CDFs for gage 116. ........................................................................ 29 

Figure 21 - GEV and LP3 CDFs for gage 131. ........................................................................ 30 

Figure 22 - GEV and LP3 CDFs for gage 133. ........................................................................ 30 

Figure 23 - GEV and LP3 CDFs for gage 146. ........................................................................ 31 

Figure 24 - GEV and LP3 CDFs for gage 147. ........................................................................ 31 

Figure 25 - GEV and LP3 CDFs with the historical data plotted for gage 778........................ 32 

Figure 26 - Example of GEV CDF curve plotted together with historical data as a stair graph 

for gage 778. ............................................................................................................................. 32 



vii 

 LIST OF TABLES 

Table 1 - KT values for LP3 (Mays, 2010)........................................................................................5

 Table 2 - General information and characteristics belonging to each of the streamgage records...15 

Table 3 - General information and characteristics belonging to each of the eight separated 

streamgage records. .................................................................................................................. 16 

Table 4 - Results from the Mann Kendall trend test performed in MatLab for the main 

streamgages. ............................................................................................................................. 21 

Table 5 - Results from the Mann Kendall trend test performed in MatLab for the selected 

streamgages in the USGS report. .............................................................................................. 21 

Table 6 – 100-year expected flood with 95% CIs, using LP3 distribution with B17B and SGB 

in PeakFQ for the main streamgages. ....................................................................................... 22 

Table 7 – 100-year expected flood with 95% CIs, using LP3 distribution with B17B and SGB 

in PeakFQ for the USGS selected streamgages. ....................................................................... 23 

Table 8 - Parametrization for all the streamgages using GEV. ................................................ 24 

Table 9 - GEV return period for the same discharge of 100-year return period using LP3 in 

PeakFQ for the main streamgages. ........................................................................................... 25 

Table 10 - GEV return period for the same discharge of 100-year return period using LP3 in 

PeakFQ for the selected by USGS streamgages. ...................................................................... 26 

Table 11 – Discharges and 95% CIs considering the same GEV return periods indicated. ..... 26 



viii 

LIST OF ABREVIATIONS 

AEP – Annual Exceedance Probability  

B17B – Bulletin 17B 

CDF – Cumulative Density Function  

CI – Confidence Interval 

EMA – Expected Moments Algorithm 

FFA – Flood Frequency Analysis 

GEV – Generalized Extreme Value Distribution 

IACWD – Interagency Committee on Water Data 

LP3 – Log-Pearson Type 3 

MGB – Multiple Grubbs-Beck 

MLE – Maximum Likelihood Estimates 

PDF – Probability Density Function 

SGB – Single Grubbs-Beck 

USGS – United States Geological Survey 

WY – Water Years 

UNITS 

cfs – Cubic feet per second 

k – Shape Parameter 

𝜎𝜎 – Scale Parameter 

𝜇𝜇 – Location Parameter 

𝑦𝑦� – Mean Value 

K – Frequency Factor 

𝐺𝐺𝐺𝐺 – Coefficient of Skewness 

𝑆𝑆𝑦𝑦 – Standard Deviation 

T – Return Period 

P – Percent Annual Exceedance (1/T)



1 

1. INTRODUCTION

Over the years, different studies have been developed and published in order to refine the way 

of predicting flood’s magnitude and frequency. Due to changes in climate, land use and 

increasing urbanization, extreme flood events tend to be more frequent.  

Because of climate change, there will be an increasing variability in the future predictions for 

floods, meaning that extreme events, such as droughts and floods, will be more frequent, with 

longer duration and with higher magnitudes. According to England & Cohn (2007), floods 

could be significantly reduced through improved mitigation measures that can only be achieved 

with accurate flood frequency analysis (FFA). FFA is the most common technique used for at-

site estimations on flood recurrence magnitude. (Farooq, Shafique, & Khattak, 2018).  

The longer the data records are, the more nonstationary in climate need to be investigated. Many 

of the hydrological predictions are based on assumptions of stationary climate, instead of 

climate uncertainty, which can lead to biased predictions. The effects caused by that uncertainty 

need to be reflected in water infrastructure. Also, the use of some optimization models can be 

alleviated in favor of systematic analysis to achieve satisfactory results. (Stakhiv, 2011).  

Statistical or risk analysis is the widely used way to predict flood events through reliable data 

records. Reliance on statistical FFA depends particularly on the selected distribution, on the 

correct estimation of the function parameters, on possible outliers and on the length of the 

observed flood series. (Farooq, Shafique, & Khattak, 2018 apud Saghafian et al., 2014). 

In order to perform these statistical analyzes, it is undeniably important to check the data record 

and its sources. Most of the data used in recent studies come from streamgages. USGS 

systematic records, for example, come from gages that measure stages and discharges. Stages 

are the water level measurements (m or ft) above gage datum, generally at every fifteen minutes, 

which is hereafter combined with discharge measurements or streamflows to determine a 

relationship for each streamgage. There are systematic data records, historical data records and 

paleofloods (reconstruction of floods that happened in the past). Authors argue whether it is 

necessary to combine different information. According to Millington & Simonovic (2011), it is 

important to use historical data when predicting events, together with statistical distributions 

that are used to fit the data. Another important thing to consider is that the data records are 

provided in water years (WY). 
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The majority of studies focus on gages where the records are not affected significantly by 

urbanization, regulation, or diversions because these characteristics have a considerable impact 

on these predictions. The flood-frequency analysis in some desert regions, for example, is tricky 

due to many zero flows and a short-period data record. Also, there are factors behind the 

streamgage readings in high elevation areas, such as rainstorms and snowmelt runoffs. All these 

data records are important to be studied and compared for the sake of the regions where they 

are located. Ungaged sites, channelization and urban areas need to be given the same 

importance while considering flood frequency analysis. 

In the United States and other countries, Log-Pearson Type III (LP3) has been the most 

conventional statistical method and largely used for flood frequency analysis (FFA). 

However, missing peaks are typically ignored when the LP3 method is used. Some 

papers, such as Bulletins 17 (B and C) and USGS Report 2012–5113, were important for 

the release of new publications geared towards the refinement of the FFA in the country. 

The main purpose of these bulletins, for example, was to provide a nationwide, uniform 

approach for FFA, using the LP3 distribution and method of moments for parametrization. 

(England & Cohn, 2007). The LP3 statistical method is being used with other 

manipulations and procedures, such as regionalization, detection, and removal of low 

outliers, among other manipulations in order to determine the peak flow for any 

recurrence period. However, missing peaks during periods of systematic data collection 

typically are ignored when the conventional LP3 method is used (Parrett and others, 2011). 

While designing a flood protection system, it is important to select the best design probability 

of exceedance and magnitude of the events. Therefore, it is important to adapt the existing 

conventional methods and not just rely on the statistical method itself because it may ignore 

some rare and occasional events. A question can be brought up regarding the necessity of all 

these methods used and if they are conservative enough to be adopted in further assessments.  

1. PURPOSE OF THE PROJECT

The primary objective of this thesis is to determine whether GEV itself can be a more 

conservative distribution than LP3 associated with other methods, such as the B17B weighting 

procedure with SGB, when determining the annual exceedance flows under a changing climate 

condition This will be done using the data records from streamgages also used in USGS Report 

2012-5113 analysis. 



  3 

2. STATISTICAL METHODS FOR FFA

Distributions are descriptions of the data as models. These descriptions can be the nature, shape 

or spread. Frequency distributions can help the understanding of many relations between data. 

Flood-frequency estimation can be done by fitting a known statistical distribution to series of 

annual peak flows. (Gotvald et al., 2012). A probability density function (PDF), for example, 

describes the occurrence probability of the records to obtain exact values. The cumulative 

density function (CDF), instead, is a way to describe how likely a random record will be less 

than some picked arbitrary value. CDF is the summation (for discrete data) or the integration 

(for continuous data) of all the values obtained from the PDF to a specific value of interest. 

