Document Type
Article
Publication Date
2015
Abstract
Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the forbid- den number. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots.
Original Publication Citation
Crans, A., B. Mellor, and S. Ganzell, 2015: The forbidden number of a knot. Kyungpook Mathematical Journal, 55.2, 485-506, http://dx.doi.org/10.5666/KMJ.2015.55.2.485.
Publisher Statement
Crans, A., B. Mellor, and S. Ganzell, 2015: The forbidden number of a knot. Kyungpook Mathematical Journal, 55.2, 485-506, http://dx.doi.org/10.5666/KMJ.2015.55.2.485. Learn more at http://kmj.knu.ac.kr. Copyright © Department of Mathematics at Kyungpook National University.
Digital Commons @ LMU & LLS Citation
Crans, Alissa S.; Mellor, Blake; and Ganzell, Sandy, "The Forbidden Number of a Knot" (2015). Mathematics, Statistics and Data Science Faculty Works. 22.
https://digitalcommons.lmu.edu/math_fac/22