Document Type

Article - post-print

Publication Date

2000

Abstract

Vassiliev invariants can be studied by studying the spaces of chord diagrams associated with singular knots. To these chord diagrams are associated the intersection graphs of the chords. We extend results of Chmutov, Duzhin and Lando to show that these graphs determine the chord diagram if the graph has at most one loop. We also compute the size of the subalgebra generated by these "loop diagrams."

Comments

This is a post-print version of the article.

Original Publication Citation

Mellor, B., 2000: The Intersection Graph Conjecture for Loop Diagrams. J. Knot Theory Ramif., 9. 2, 187-211, arXiv:math/9807033.

Share

COinS