Because of that, CDF is a good way to show how conservative is one distribution in relation to 

another. 

Most of the hydrologic data does not fit normal (gaussian) distributions due to skewness of the 

data. The normal distribution is the one symmetrical around the mean. If not symmetrical 

around the mean, the data can also be uniform, skewed to the left or skewed to the right. Some 

natural events can be approximated to a normal distribution. Nevertheless, many of them 

require other distributions in order to be portrayed correctly. When the population skew is 

different than zero and the data does not fit a bell-shape curve, that characterizes a normal 

distribution, this data can be log-normally distributed. However, because hydrologic records 

are generally short, long-normal distributions do not always provide conservative predictions. 

2.1. Log-Pearson Type 3 (LP3) 

Log-Pearson Type III is a gamma distribution and probably the most used distribution for 

hydrologic frequency analysis. It is a three-parameter distribution based on the mean (𝑦𝑦�), 

standard deviation (𝑆𝑆𝑦𝑦) and skew (𝐺𝐺𝐺𝐺). Naming the three parameters as: ∝, 𝛽𝛽 and 𝛾𝛾 as the shape, 

scale and shift, respectively, it is possible to set some relations, where: ∝ =  4
𝐺𝐺𝐺𝐺2

; 𝛽𝛽 =  �𝑆𝑆𝑦𝑦 ×𝐺𝐺𝐺𝐺
2

� 

and 𝛾𝛾 =  𝑦𝑦� − 2 �𝑆𝑆𝑦𝑦
𝐺𝐺𝐺𝐺
�. Its CDF function can be expressed as:

𝐹𝐹(𝑥𝑥) =  Γ𝐷𝐷(𝑥𝑥 − 𝛾𝛾,∝ ,𝛽𝛽)       𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺 > 0 

𝐹𝐹(𝑥𝑥) =  Γ𝐷𝐷(𝛾𝛾 − 𝑥𝑥,∝ ,𝛽𝛽)       𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺 < 0 
Equation 1 
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Where, 

Γ(s) =  ∫ 𝑒−𝑥
∞

0

 𝑥𝑠−1 𝑑𝑥 =  ∫ 𝑒−𝑥  
𝑑𝑥

𝑥

∞

0

 𝑓𝑜𝑟 𝑠 > 0 

Equation 2 

Therefore, the sign of the skew defines whether the gamma distribution will be given as the 

first or the second option (Equation 1) for obtaining the CDF. The gamma function is defined 

to all complex numbers, except for non-positive integers. Also, the gamma function has no 

zeros. Therefore, its reciprocal is possible and it is an entire function. Because of that, when 

using the gamma function for LP3 with contrasting skews obtained for the different data 

records, it is necessary to stablish aconditional clause (such as what is shown in Equation 1. 

The logharitmic transformation is effective in normalizing values that vary widely in 

magnitude. It is also important for preserving large peak values from dominating the calculation 

of the population parameters. However, the danger in log transformations is that low outliers 

are given a great weight. When large values are the focus, small values can be reported as zero 

if they fall below a certain threshold. (Stedinger, Vogel & Foufoula-Georgiou, 1993). 

According to Mays (2010), the LP3 frequency factor equation in terms of discharge (QT) based 

on a specific return period (T) can be shown below.  

log 𝑄𝑇 =  �̅� + 𝐾(𝑇, 𝐺𝑠) × 𝑆𝑦 

Equation 3 

Where, 

𝐺𝑠 – Coefficient of Skewness 

K(T, 𝐺𝑠) or KT – Frequency Factor 

𝑆𝑦 – Standard Deviation 

�̅� – Mean Value 

T – Return Period 

Many studies, instead of calculating the actual log-data skew (𝐺𝑠), use regional skews that are 

based on a log-skew value previous calculated for a certain region and provided in a map. The 

regional skew is calculated based on a huge number of streams that may better represent the 

focused area provided in Bulletin 17B for example. However, Parrett et al. (2011) found that 

the regional skews, for some reagions with not sufficient records, could not be reliably 

determined. Therefore, in this thesis, all skews were calculated by gage.  
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The estimation of station skews for streamgages with short-period of records is also biased 

because it brings on large sampling errors and, most of the time, it is necessary to deal with 

records with completely different lengths. For that reason, considering an ideal scenario, it 

would be necessary to discard several data based on their length and to use just data with the 

exact same length of record. However, doing that does not represent the real scenario and it 

does not consist in picking the data ramdonly, provoking biased analyzes regarding statistics.  

The variable K (T, Gs), presented in Equation 3, has fundamental importance to the frequency 

factor equation of LP3. It is composed by “z”, which is equal to the data point (x) minus the 

mean (𝜇) divided by the standard deviation (𝜎): 𝑧 =  
(𝑋− 𝜇)

𝜎
 or simply the inverse function of

the standard normal cumulative distribution (norm.s.inv function in Excel) and “k” that is the 

Gs (skewness) over six: 𝑘 =
𝐺𝑠

6
. There is a KT table that relates the skew coefficient and the

exceedance probability. It simplifies when it is necessary to do quick analyzes. Part of this table 

can be seen below. 

Table 1 - KT  values for LP3 (Mays, 2010). 

However, instead of using table 1, is is much more precise to calculate KT through the Equation 

4 below. 

𝐾(𝑇, 𝐺𝑠) = 𝑧 + (𝑧2 − 1)𝑘 +
1

3
(𝑧3 − 6𝑧)𝑘2 − (𝑧2 − 1)𝑘3 + 𝑧𝑘4 +  

1

3
𝑘5

Equation 4 
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2.2. Generalized Extreme Value Distribution (GEV) 

The GEV distribution is a probability distribution within extreme value theory to combine 

Frechet (1927), Weibull (1951) and Gumbel (1958) families of distributions. It is used as an 

approximation to model the extrema or largest or smallest values from long sequences. 

According to Stakhiv (2011), GEV gives more weight to extreme events, being considered a 

“fat-tailed” distribution. Like LP3, GEV is also a three-parameter distribution. It consists in 

three basic parameters: shape (k), scale (𝜎), location parameters (𝜇). (Hajani & Rahman, 2018). 

Depending on the shape parameter, it can be either Frechet, Gumbel or Weibull distributions: 

k = 0 (type I GEV or Gumbel distribution) – EV1 

k > 0 (type II GEV or Frechet distribution) – EV2 

k < 0 (type III GEV or Weibull distribution) – EV3 

The probability density function (PDF) for GEV can be expressed by Equation 5. 

𝐹(𝑥|𝑘, 𝜇, 𝜎) = (
1

𝜎
) 𝑡(𝑥)𝑘+1 𝑒−𝑡(𝑥)

Where, 

𝑡(𝑥) =  {
[1 + 𝑘 (

𝑥 − 𝜇

𝜎
)]

−1/𝑘

𝑒−
(𝑥−𝜇)

𝜎

}
𝑓𝑜𝑟 𝑘 ≠ 0
𝑓𝑜𝑟 𝑘 = 0

Equation 5 

Figure 1 shows a graph of PDFs versus z-score for the three different types GEV. 

Figure 1 - Graph of PDFs of the different types of GEV based on the shape parameter k. 

For Weibull’s type III, the shape parameter is less than zero and equal to -½ and for Frechet’s 

type II, the shape parameter is higher than zero and equal to ½ (in figure 1). The skewness is a 

measure of the lack of symmetry in a distribution. A positive skewness means extreme events 

that occure in the right-side tail of the distribution (Millington, Das & Simonovic, 2011). 
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Gumbel, also called EV1 distribution, has its shape parameter equal zero. Because of that, 

Gumbel becomes a two-parameter distribution. According to The MathWorks (2022), 

distributions whose tails decrease as a polynomial, such as student’s T, result in a positive shape 

parameter. When the tails decrease exponentially, such as normal, result in a zero-shape 

parameter. And when the tails are finite, such as beta, result in a negative shape parameter.  

