"Lp Theory for the Multidimensional Aggregation Equation Communications" by Andrea L. Bertozzi, Thomas Laurent et al.
 

Lp Theory for the Multidimensional Aggregation Equation Communications on Pure and Applied Mathematics

Document Type

Article

Publication Date

2011

Abstract

We consider well-posedness of the aggregation equation ∂tu + div(uv) = 0, v = −▿K * u with initial data in \input amssym ${\cal P}_2 {\rm (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ in dimensions 2 and higher. We consider radially symmetric kernels where the singularity at the origin is of order |x|α, α > 2 − d, and prove local well-posedness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ for sufficiently large p < ps. In the special case of K(x) = |x|, the exponent ps = d/(d = 1) is sharp for local well-posedness in that solutions can instantaneously concentrate mass for initial data in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ with p < ps. We also give an Osgood condition on the potential K(x) that guarantees global existence and uniqueness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$.

Share

COinS