The general mathematical form and cumulative density function (CDF) which incorporates 

GEV types I, II and III is shown in Equation 6 below. 

𝐹(𝑥|𝑘, 𝜇, 𝜎) = exp {− [1 + 𝑘 (
𝑥 − 𝜇

𝜎
)]

−1/𝑘

} 

Equation 6 

According to Mays (2010), the equation to predict flood magnitude based on a specific return 

period and the three parameters can be seen below (Equation 7). 

𝑄𝑇 =  𝜇 + (
𝜎

𝑘
) × {1 − (−𝑙𝑜𝑔 (

𝑇 − 1

𝑇
))

𝑘

} 

Equation 7 

where, 

k – Shape Parameter 

𝜎 – Scale Parameter 

𝜇 – Location Parameter 

T – Return Period 

Figure 2 shows the behavior of the GEV distributin based on the three parameters. 

Figure 2 - Behavior of the distribution considering the three GEV parameters. (Adapted from Rohmer et al., 2020). 

The shape parameter (k) defines the distribution classification. The location parameter (𝜇) is 

responsible for shifting the distribution to the left or to the right and the scale parameter (𝜎) is 

responsible for stretching or compressing the distribution. The smaller the 𝜇 value, the more 

shifted to the left is the distribution and the smaller the 𝜎 value, the more stretched is the 

distribution.  
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2.3. Comparison between the Distributions in the Literature 

In the work of Millington, Das & Simonovic (2011), three distributions were used to estimate 

the probability of future maximum occurrences: GEV, LP3 and EV1. The authors evaluated 

datasets from the Upper Thames River Watershed with two basic procedures: the goodness of 

fit tests, used in FFA to estimate best distribution to fit an observed data (Farooq, Shafique, & 

Khattak, 2018), and the L-Moment Ratio Diagrams (based on the probability-weighted methods 

and on linear combinations in ascending order) to define how appropriate was each distribution. 

The GEV distribution proved to be the strongest fitting distribution while LP3 distribution 

showed to be the second best fit. Gumbel or EV1 distribution showed to be the worst fit of all. 

They concluded by saying there was a necessity for more studies with the application of GEV 

on other watersheds in Canada to confirm its countrywide applicability.  

According to Vogel & Wilson (1996), the LP3 distribution was a standard model in more 

countries than GEV was and some of the countries reported the use of more than one model as 

a standard in that time. For them also, countries should reevaluate their standards when 

choosing a suitable distribution for FFA. The authors used a bibliography showing the use of 

goodness of fit test for many of the models and concluded that three parameter log-normal 

(LN3), the LP3 and the GEV were all acceptable models to use for FFA in the country while 

other two and three-parameter models were not acceptable for the entire continent. The study 

also revealed that annual minimum flows were best approximated by Pearson III distribution. 

Using the L-Moment diagrams they also reveled that LP3 were a flexible distribution, being 

able to fit many series of annual maximum, average and minimum streamflows in US. 

Considering maximum streamflows, Stakhiv (2011), in his work for the Journal of the 

American Water Resources Association (JAWRA), presented that a flood estimated to have a 

100-year return period using the LP3 distribution, had only a 47-year return period using the

GEV distribution (figure 3). 

Figure 3 - Comparison of GEV and LP3 Probability Distributions for Flood Frequency Analysis. (Stakhiv, 2011). 
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Figure 3 shows that the same discharge, in cfs, is predicted to happen much sooner when using 

the GEV distribution instead of LP3. Stakhiv (2011) finishes his work by saying that is 

necessary, considering the climate change’s assumption to change evaluation procedures and 

mentions the USACE’s proactive adaptive management approach, such as replacing LP3 and 

applying GEV probability distribution for flood frequency analysis (FFA).  

Farooq, Shafique & Khattak (2018), in their work, used different two and three-parameter 

statistical distributions: Generalized Extreme Value (GEV), Log Pearson 3 (LP3), Gumbel 

Max, and Normal to hydrological stations in Pakistan, where floods are among the most 

devastating and recurring natural hazards. Also, they utilized a software package, “EasyFit”, to 

apply goodness of fit tests, such as Anderson-Darling (AD), Kolmogorov-Smirnov (KS), Chi-

Squared (χ2), among others at a 5% significance level (α = 0.05) to the observed data. The chi-

squared test is not considered a highpower statistical test. Anderson-Darling test, in the other 

hand, is responsible for comparing the fit of an observed CDF to an expected CDF (figure 4).  

Figure 4 - CDF curves for the distributions of GEV (light blue), LP3 (purple), Gumbel Max (dark blue) and 

Normal (red) and the sample data as a stair graph. 

In figure 4, the stairs graph represents the historical data and the other curves are the observed 

CDFs. The results, for their work, indicate that LP3 and GEV were ranked top two distributions 

at all locations while Gumbel Max and Normal were the least fitted. Two-parameter 

distributions have smaller standard error, but larger bias than distributions with more 

parameters. The study showed that LP3 was ranked 1 by all three tests even for smaller sample 

sizes (the length of the data is extremelly important in the consideration of which distribution 

to use). Goodness of fit has less significance if one is assuming a changing climate where trends 

in the mean and variance may be present. GEV was ranked 1 for Chakdarra and Munda 
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Headwork while LP3 distribution was ranked 1 for Khwazakhela and Panjkora gauge stations. 

GEV was more suitable for moderate slope regions in the Swat valley and LP3 more suitable 

distribution at steep valley. They also concluded that a single distribution cannot be specified 

as the best fit distribution for all locations. (Farooq, Shafique & Khattak, 2018). 

2.4. Outliers 

In the hydrological scenario, there are peaks that are considerably higher or lower than the rest 

or the peaks recorded by a certain gage. In statistics, an outlier is a value or occurrence that 

notably differs from the rest of the data record. Low outliers are unusually small observations. 

(Stedinger, Vogel & Foufoula-Georgiou, 1993). Most of the outliers can be detected when all 

the data values are plotted to a graph.  

The outliers can indicate experimental errors, variability in the measurements or unusual events. 

According to Parret et al. (2011), low outliers are peak records that are significantly smaller 

than the others, having a large effect on the Log Pearson Type III distribution fit to all the 

recorded data. In the same study, the authors identified all the low outliers that have large 

influence in the upper tail of the curve formed by the fitted data. The low-outlier censoring 

threshold is a strategy that can eliminate values that can change the fitting curve for one that is 

not very representative for the rest of the peak values.  

2.4.1. Grubbs-Beck Test 

The Grubbs-Beck test is recommended for finding low outliers that lead to influences in the 

fitting curve and, mostly, in the upper tail fitting that means larger flows with smaller annual 

exceedance probabilities. (Gotvald et al., 2012). It is used to detect an outlier in a data set (like 

in figure 5) that follows approximately a normal distribution.  

Figure 5 - Example showing the effects of including or censoring potentially influential low outliers identified 

from the multiple Grubbs-Beck test. (Gotvald et al., 2012). 
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Figure 5 shows an example of the application of multiple Grubbs-Beck test that detects and 

excludes multiple low outliers that could pottentialy affect the fitting curve. It is possible to see 

that the curves in the figure are very different. The orange curve will present higher peak flow 

values as the AEP gets lower, in other words, while the return periods get higher, the fitting 

curve will not provide values as high as the ones provided in case the outliers are included.  

2.5. Trend Analysis 

Trends are generally a problem for further use of the data. They can lead to a wrong analysis 

depending on the time frame analyzed. Parametric and non-parametric tests are usually applied 

to detect trends in data. The parametric test is used in independent and normally distributed 

data. The non-parametric does not need the data to be normally distributed but requires only 

independency in data and allowence of outliers. It is possible to detect trends using hypothesis 

tests, present in inferential statistics, also called tests of significance. They are procedures for 

testing claims about a property of some data. (Triola et al., 2006). 

2.5.1. Mann-Kendall Test 

It is a complex method to detect linear or other types of trends. When the data presents trends, 

it can lead to errors in the fitting analysis. If a sample is not selected randomly, it is possible 

that it is biased in some way, not representing the situation correctly. The Mann-Kendall test 

examines whether to reject the null hypothesis H0 (no monotonic trend) and accept the 

alternative hypothesis HA (monotonic trend, not necessarily linear). In MatLab, if the test 

returns H = 1 that indicates a rejection of the null hypothesis. 

The null hypothesis H0 means that there is no monotonic (increasing or decreasing) trend and 

that the time series values are independent. In Matlab, using the hypothesis test, no trend is 

obtained where H = 0 that indicates a failure to reject the null hypothesis at a certain alpha 

significance level. The alpha value is commonly 0.05 because it is compared to the p-value.  

2.5.2. P-Value 

The p-value shows how likely it is to get the result obtained. If the p-value is greater than the 

alpha value, there is insufficient evidence to reject the null hypothesis. Therefore, the null 

hypothesis exists, meaning no trend. When the p-value is less than or equal to 0.05, trends are 

considered to be significant. A p-value of 0.05 indicates that there is 5% of chance that the trend 

test used will identify a trend even when there is no actual trend present.  
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3. PROCEDURE AND TOOLS

The main tools used for this project consisted in: the annual peak data gathered from the USGS 

Water Data for USA (2022) posteriorly modeled and manipulated; Excel for calculations and 

the organization of the gages in data lengths, latitudes and longitudes, gages with missing years 

or zero floows, log data, LP3 skews and other important analyzes; PeakFQ for obtaining the 

LP3 fitted curve and the annual exceedance probability for the data (using B17B global analysis 

method with Single Grubbs-Beck test option) and MatLab for the GEV test (doing trend 

analysis, such as the Mann-Kendall and using the GEV functions for estimation reasons). The 

final procedure was to compare CDFs between LP3 and GEV distribution for the data records 

analyzed. Also, the streamgages chosen were also analyzed by USGS report, by Gotvald et al. 

(2012), that provides some approaches to determine FFA for streamgages with ten or more 

years of annual peak-flow record in southeastern California and for eight other selected 

streamgages affected by urbanization. 

3.1. Focused Region 

The focused region, chosen to be analyzed, was Santa Ana and San Gabriel rivers (figure 6). 

Their streamgages were also mentioned in USGS Scientific Investigation 2012-5113 Report by 

Gotvald et al. (2012).  

Figure 6 - Location of San Gabriel and Santa Ana rivers pinpointed in red. (Google Maps, 2022). 

Both of these regions, presented in figure 6, are densely populated but with no legend of 

urbanization in the data records gathered from USGS website for these areas. San Gabriel is 

located at 33° 53' 16.134'' N and 118° 6' 25.722'' W and Santa Ana downstream at 33° 42' 

22.3308'' N and 117° 56' 0.3264'' W. All the streamgages data gathered and analyzed are in the 

buffer area of around 60 km of radius.  
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Even before the growing urbanization in the region, Santa Ana River was already considered 

as a river with a potential for producing extreme floods and have historical dangerous 

paleofloods that have occurred in intervals of approximately 30 years in the region (1780, 1825, 

1862, 1867, 1884, 1891, 1910, 1916, 1938, 1969 and 1995) and with the increase in 

urbanization, the flood threat was increased as well (Clarke, 1996). According to Guinn (1890), 

the flood of 1825 changed the course of the Santa Ana River and he mentions other episodes in 

1832 and after that responsible for changing the countour of the south of the city and the 

drainage that changed the vegetation in the region and that was lately followed by droughts. 

Also, according to the same author, the flood of 1884 cut a channel to the sea. All of the changes 

in channels that happened through the years, in the region, are because of the formation of deltas 

(formed by the set of lowlands originated from the accumulation of alluvial materials). There 

are some concerns near these regions. According to Orsi (2004), in 1920s, there was a 

construction of a high San Gabriel dam to solve flooding with a single block of concrete. This 

was a trial that failed because the hydrology and drainage in the location were not correctly 

understood.  

Figure 7 shows only the map ID streamgages considered in the analysis (table 1, in the next 

page, shows all of the analyzed data records). They were considered based on the length of 

years representing the record, if there were missing periods of systematic data.  

Figure 7 - Streamgages with data collected from USGS website. (Adapted from the map of Gotvald et al., 2012). 

Figure 7 presents a 1:100,000-scale map, projected as UTM, Zones 10 and 11 by USGS, 

Gotvald et al. (2012). These selected final streamgages were considered because there were no 

long missing periods of data record (table 1). There were no indications of thresholds for 

outliers (section 3.3) in the data and no perceived trend (section 4 – results).  
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3.2. Assembling the Data 

The updated data was gathered from USGS Water Data for USA (2022) considering the selected 

streamgages (in red) and the information in annual peak flows. The process of gathering and 

analyzing the characteristics of the data starts by gathering the data as a table-separated file and 

peakfq file according to the site’s identification number (ID) according to what is shown in 

figure 8A and B.  

A) B) 

Figure 8 - Process of gathering the data records and other important information in USGS Water Data for USA 

(2022) website by using the streamgage ID. 

In the website map, shown in figure 8A, it is possible to see where the streamgage selected is 

located, for example, which river is providing information on peak flows for a certain 

streamgage or if it is closed to urbanized spots, affected by channelization, among other factors 

(all streamgages analyzed in this thesis are affected, in some way, by urbanization). The name 

on the streamgage is generally referred to the region or lake which it is inserted. Figure 8B 

shows the type of information as it is possible to see in figure 9 that shows the information of 

gage 114 to use in the PeakFQ software. 

Figure 9 - Data record from 114 streamgage for PeakFQ. 

All the data gathered have more than 10 years of record. The gages marked with asterisk, in 

the table 2 below, were analyzed but not considered since there were missing periods that

could potentially interfere in the whole analysis.  
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Table 2 - General information and characteristics belonging to each of the streamgage records.

# of the 

Gage 

(From 

when to 

when) 

ID 

Number of 

Water Years 

on the record 

Mean Stream-

Flow for the 

Annual Peak 

Records (cfs) 

Maximum 

Stream-Flow 

for the Annual 

Peak Records 

(cfs) 

Minimum 

Stream-Flow 

for the Annual 

Peak Records 

(cfs) 

Standard 

Deviation 

of the Raw 

Data 

Log 

Skew 

113 

1960-1973 

11055300 13 179.15 620 12 190.98 -0.2483

114 

1919-2021 

11055500 103 770.55 5740 9.7 1148.51 -0.2128

115 

1989-2021 

11055801 33 1330.37 9900 11 2404.15 0.0797 

116 

1927-1979 

11057000 51 1253.88 14000 24 2376.39 0.1899 

118 

1920-2021 

11058500 100** 528.34 6000 7.1 886.89 0.1056 

127 

1928-1975 

11073470 46 668.56 10300 9.9 1629.75 0.2429 

128 

1950-1961 

11075740 11 192.52 935 2.3 302.59 -0.1162

131 

1960-1973 

11081200 13 516.39 2080 8 698.38 -0.1982

135 

1965-1978 

11086990 14 6602.86 11100 3580 2843.88 0.3184 

136 

1932-1969 

11089000 38 473 3700 20 699.59 0.1325 

144 

1914-2020 

11098000 107** 1136.84 8620 12 1618.40 -0.3909

146 

1916-1970 

11100000 54 669.59 7000 17 1204.54 -0.0129

147 

1916-1962 

11100500 46 66.25 536 2.3 95.82 0.3057 

148 

1916-1965 

11101000 50 356.16 2400 4 454.59 -0.4974

Legend: ** - Missing data records in some of the years. 

Also, another completely different analysis was done for the 8 urbanized streamgages chosen 

in USGS 2012-5113 Report. According to Gotvald et al. (2012), the reason for choosing these 

8 streamgages was due to trend analysis and data quality review. The information regarding 

these eight streamgages selected, including the station name that mentions the region in which 

the streamgage is located, station ID and map identification number, can be seen in figure 10. 
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Figure 10 - Information about the 8 selected gages in USGS Report 2012-5113 by Gotvald et al. (2012). 

Even the report mentioning that there was data qualiy review, when gathering the updated 

annual peak flow for these gages, there are mentions of urbanization affecting part of the data: 

“C → All or part of the record affected by urbanization, mining, agricultural changes, 

channelization, or other”. Table 3, below, shows the same information provided in table 1 but

considering only these eight gages. 

Table 3 - General information and characteristics belonging to each of the eight separated streamgage records. 

Gage 

ID 

Number of 

Water Years 

on the record 

Mean Stream-

Flow for the 

Annual Peak 

Records (cfs) 

Maximum 

Stream-Flow 

for the Annual 

Peak Records 

(cfs) 

Minimum 

Stream-Flow for 

the Annual Peak 

Records (cfs) 

Standard 

Deviation 

of the Raw 

Data 

Log 

Skew 

772 11023330 23 1294.78 4990 102 1269.64 0.2241 

773 11023340 57 1779.03 5730 49 1579.74 -0.443

774 11047200 11 1458.55 5150 425 1428.89 0.719 

775 11120000 80 2032.50 10200 2.1 2196.40 0.030 

776 11162720 32 1761.94 3560 610 833.78 0.644 

777 11162800 38 243.05 644 16 143.76 -0.734

778 11182500 68 410.06 1600 9.96 406.61 -0.611

779 11447360 41** 1435.80 3450 312 696.68 -0.842

Legend: ** - Missing data records in some of the years. 

Because of the characteristics of the missing records in both tables 2 and 3 and considering

that the objective is to investigate which type of distribution is more conservative, the 

streamgages with missing records were analyzed but not considered for the final results. 

3.3. PeakFQ 

PeakFQ is a program that follows Bulletins 17B guidelines of the Interagency Advisory 

Committee on Water Data with implementations from Bulleting 17C and provides estimates 

for flood magnitudes for different AEPs using the LP3 method and graphs as outputs with fitted 



17 

frequency curve, low outliers, systematic, censored and historic peaks, thresholds and CIs. 

Figure 11 shows an example of running a streamgage data record in PeakFQ. 

Figure 11 - Running data from the streamgage 114 in PeakFQ using station skew and B17B and Single Grubbs-

Beck as the test option. 

As it is possible to see in figure 11, the station skew was used for all the streamgages because 

regional skew tends to generalize the analysis by region, not portraying precisely what happens 

in particular with each river or water body analyzed. 

B17B weighting procedure, used in the analysis (figure 11) employs the guidelines from 

Bulletin 17B. According to England & Cohn (2007), despite the utilities and guidance that this 

weighting method has provided over the years because of its consistency, newer research in the 

field shows that if the method was revised more accurate frequency estimations could be 

obtained. The B17B confidence interval method is based on applying a 2-parameter log-Normal 

distribution procedure to the LP3 method. Therefore, when the third parameter (which is the 

skew) is different than zero (not turning into a 2-parameter log-Normal) the CIs would be too 

narrow for the characterization of the data. This is an important information when comparing 

to the wider 95% CIs obtained from the GEV distribution in MatLab. 

In the PeakFQ section of USGS website it is possible to find a message warning that sequencing 

and computational issues have been identified in the software and Bulletin 17C guidelines 

(B17C). Therefore, the USGS, in collaboration with the U.S. Army Corp of Engineers, is trying 

to update these methods.  

The Expected Moments Algorithm (EMA) is a special analysis option for the application of 

LP3. It detects multiple potentially low outliers when fitting the LP3 distribution. EMA uses 

interval discharges when characterizing missing data in periods of systematic collection, floods 

of unknown magnitude that exceed some value (binomial censored), floods of unknown 

magnitudes that are less than some value (censored from below) and floods with magnitudes 

described by a range (interval censored). It uses data that includes multiple thresholds for low 

outliers and uncertainty with ranges of floods. (England & Cohn 2007).  
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The use of Single Grubbs-Beck option for detecting potentially influential low-flow (PILF), in 

PeakFQ, was the only detection method considered when applying the B17B as the global 

analysis option. It is interesting that when trying to run EMA instead of B17B with the use of 

SGB for some of the streamgages data with no missing records, the confidence intervals of 95% 

got higher, reducing accuracy.  

Since, the objective of this thesis is to determine how conservative is GEV when compared to 

LP3, there was no use of unknown data records, no attempt to address low outliers or zero 

flows, EMA has not been given focus. In addition, when trying to run EMA for gages with 

missing systematic record, the program fails to use a known threshold in the range of zero to 

infinity and fails run as well. It displays an attention window indicating the use of an alternative 

analysis option, such as “skip” or “B17B” instead of running EMA with that data.  

PeakFQ provides two types of output results: as a graph (annual peak discharge in cfs by AEP 

in %), results included in Appendix I, or as a text output (figure 12) showing also the confidence 

intervals provided by the test methods used with the LP3 distribution.  

Figure 12 - Estimated peak using B17B estimation method and its 95% confidence intervals for 100-year return. 

Figure 12 shows an example of results obtained running the data from streamgage 114. One of 

the goals of this thesis is to compare the 100-year peak flow obtained from in from LP3 using 

PeakFQ (with B17B as the Global Analysis Option) with the 100-year peak flow obtained using 

the GEV in MatLab and also to stablish in what year the prediction would have provided the 

same result.    
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3.4. MatLab 

After treating and filtering the data records, by analyzing their caractheristics and parameters, 

it is necessary to upload the data to MatLab (figure 13) to evaluate whether the data have any 

trend. Because, as mentioned in section 5, the data with trend is biased and they can lead to a 

wrong conclusion.  

Figure 13 - Uploading the filtered data records into MatLab. Example of selecting the data from streamgage 

114. 

The answer for trends or not in the data came from downloading the Mann Kendall Test and 

using the following code considering a small alpha value of 0.05, already discussed in section 

5.1: [H, p_value]=Mann_Kendall(GageNumber,.05). 

The answer of 0, obtained for the majority of the data, means that the test identified no trend 

under the assumption of the alpha value used. The answer of 1 means that trend was detected. 

Also, it is important to consider the p_values obtained in this test. If the p_value is bigger than 

the alpha value, no trend should be detected while a smaller p_value than the alpha means that 

there is a possible trend in the data.  

MatLab was also used for obtaining the GEV parameters, one of the most important steps in 

this whole analysis, since they provide the fitting of the data when using a GEV distribution. 

This parameterization process defines not only the parameters necessary to obtain a relevant 

model but it presents the behavior of the curve regarding the GEV distribution.  

The parmhat = gevfit(X) returns maximum likelihood estimates of the parameters for the 

generalized extreme value (GEV) distribution given the annual peak flows data in a specific 

streamgage record. This code returns: 1 – k (shape parameter), 2 – 𝜎 (scale parameter) and 3 – 
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𝜇 (location parameter). The other option is to use parmhat = gevfit(X) and [parmhat,parmci] = 

gevfit(X,alpha) for obtaining not only the parameters but also the 95% confidence interval (CIs) 

for each of the streamgages data. 

The script below shows a basic path to define the parameters and the projection of the maximum 

peak streamflow for 20 years.  

Figure 14 - Matlab GEV code lines used for parameterization and peak streamflow projection for Gage 113. 

To compare peak values at specific return periods, in this project, the function “gevinv” (the 

inverse of the GEV) was utilized. The function R0lml = gevinv (figure 14) returns the GEV 

predicted flow for a specific return period. 

The standard normal variable (z-score) is used in the hypothesis testing, meaning that the bigger 

the z-score, the more distant from the mean the value is, under the area of the probability curve. 

The area under the curve goes from 1 to 100% and the inverse of the z-score provides 

information on the standard normal probability. The cumulative area is 1 – 1/T, where T is the 

return period. In Excel, the use of the command norm.s.inv (0.99) means the need of a projection 

considering a return period of 100-years and provides the z = 2.32628.  

In figure 14, for example, the use of 0.95 means that 20-years is being considered for the return 

period. The rest of the information in the same function are the parameters obtained in the 

parametrization for the gage 113 in the example. Therefore, this function can also be used when 

comparing the results obtained using LP3 distribution to GEV, making it possible to know in 

what return period the second distribution can be compared to the 100-year return period of the 

first one.  

4. RESULTS AND DISCUSSIONS

4.1. Trend Test Results 

The results for the non-parametric trend test, Mann Kendall, which detects trend for all types

of distributions, performed in MatLab for the ten main streamgages, can be seen in table 4.
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Table 4 - Results from the Mann Kendall trend test performed in MatLab for the main streamgages. 

Mann Kendall Trend Test 

Gage Map ID # WY H (0 = no trend and 1 = trend) p-value

Gage 113 13 0 0.2224 

Gage 114 103 0 0.5477 

Gage 115 33 0 0.3139 

Gage 116 53 0 0.5642 

Gage 131 13 0 0.5022 

Gage 133 45 0 0.9051 

Gage 135 14 0 0.7426 

Gage 136 38 0 0.0067 

Gage 146 54 0 0.286 

Gage 147 46 0 0.6839 

The same trend analysis was done for the USGS selected streamgages, except for

streamgage 779, which was not considered because of the number of missing periods of data 

record. Also, gages were evaluated using both: the updated data record and the data record 

allowed for generating results in PeakFQ as well as what has been done by USGS.  

Table 5 - Results from the Mann Kendall trend test performed in MatLab for the selected streamgages in the 

USGS report. 

Mann Kendall Trend Test 

Gage Map ID # WY H (0 = no trend and 1 = trend) p-value

Gage 772 – Until 1993 23 1 0.0140 

Gage 772 - Until 1983 13 1 0.0060 

Gage 773 – Until 2021 57 1 0.0021 

Gage 773 – Until 1983 19 0 0.0589 

Gage 774 – Until 1981 11 0 0.1611 

Gage 775 – Until 2021 80 1 0.0014 

Gage 775 – Until 1957 16 0 0.7187 

Gage 776 – Until 1996 32 1 0.0001 

Gage 776 – Until 1977 14 0 0.3244 

Gage 777 – Until 1996 38 0 0.7343 

Gage 778 – Until 2020 68 0 0.5856 

From table 5, it is possible to see that, when the p-value is less than or equal to 0.05, trends

are considered to be significant. Also, when some of the streamgages had their data not 

updated yet, most of them passed in the trend analysis, except for gage 772 that has trend 

considering both the updated and the non updated data records. Therefore, it is possible to

infer that 4 (four) out of 7 (seven) streamgages, using their updated records, will provide a 

biased analysis when considering trends in the data records.  
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4.2. The 100-year Expected Floods with 95% CIs for LP3 in PeakFQ 

In Appendix I, it is possible to visualize the fitted frequency curves with CI curves for annual 

peak discharge (cfs) by AEP (%), using LP3 distribution with B17B global analysis method 

and SGB obtained in PeakFQ for the streamgages with no trend detected. For the data records 

used, there were no perception thresholds detected in PeakFQ. The results for the 100-year 

projection for expected floods with 95% CIs can be seen in Table 6 (for the main streamgages). 

Table 6 – 100-year expected flood with 95% CIs, using LP3 distribution with B17B and SGB in PeakFQ for the 

main streamgages. 

Cis 

Gage Map ID # WY 

100-year expected flood LP3

Distribution using B17B

SGB in PeakFQ 

5% 

Lower 
95% Upper 

Gage 113 13 1,660 665.7 8,680 

Gage 114 103 6,862 4684 10,910 

Gage 115 33 21,800 9518 71,570 

Gage 116 53 14,940 8405 32,230 

Gage 131 13 9,706 2660 101,800 

Gage 133 45 3,974 2275 8,410 

Gage 135 14 17,910 13130 31,430 

Gage 136 38 7,133 3057 36,160 

Gage 146 54 6,975 4073 14,170 

Gage 147 46 481.5 294.6 929.7 

The bolded WY in table 6 are the shortest lengths of records. Figure 13 shows a graph with the

100-year flood projections with 95% CIs as error bars using the LP3 with SGB in PeakFQ. In

this figure, it is possible to see that gage 115 with 33 (tirty three) years of record, gage 131 with 

13 (thirteen) years of record and 136 with 38 years of record present the wider CIs. 

Figure 15 – Graph of the 100-year flood projection with 95% CIs as error bars using LP3 in PeakFQ. 
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In addition to the results provided in table 6 and in figure 15, it was possible to run two EMA

examples just to compare the results with the B17B global analysis method. For gage 113, the 

95% upper limit got higher than 8680 (B17B with SGB): 18000 (using EMA with SGB) and 

14380 (using EMA with MGB). For gage 114, the CIs got wider as well with the 95% lower 

limit dropping to 4393 and upper limit rising to 12930 (EMA with SGB) and lower limit 

dropping to 4375 and upper limit rising to 12820 (EMA with MGB). 

Table 7 presents the same 100-year projection for expected floods with 95% CIs for the 

separated selected by USGS streamgages. 

Table 7 – 100-year expected flood with 95% CIs, using LP3 distribution with B17B and SGB in PeakFQ for the 

USGS selected streamgages. 

CIs 

Gage Map ID # WY 

100-year expected flood LP3

Distribution using B17B

SGB in PeakFQ 

5% 

Lower 
95% Upper 

Gage 772 – Until 1993 23 11,640 4,939 56,120 

Gage 772 – Until 1983 13 11,640 4,939 56,120 

Gage 773 – Until 2021 57 10,950 5,145 36,800 

Gage 773 – Until 1983 19 10,950 5,145 36,800 

Gage 774 – Until 1981 11 10,800 5,242 46,380 

Gage 775 – Until 2021 80 12,770 6,486 34,580 

Gage 775 – Until 1957 16 9,573 3,862 45,920 

Gage 776 – Until 1996 32 3,931 2,784 7,383 

Gage 776 – Until 1977 14 3,931 2,784 7,378 

Gage 777 – Until 1996 38 658.4 513.4 922.6 

Gage 778 – Until 2020 68 2,366 1,624 3,794 

It is possible to see that, using the same LP3 distribution and global analysis method, in PeakFQ, 

the results for most of the streamgages do not change for the updated records. There was one 

rising 100-year flood projection for gage 775 but, considering that it fails the trend test for the 

updated record, it is just possible to infer that the projection and CIs are now higher.  

4.3. Parametrization considering GEV Distribution 

The parametrization for each streamgage considering the GEV distribution can be seen in the 

table 8 below (just the streamgages with no trend were considered). The errors up and down

considering the 95% CIs will be provided in section 4.5 for GEV. 
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Table 8 - Parametrization for all the streamgages using GEV. 

Gage ID Shape Parameter (k) 

Scale 

Parameter 

(𝜎) 

Location 

Parameter (𝜇) 

Gage 113 1.9856 41.4961 31.4257 

Gage 114 0.8987 247.9207 207.5725 

Gage 115 1.3323 266.4215 182.3505 

Gage 116 1.0531 318.3207 263.5669 

Gage 131 2.1084 86.9863 47.0667 

Gage 133 0.9078 161.0979 129.2919 

Gage 135 0.0745 620.0019 1354.9161 

Gage 136 1.0260 124.5994 114.7762 

Gage 146 1.1112 185.8892 147.9083 

Gage 147 0.6476 25.9856 23.8519 

Gage 773 – until 1983 0.8407 483.6010 424.3141 

Gage 774 1.7296 242.0899 549.8886 

Gage 775 – until 1957 0.9267 244.0264 192.6360 

Gage 776 – until 1977 0.3433 327.7984 943.0939 

Gage 777 -0.0272* 114.6851 179.5366 

Gage 778 0.5685 182.2710 175.3703 

This parametrization, indicated in table 8, performed in MatLab according to section 3.4 can

be considered the most important step performed in this thesis because a parametrization done 

correctly can avoid major mistakes while fitting the data records in the GEV distribution and 

also comparing to the LP3 results. 

Considering the shape (k) parameters in table 8, responsible for the classification of the

distribution, Frechet (EV2) is the distribution detected for fitting all of the streamgages data. 

The only exception of gage 777, which has its shape parameter approximating its distribution 

curve to a Weibull (EV3). However, considering the CIs obtained also from the parametrization, 

and its positive interval, this distribution can also be evaluated as an EV2.  

The scale parameter provides characteristics on the stretchness of the distribution. The smaller 

the scale parameter is like in gages 113, 131 and 147, the more stretched the distribution is. The 

location indicates how shifted the distribution is to the right based on its value.  
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4.4. GEV Return Period for the same 100-year Discharge using LP3 

The GEV results obtained using MatLab provided very interesting results for the different 

streamgages. In Table 9, below, it is possible to see the return periods for the main streamgages 

when the 100-year flood projection using LP3 in PeakFQ has the same value using the GEV 

distribution.  

Table 9 - GEV return period for the same discharge of 100-year return period using LP3 in PeakFQ for the 

main streamgages. 

Gage Map 

ID 
# WY 

GEV return period 

(for the same discharge from 

100-year in LP3)

Relation 

1/[WY] 

Relation 

1/[GEV return 

period] 

Gage 113 13 10 0.077 0.1000 

Gage 114 103 40 0.0097 0.0250 

Gage 115 33 35 0.0303 0.0286 

Gage 116 53 50 0.0189 0.0200 

Gage 131 13 14 0.0769 0.0714 

Gage 133 45 32 0.0222 0.0313 

Gage 135 14 20 0.0714 0.0500 

Gage 136 38 55 0.0263 0.0182 

Gage 146 54 30 0.0185 0.0333 

Gage 147 46 50 0.0217 0.0200 

When considering gage 114 from the results provided, in table 9, one question can be brought

up regarding the number of water years. If it has a length higher than 100 years it is naively 

expected that the projected flood considering 100-year return period will be comparable to the 

maxium peak flow from the entire record. However, this is not a correct assumption to make. 

When dealing with GEV (explained in detail in section 2.2), it is known that extreme events are 

given a greater weight. In addiction, even if considering an unchanging climate, this distribution 

considers that peaks will occur every 40 years. 

From table 9, it is possible to see that the frequency obtained from using the period in WY and

the frequency using the GEV return periods for the same discharge obtained using LP3 with 

100-year, have approximate values. Table 10 shows the same things for the selected

streamgages, considering only the ones with no trend. 
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Table 10 - GEV return period for the same discharge of 100-year return period using LP3 in PeakFQ for the 

selected by USGS streamgages. 

Gage Map ID # WY 

GEV return period 

(for the same 

discharge from 

100-year in LP3)

Relation 

1/[WY] 

Relation 

1/[GEV return 

period] 

Gage 773 – Until 1983 19 34 0.053 0.029 

Gage 774 – Until 1981 11 12 0.091 0.083 

Gage 775 – Until 1957 16 50 0.063 0.02 

Gage 776 – Until 1977 14 63 0.071 0.016 

Gage 777 – Until 1996 38 100 0.026 0.01 

Gage 778 – Until 2020 68 40 0.015 0.025 

The frequency values considering the water years available for each of the records and the 

GEV return periods are also very similar (table 10). This means that GEV distribution respects

the real length of each data record. Gage 777 was the only gage that the 100-year LP3 matches 

the 100-year GEV the other streamgages seem to be very conservative regarding the return 

period for the same discharge. 

4.5. GEV Expected Floods for the Return Periods from Table 7 with 95% CIs 

The 100-year discharges with 95% CIs, for GEV, were calculated in MatLab and they are 

presented in Appendix II. However, the main focus are the same discharges, considering the 

100-year LP3, found for GEV in different return periods. Table 11, below, provides the

discharges for GEV with the 95% CIs for the main streamgages compared to the LP3 CIs. 

Table 11 – Discharges and 95% CIs considering the same GEV return periods indicated. 

CIs 

Gage Map ID WY Return Period 
Discharges for the return 

periods indicated using GEV 

5% 

Lower 
95% Upper 

Gage 113 13 10 1,833 16.8 358,430 

Gage 114 103 40 7,440 2,684.1 22,202 

Gage 115 33 35 22,433 2,515 238,690 

Gage 116 53 50 15,823 3,360 84,782 

Gage 131 13 14 10,416 152.51 989,660 

Gage 133 45 32 3,988 780.63 38,863 

Gage 135 14 20 18,066 5,302.1 188,600 

Gage 136 38 55 7,413 1,142.5 53,696 

Gage 146 54 30 7,252 1,369.5 45,516 

Gage 147 46 50 485.88 116.49 2,795 

It is possible to see, from table 11, that gages 113, 131 and 135, with lengths of 13, 13 and 14

water years and return periods for GEV, when compared to the LP3 discharges, presented in 

the table, they present high values for the 95% upper CI. From that, it is possible to infer that,

the shorter the period, the wider and least precise are the CIs. 
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From table 11, it was possible to see the CI limits for GEV. For gage 114, with more than

100 years of record, considering the 100-year GEV (Appendix II), there is huge projection 

because it is representing the fitted distribution instead of the historical record itself. 

Figure 16 compares the CI limits for LP3 (section 4.2: figure 15) and GEV. 

Figure 16 - Comparisson between LP3 (in the left) and GEV (in the right) CIs. 

It is possible to see that GEV CIs are wider than LP3 CIs. However, the widest CI ranges for 

GEV are for the streamgages with the shortest lengths of WY, showing that the accuracy is 

lower when considering short records, which is a good thing to consider. LP3 also shows wider 

CIs for some of the short length records but it is not the only reason for the wider CIs in these 

streamgages. 

According to Stedinger, Vogel & Foufoula-Georgiou (1993), in log transformations, low 

outliers in the data record are given a great weight (that is why SGB was used in PeakFQ with 

B17B for obtaining the LP3 projected 100-year discharges). Considering LP3, when large 

values are the focus, some of the small values can be reported as zero if they fall below a certain 

threshold.  

4.6. Comparisson between LP3 and GEV CDFs for each Streamgage. 

Considering the parametrization obtained in section 4.3, the equation 6 from section 2.2 and 

the data records for each streamgage, the CDFs for GEV were displayed and compared to 

the CDFs for LP3, using equation 1 from section 2.2 and the LP3 results for each streamgage. 

The results for all the original streamgages with no trends detected can be evaluated and 

discussed below. 

The figures below show the GEV and LP3 CDFs plotted to the same graphs for each of the 

streamgages with no trends in the data.  
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Figure 17 - GEV and LP3 CDFs for gage 113. 

The curve above the other means that there is a larger percentage of data values in the selected 

interval of discharge values, in cfs, provided in the x-axis. GEV curve, below LP3 curve after 

the interval of 0 to 250 cfs (figure 17), shows that for higher discharge values, GEV is more 

conservative than LP3, presenting a lower percentage of these values in the ending part of its 

CDF curve and meaning that it considers a smaller return period. It also demonstrates how GEV 

takes the length of the records a lot in consideration. 

Figure 18 - GEV and LP3 CDFs for gage 114. 

For the streamgage 114, the results for both LP3 and GEV CDFs were really mainly very 

similar. Until the interval of 0 to 1000 cfs, LP3 shows to be more conservative than GEV and, 

then, for the next higher discharge values, GEV presents a smaller return period. 
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Figure 19 - GEV and LP3 CDFs for gage 115. 

Considering gage 115 (figure 19), until the interval of 0 to 2000 cfs, LP3 shows to be more 

conservative than GEV and, then, for the next higher discharge values, GEV presents a 

smaller return period.  

Figure 20 - GEV and LP3 CDFs for gage 116. 

For gage 116 (figure 20), LP3 shows to be more conservative for all cases after the interval of 

0 to 375 cfs.  
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Figure 21 - GEV and LP3 CDFs for gage 131. 

Considering gage 131 (figure 21), LP3 shows to be more conservative until 1120 cfs. Then, for 

the next higher discharge values, GEV presents a smaller return period, showing to be more 

conservative. 

Figure 22 - GEV and LP3 CDFs for gage 133. 

Considering gage 133 (figure 22), LP3 and GEV alternate being the best of fitness for one 

interval or another.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

120 620 1120 1620 2120

CDFs - Gage 131

LP3

GEV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

CDFs - Gage 133

LP3

GEV



31 

Figure 23 - GEV and LP3 CDFs for gage 136. 

For gage 136, it is possible to see that LP3 is more conservative until around 1000 cfs and 

then GEV gets more conservative for higher discharges.  

Figure 24 - GEV and LP3 CDFs for gage 146. 

For gage 146, it is possible to see that LP3 and GEV behave similarly until before 250 cfs. 

LP3 is more conservative until around 1500 cfs and then GEV gets more conservative for the 

highest discharges. 
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Figure 25 - GEV and LP3 CDFs for gage 147. 

For the streamgage 147, the results for both LP3 and GEV CDFs are mainly identical. It is 

possible to see also, from table 6, table 11 and Appendix II that the GEV discharge and 

CI results are not that different from LP3 results considering the differences portraid in the 

results for the other main streamgages.  

For the USGS selected streamgages, the gages have their CDFs evaluated when the 

original updated records had no prior trends. Taking only gage 778 as an example (figure 25) 

to show both CDFs with the data plotted, it is possible to see how the data follows each of the 

CDF curves and how proximate it is to one or the other curve.   
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Figure 26 - GEV and LP3 CDFs with the historical data plotted for gage 778. 

For this same gage, a plot with just the GEV curve and the historical data stair graph was done 

using MatLab. The result can be seen in figure 26. 

Figure 27 - Example of GEV CDF curve plotted together with historical data as a stair graph for gage 778. 

It is possible to see that the GEV curve fits and represents the data records really well.  
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5. CONCLUSION

From the results obtained in this thesis, it can be inferred that for any of the data with short 

records, the confidence intervals (CIs) for either LP3 or GEV are wider (with very high upper 

values). The results obtained for GEV were directly affected by the length of the data. When 

the length of the record is short, it is not accurate to use a projection of 100-year return period 

to represent future projections but, instead, the lenght available. 

By analizing USGS report and streamgages data, it was possible to see that many of the 

streamgages presented short-period data records. Also, some analyzed streamgages had missing 

peaks in some of the water years that could potentially affect in the analysis. For some gages, 

USGS provided a perception threshold discharge for missing peaks. For the streamgages 

analyzed in this thesis, no perception threshold was detected in PeakFQ. The report presented 

the expected moments algorithm (EMA) method as an alternative that could incorporate 

censored data and interval peak-discharge data into the analysis but the CIs obtained for the 

examples used in section 4.2, shows B17B can provide more accurate data when 

considering streamgages with no missing records, no perception threshold and no additional 

historical information. Therefore, the document comes up with alternatives for when data does 

not fit LP3 well because of low outliers or the previous commented reasons with the data itself. 

Even with the results showing that GEV provides wider than LP3 95% CIs for the projected 

discharges, when considering the analyzes, regarding the CDFs for the majority of the 

streamgages analyzed in this project, GEV proves to be the most conservative method, with 

smaller return periods, between the two distributions.  

Stakhiv (2011), in his work, shows a smaller return period for the same discharge when using 

GEV instead of LP3 and finishes his work by stating how necessary it is to consider the climate 

change’s assumption to change the evaluation procedures, such as replacing LP3 and applying 

GEV probability distribution for flood frequency analysis (FFA) for water infrastructure.  

Considering a nonstationary climate, flooding issues happening more frequently and knowing 

the GEV itself gives more weight to extreme events, it is necessary to analyze, together with 

LP3 (the most conventional statistical method for FFA in US), which method seems to be the 

best for each scenario instead of using the exact same distribution for all cases.  
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APPENDIX I – Fitted frequency curve (in red) and CI curves (in blue) for annual peak 

discharge (cfs) by AEP (%) with gaged peak discharges plotted as well (in green). 

LP3 fitted frequency curve with CIs for gage 113. LP3 fitted frequency curve with CIs for gage 114. 

LP3 fitted frequency curve with CIs for gage 115. LP3 fitted frequency curve with CIs for gage 116. 

LP3 fitted frequency curve with CIs for gage 131. LP3 fitted frequency curve with CIs for gage 133. 

LP3 fitted frequency curve with CIs for gage 135. LP3 fitted frequency curve with CIs for gage 136. 
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LP3 fitted frequency curve with CIs for gage 146. LP3 fitted frequency curve with CIs for gage 147. 

LP3 fitted frequency curve with CIs for gage 773 (until 83). LP3 fitted frequency curve with CIs for gage 774. 

LP3 fitted frequency curve with CIs for gage 775 (until 57). LP3 fitted frequency curve with CIs for gage 776 (until 77). 

LP3 fitted frequency curve with CIs for gage 777. LP3 fitted frequency curve with CIs for gage 778. 
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APPENDIX II – Discharges for 100-year return period using GEV for the main 

streamgages. 

Matlab (0.99) 

GEV 

95% Confidence Intervals 

(CIs):  

for 100-yr discharges  

Errors up and down the 

discharge obtained for 100-

year GEV. 

Gage Map 

ID 

# 

W.Y. 
100-yr discharge

Lower Upper Error Up 

Error 

Down 

gage 113 13 193,650.00 38.54 4,008,600,000.00 4,008,406,350.00 193,611.46 

gage 114 103 17,156.00 4,809.10 66,890.00 49,734.00 12,346.90 

gage 115 33 91,744.00 5,635.30 1,823,900.00 1,732,156.00 86,108.70 

gage 116 53 38,358.00 5,841.90 291,430.00 253,072.00 32,516.10 

gage 131 13 672,520.00 773.80 970,220,000.00 969,547,480.00 671,746.20 

gage 133 45 11,506.00 1,335.70 226,060.00 214,554.00 10,170.30 

gage 135 14 46,714.00 5,802.10 2,090,200.00 2,043,486.00 40,911.90 

gage 136 38 13,612.00 1,548.00 126,400.00 112,788.00 12,064.00 

gage 146 54 27,742.00 2,923.10 323,990.00 296,248.00 24,818.90 

gage 147 46 772.97 141.40 5,741.10 4,968.13 631.57 
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